

Lajes Contínuas de Pontes - NB2-1961 Cálculo na Fase Plástica Prof. Telemaco van Langendonck

Prof.. Eduardo C. S. Thomaz Notas de aula

- Adicionar ao cálculo das armaduras de lajes de pontes, aqui apresentado pelo Prof. Telemaco van Langendonck, a verificação da segurança à fadiga.
- Para a Fadiga ver o Anexo da EB-3/67- Barras de Aço para Concreto Armado no link: aquarius.ime.eb.br/~webde2/prof/ethomaz/lobocarneiro/barras_aco.pdf
- Esse método de cálculo da NB2-1961, junto com a EB-3/67, pode ser usado com as cargas móveis atuais, e as armaduras das lajes serão semelhantes às calculadas pela NBR 7187-2003, junto com a NBR 6118.

Nomenclatura

Tensão	NB1 e NB2-1961	NBR 6118-2003 e NBR 7187-2003
Escoamento do aço	σе	fyk
Compressão do concreto	σR	fck

Comparação aproximada entre as normas de Pontes : NB2-1961 e NBR 7187-2003

Concreto:

NB2 - 1961

1,65 Mg + 2,0× (
$$\phi$$
 impacto) Mp < Mu [função de (σ R = fck)]

NBR 7187-2003 e NBR 6118-2003.

1,35 Mg + 1,50× (
$$\phi$$
 impacto) Mp < Mu [função de $\left(\frac{0.85 \times fck}{1.4}\right)$]

$$\approx$$
 1,65 Mg + 2,35× (ϕ impacto) Mp < Mu [função de (fck)]

Aço:

NB2 - 1961

1,65 Mg + **2,0**× (
$$\phi$$
 impacto) Mp < Mu [função de (σ e = fyk)]

Fadiga

EB3-1967 que complementou a NB1-1960 e a NB2-1961 :

• 1,20 x $\Delta\sigma$ (carga móvel) nas barras retas (estádio II) < 220 MPa

Logo : $\Delta \sigma_{\text{(carga m\'ovel)}}$ nas barras retas (estádio II) < 220MPa/1,20 =183 MPa

NBR 7187-2003 e NBR 6118-2003.

• 1,35 Mg + 1,50× (
$$\phi$$
 impacto) Mp < Mu [função de $\left(\frac{fyk}{1,15}\right)$]

•
$$\approx$$
 1,55 Mg + 1,73× (ϕ impacto) Mp < Mu [função de (fyk)]

Fadiga

NBR6118 -2003 : Para lajes de pontes é feita a redução $\psi = 0.8$:

 $\Delta \sigma sd = 0.8 \text{ x } \Delta \sigma_{\text{ (carga movel)}}$ barras retas (estádio II) < 190 MPa

Logo : $\Delta \sigma_{\text{(carga m\'ovel)}}$ nas barras retas (estádio II) < 190/0,8 = **238 MPa**

Conclusão: As armaduras das lajes de pontes calculadas pela NB2-1961 são maiores do que as calculadas pela **NBR 7187-2003**, se forem consideradas as mesmas cargas móveis.

LAJES CONTÍNUAS DE PONTES

SEU CÁLCULO EM FACE DO ITEM 24 DO PROJETO DE REFORMA DA NB-2

TELEMACO H. DE M. VAN LANGENDONCK

1. Objetivo

Pretende-se no presente trabalho apresentar marcha de cálculo utilizável no dimensionamento das lajes contínuas de pontes, quando se quiser empregar o critério do item 24, do projeto de reforma da NB-2, que assim reza [1]:

« No cálculo de lajes contínuas — apoiadas em vigas no seu contôrno, não sujeitas a deslocamentos angulares apreciáveis, de vãos iguais ou em que o menor vão não seja inferior, em cada direção, a 70% do maior, — permite-se adotar o seguinte processo aproximado:

No contôrno de cada painel da laje dispor-se-á armadura superior uniformemente distribuída, de modo que a peça não fique superarmada. O momento de ruptura correspondente será designado por "momento de borda" $(M_b > 0)$ e deverá estar entre os limites adiante estabelecidos.

O cálculo de cada painel é feito isoladamente, com as cargas multiplicadas pelos respectivos coeficientes de segurança, como se fôsse livre o apoio de suas bordas sôbre as vigas, modificados apenas os momentos fletores M_0 achados, como a seguir se expõe:

— nos trechos em que $M_0 < M_b$, considerar-se-ão momentos negativos

$$M=M_0-M_b,$$

— nos trechos em que $M_0 > 0.6 M_b$, considerar-se-ão momentos positivos

$$M = M_0 - 0.6 M_b$$
.

A armadura superior ao longo das bordas será a que leva a valor de M_b entre 1/2 e 2/3 do máximo $M_{\rm 0}$ da placa, mas não

excedendo 3/4 do maior M_0 que se verifica na direção perpendicular à daquêle momento máximo.

Havendo placa ou balanço adjacente à placa considerada, que obrigue a existência de armadura maior que a do limite superior especificado, colocar-se-á armadura igual em todo o seu contôrno, mas no cálculo dos momentos positivos não se considerará valor de M_b maior que o correspondente a êsse limite.

Para lajes contínuas só em uma direção e que não se apoiem em vigas paralelas a essa direção também se pode aplicar o cálculo aproximado citado, usando-se armadura superior sôbre as vigas de apoio que leve a M_b entre 1/2 a 2/3 do máximo M_0 . A armadura transversal será calculada com o critério do item 23. »

Como se vê, o cálculo todo parte do conhecimento dos momentos fletores M_0 que se verificam em cada painel da laje considerado isolado e livremente apoiado em seu contôrno. Por isso inicia-se o estudo com a busca dos M_0 (§2). A seguir estudam-se os momentos de borda M_b (§3) e os diagramas dos momentos finais para dimensionamento (§ 4), seguindo-se algumas considerações sôbre as fôrças cortantes (§ 5) e dois exemplos de aplicação (§§ 6 e 7).

2. A laje retangular livremente apoiada

Os momentos fletores que se verificam nas lajes retangulares, livremente apoiadas em todo o seu contôrno, são calculáveis com a aplicação das séries de Fourier na resolução da equação de Lagrange. Os resultados obtidos encontram-se nos livros especializados (por exemplo, no Capítulo V de [2] dedicado exclusivamente a êsse estudo). Não seria prático, entretanto, fazer-se uso das séries de Fourier, para cada laje, para cada posição da carga e para cada ponto das secções onde agem os momentos flectores. Para evitar tal complexidade de cálculo, pode-se recorrer a certos resultados já conhecidos referentes aos diagramas de máximos momentos fletores [3] [4].

As cargas são supostas aplicadas sob a forma de fôrças uniformemente distribuídas dentro de retângulos de lados paralelos ao da laje (como realmente preceitua a NB-1, cujos trem-tipos são os da fig. 6).

A notação a ser usada é a da fig. 1, onde se designam por l_x e $l_y \ge l_x$ os comprimentos dos lados da laje retangular e por a_x e a_y os dos lados do retângulo das cargas, paralelos respectivamente a l_x e l_y . Os momentos fletores por unidade de comprimento da secção

são representados por M_x e M_y , atuantes respectivamente em planos perpendiculares a l_x e l_y .

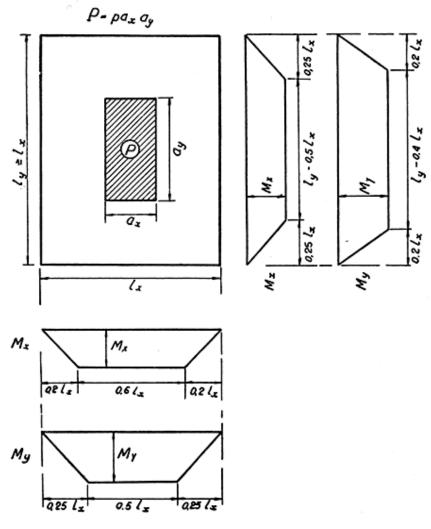


Fig. 1

Quando se conhecem os valores máximos de M_x e M_y no centro da placa (a serem designados respectivamente por M_X e M_Y), podem traçar-se com precisão suficiente os diagramas de seus valores máximos em tôda a placa, atribuindo-se-lhes a distribuição indicada na fig. 1.

Quando os centros dos retângulos da carga e da placa coincidem, determinam-se M_X e M_Y , em função de a_x/l_x e a_y/l_x , com as tabelas I dadas no fim dêste artigo (1).

Para cargas cujos centros não coincidam com o da laje, aplicam-se as tabelas com o artifício indicado na fig. 2.

⁽¹⁾ Calculadas para coeficiente de Poisson $\nu = 1/6$ a partir dos dados numéricos encontrados em (2) e (3).

A posição mais desfavorável dos veículos sôbre a placa obtém-se, pràticamente, dispondo a roda mais pesada sôbre o centro da laje; as outras ocuparão as posições correspondentes de acôrdo com a

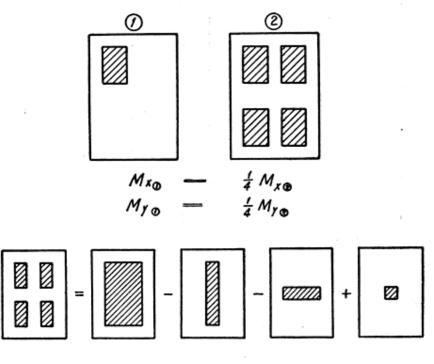
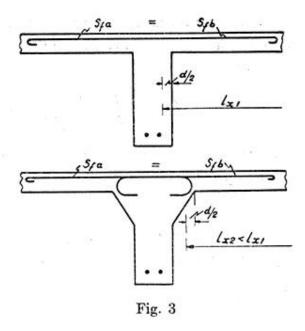



Fig. 2

NB-6 (fig. 6). Somando os M_X e M_Y referentes a tôdas as cargas, inclusive a permanente, obtêm-se os seus valores finais a serem usados nos diagramas da fig. 1.

As condições anteriores, bem como as dos § seguintes, referem-se a lajes de espessura constante. Aliás não há interêsse em se fazerem mísulas, pois que o momento nas bordas não têm intensidade muito maior que os que se dão no centro da laje. Há possibilidade, entretanto, de se alargar a viga de contôrno na parte superior (fig. 3), de modo a reduzir-se o vão da laje e, mesmo, permitir-se a existência de armaduras superiores diferentes nas bordas de duas lajes adjacentes (desde que haja espaço suficiente, sôbre a viga alargada, para a ancoragem das barras da laje que tem maior armadura). Supõe-se que para vão da laje se tome valor igual à distância entre os centros dos apoios, mas nunca maior que o vão livre acrescido da espessura d no meio do vão (pois o cálculo é feito como o de laje isolada) (2).

⁽²⁾ Itens 21 da NB-2 e 10 da NB-1.

3. Momentos de borda

Ao longo da borda da laje dispõe-se armadura uniformemente distribuída de modo que o cálculo no estádio III da secção, ao longo da borda, por unidade de comprimento, leve a peça sub-armada com momento de ruptura M_b tal que (M_X e M_Y são os momentos máximos no meio da laje calculados no § 2):

$$\frac{M_X}{2} < M_b < \frac{3 M_Y}{4} \quad \text{se} \quad M_X > \frac{9 M_Y}{8}$$

$$\frac{M_X}{2} < M_b < \frac{2 M_X}{3} \quad \text{se} \quad M_Y \le M_X \le \frac{9 M_Y}{8}$$

$$\frac{M_Y}{2} < M_b < \frac{2 M_Y}{3} \quad \text{se} \quad \frac{8 M_Y}{9} \le M_X \le M_Y$$

$$\frac{M_Y}{2} < M_b < \frac{3 M_X}{4} \quad \text{se} \quad M_X < \frac{8 M_Y}{9}.$$
(3.1)

Escolhe-se o M_b dentro dos limites impostos, o que só será possível se o maior dos momentos M_X e M_Y não fôr maior que 1,5 vez o outro (em caso contrário o processo não é aplicável, pois a hipótese de que se dê o escoamento das secções em todo o contôrno da laje provàvelmente não se verificará antes de escoarem outras secções da parte central).

A armadura S_f a ser colocada por unidade de comprimento da borda, na face superior da laje, é a que se obtém com o cálculo da secção no estádio III (3);

$$S_f = \frac{h \,\sigma_R}{\sigma_c} \left(1 - \sqrt{\frac{2 \,M_b}{h^2 \,\sigma_R}} \right), \tag{3.2}$$

não se devendo usar M_b que não obedeça às desigualdades 3.1 nem que leve a peça super-armada, isto é, (4)

$$M_b \le h^2 \, \sigma_R \, w_l \,. \tag{3.3}$$

Nas expressões anteriores, h é a altura útil da laje (distância da armadura à face comprimida), σ_c é o limite de escoamento (\tilde{s}) do aço da armadura, σ_R a tensão mínima de ruptura a compressão do concreto (\tilde{s}) e w_l um coeficiente que caracteriza o momento fletor má-

$$\begin{array}{lll} {\rm para \ aço \ 37\text{-}CA} & & \sigma_e = 2 \ 400 \ {\rm kg/cm^2} \\ & & 50\text{-}CA & & \sigma_e = 3 \ 000 \ {\rm kg/cm^2} \\ & & {\rm CA\text{-}T40} & & \sigma_e = 4 \ 000 \ {\rm kg/cm^2} \\ & & {\rm CA\text{-}T50} & & \sigma_e = 5 \ 000 \ {\rm kg/cm^2} \end{array}$$

(6) De acôrdo com a definição do item 89 da NB-1:

A tensão σ_R , na qual se baseia o cálculo das peças em função da carga de ruptura (estádio III) ou a fixação das tensões admissíveis, será igual à tensão mínima de ruptura do concreto a compressão, com 28 dias de idade determinada em corpos de prova cilíndricos normais.

Considera-se, para os fins desta Norma, como tensão mínima de ruptura do concreto a compressão, a definida pelas fórmulas seguintes:

— quando houver sido determinado o coeficiente de variação da resistência do concreto, com pelo menos 32 corpos de prova da obra considerada ou de outra obra do mesmo construtor e de igual padrão de qualidade (item 92):

$$\sigma_R = (1 - 1.65 v) \sigma_{c28}$$
, mas não maior que 0.8 σ_{c28} :

quando não fôr conhecido o coeficiente de variação:

se houver contrôle rigoroso (item 92):

$$\sigma_R = (3/4) \, \sigma_{c28}$$

se houver contrôle razoável (item 92):

$$\sigma_R = (2/3) \, \sigma_{c28}$$

se houver contrôle regular (item 92):

$$\sigma_R = (3/5) \sigma_{c28}$$

No caso de se prever carregamento da estrutura com idade k inferior a 28 dias, substitui-se σ_{c28} por σ_{ck} .

⁽³⁾ Veja-se, por exemplo, (5), 2.° v., p. 429. As tabelas II, dadas no fim dêste artigo, facilitam o cálculo de S_f .

⁽⁴⁾ Ainda de acôrdo com (5), § 353.

⁽⁵⁾ Real ou convencional (correspondente êste à deformação permanente de 0,2%), ou seja:

ximo que se pode obter com peça sub-armada (7).

Quando houver armadura da laje adjacente que ultrapasse o limite superior imposto pela condição de M_b não ser maior que dado valor, é preciso que se estenda essa armadura a todo o contôrno do painel, mas no cálculo se considerará M_b como igual ao limite que lhe corresponde (como no exemplo do § 7).

4. Diagramas de momentos fletores para o dimensionamento

Os diagramas dos momentos fletores a serem utilizados no dimensionamento são os da laje livremente apoiada (fig. 1) alterados pelo traçado de duas linhas de fecho retilíneas como se mostra no primeiro diagrama da fig. 4:

- a) uma, de ordenada $0.6 M_b$ que se estende por todo o interior da figura formada pelo diagrama, determinando os momentos positivos, que se medirão a partir dela até a curva do diagrama primitivo;
- b) outra, de ordenada M_b , exterior à figura formada pelo diagrama, a qual determina os momentos negativos, medidos a partir dela até a curva do diagrama primitivo.

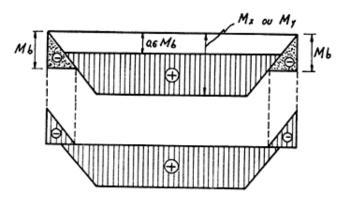


Fig. 4

para aço 37-CA :
$$w_l = 3\ 150 \times 3\ 975/5\ 550^2 = 0,407$$

 50 -CA : $w_l = 3\ 150 \times 4\ 575/6\ 150^2 = 0,381$
CA-T40: $w_l = 3\ 150 \times 5\ 575/7\ 150^2 = 0,344$
CA-T50: $w_l = 3\ 150 \times 6\ 575/8\ 150^2 = 0,312$

pois, de acôrdo com [5], (fórmula 353.1 e nota de rodapé 446), com σ_e em kg/cm²:

$$w_l = \frac{3\,150\,(\sigma_e + 1\,575)}{(\sigma_e + 3\,150)^2} \; .$$

⁽⁷⁾ Vale êsse coeficiente, quando se toma, de acôrdo com as normas, o encurtamento de ruptura do concreto igual a 0,15%:

No ultimo desenho da fig. 4 mostra-se o mesmo diagrama com a convenção usual, medido a partir de uma única linha de referência.

5. Fôrças cortantes

Com a hipótese da distribuição uniforme do momento de borda, não há alteração das fôrças cortantes calculadas para a placa livremente apoiada (8).

Pode-se dispensar seu cálculo exato, se se tiver em vista que a busca de seu valor máximo é suficiente para se determinar a necessidade ou não do emprêgo de armadura transversal. Se esta fôr dispensável, nada mais há a calcular; em caso contrário, deve armar-se cada lado do contôrno da laje, em todo seu comprimento, para o valor máximo que lhe corresponde. A fôrça cortante achada para o contôrno diminui para o interior da laje, podendo admitir-se que a variação seja linear até ser subtraída do valor da carga na secção em que esta terminar (a armadura só é necessária nos trechos em que a fôrça cortante ultrapassa os limites dados pela fórmula 5.5), como se mostra na fig. 9. A posição mais desfavorável do trem-tipo dá-se quando o retângulo da carga (de lados a e b) de uma roda tangencia o contôrno da laje. Pode admitir-se que a fôrça cortante seja a que se verifica na viga simplesmente apoiada de largura a + b, com eixo coincidente com o centro do retângulo da carga e de vão $l_x (\leq l_y)$; com isso, os apoios coincidem com os da laje para a viga paralela a l_x e só um dêles (aquele junto ao qual se calcula a fôrça cortante máxima) para a viga paralela a l_y (se $l_y \neq l_x$). A multidão fica na sua posição normal; a carga permanente uniformemente distribuída também se calcula do mesmo modo permitindo-se uma redução no valor achado, se $l_y \leq 1,8 l_x$, na proporção de

$$r = 1 - \frac{1}{4} \left(1.8 - \frac{l_y}{l_x} \right)^2.$$
 (5.1)

De acôrdo com aquêle critério, a fôrça cortante Q_1 , por unidade de comprimento, devida ao trem-tipo, é dada, para $l_x > a + 3$ metros, pelas fórmulas seguintes, onde a é o lado do retângulo da carga de uma roda na direção do tráfego e b, o que lhe é perpendicular (P é o pêso do veículo, P' o deu seu eixo mais pesado e p o da multidão que precede e segue o veículo, fig. 5: (9)

⁽⁸⁾ Veja-se, por exemplo, [2], Cap. II.

⁽⁹⁾ De acôrdo com a NB-6, tem-se:

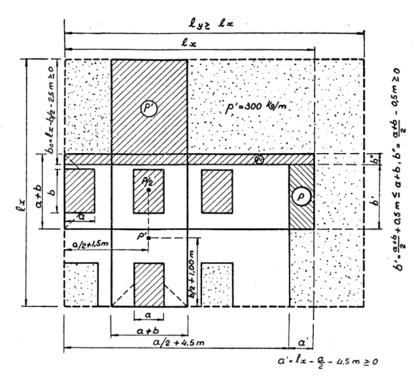


Fig. 5

Para as secções junto às transversinas (unidades: t e m):

$$Q_1 = \frac{1}{2(a+b)} \left[P \left(1 - \frac{a+3}{2l_x} \right) + 0.3 b'' l_x + p \frac{a'^2 b'}{l_x} \right]$$
 (5.2)

onde a', b' e b'' são as grandezas definidas na fig. 5.

Para as secções junto às longarinas (unidades: t e m):

$$Q_1 = \frac{P'}{a+b} \left(1 - \frac{b+2}{2 l_x} \right) + 0.15 \frac{b_0^2}{l_x}$$
 (5.3)

sendo b_0 a largura definida na fig. 5. Nesta fórmula não há p, porque se se tiver ,como sói acontecer, $a+b \leq 3$ m, não haverá parte dessa carga sôbre a faixa considerada.

Classe da rodovia	Classe da ponte	Pêso P do veículo	Pêso P' do eixo mais pesado	Carga p que segue e ante-cede o veículo
I II III	36 24 12	36 t 24 t 12 t	$\begin{array}{c} 12~\mathrm{t} \\ 8~\mathrm{t} \\ 8~\mathrm{t} \end{array}$	0,5 t/m ² 0,4 t/m ² 0,3 t/m ²

A carga que se situa ao lado do veículo (o qual ocupa o retângulo de $6m \times 3m$) é $p' = 0.3 \text{ t/m}^2$ para tôdas as classes.

A distribuição das cargas é a da fig. 6, notando-se que as dimensões dos retângulos correspondentes às rodas são as que se referem à superfície do pavimento e que devem ser acrescidas da espessura da laje e do dôbro da espessura do pavimento, pois, de acôrdo com o item 22 da NB-2, admite-se distribuição a 45° até a superfície média da placa (fig. 7a).

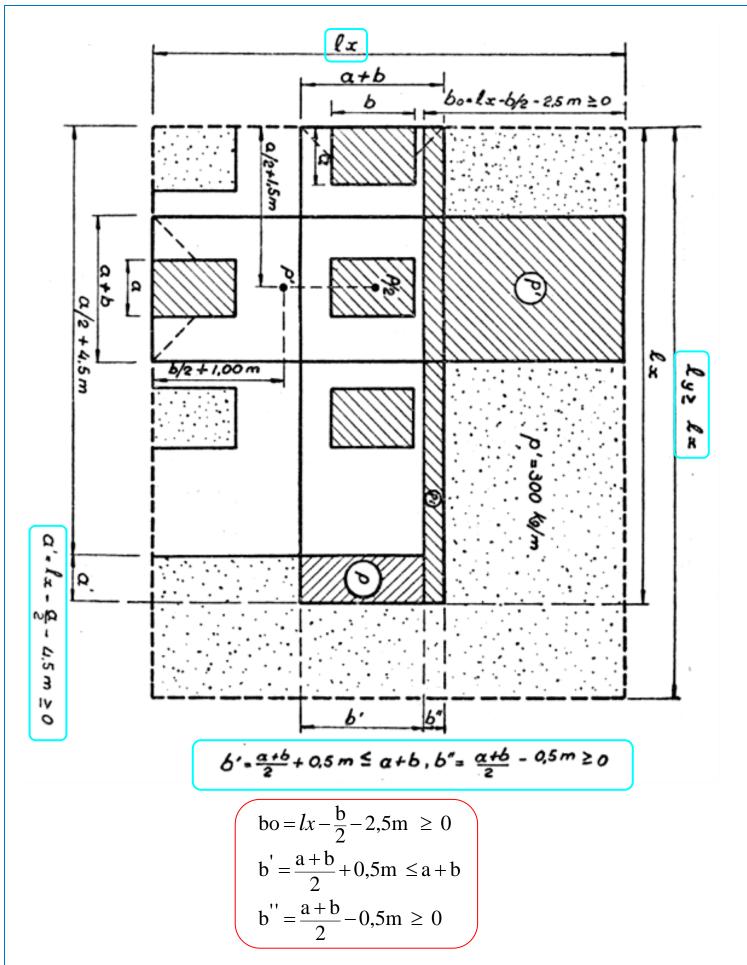
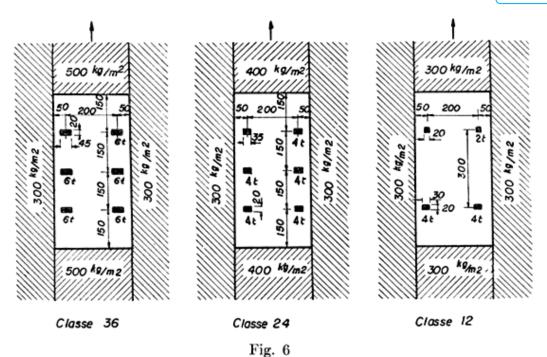


Fig 5 girada 90 graus

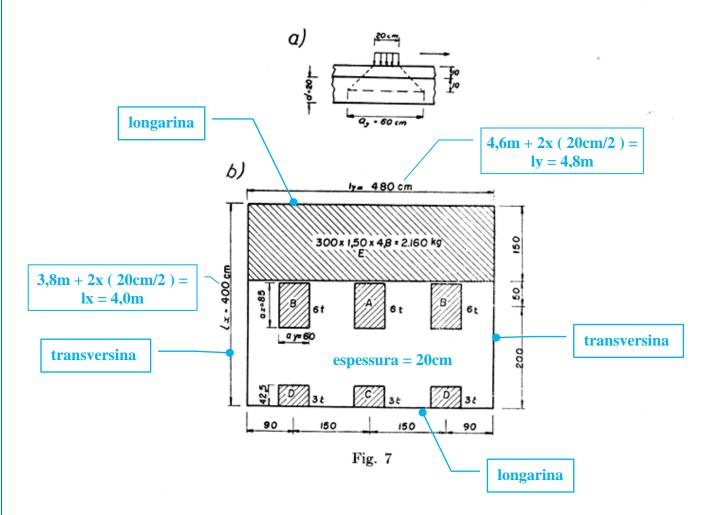
Se Q_1 , somado ao efeito da carga permanente g:

$$Q_2 = gl_x \frac{r}{2} , \qquad (5.4)$$


levar a valor de $Q = \varphi Q_1 + Q_2$ (sem inclusão do coeficiente de segurança mas sim com o de impacto φ) tal que (d é a espessura da laje e σ_R a tensão mínima de ruptura do concreto definida no item 89 da NB-1):

$$Q \le \begin{cases} \frac{2 \sigma_R d}{75} \\ \frac{d}{3} \times 16 \text{ kg/cm}^2 \end{cases}$$
 (5.5)

de acôrdo com o item 30 da NB-1, confirmado pelo item 33 da NB-2, usando o braço de alavanca z para o cálculo de $\tau = \sigma_I = Q/z$, do estádio I, ou seja $z \cong 2 d/3$, e as tensões admissíveis do item 58 da NB-2.


6. Exemplo de painel central

"Dimensionar o painel central da laje de uma ponte de grande largura, cujas vigas principais tenham afastamento livre de 3,8 m, com espaçamento livre entre transversinas, de 4,6 m. O trem-tipo é o das pontes da classe 36 da NB-6, a espessura da laje é de 20 cm,

e o material a ser usado é aço 37-CA e concreto com $\sigma_R = 150 \text{ kg/cm}^2$. O pavimento tem a espessura de 10 cm."

O veículo do trem-tipo tem seis rodas que transmitem 6 t cada uma (fig. 6). O retângulo de contato de cada uma delas tem 20 cm na direção longitudinal e 45 cm na transversal; a área de aplicação da carga, para efeito de cálculo é a que se obtém acrescentando 40 cm a cada uma dessas medidas (fig. 7a). Colocando o trem-tipo sôbre

a laje de modo que uma das rodas do eixo central do veículo fique sôbre o seu centro, obtém-se a situação de cargas da fig. 7b (note-se que a multidão pesa 300 kg/m² e se estende ao lado do veículo até 50 cm do eixo das rodas). Para vãos da laje tomaram-se os respectivos vãos livres (3,8 m e 4,6 m do enunciado) acrescidos da espessura da laje, pressupondo que as vigas não tenham menos de 20 cm de largura.

O cálculo dos momentos fletores M_X e M_Y no centro da laje faz-se com as tabelas I, para $l_y/l_x = 1,2$, achando-se (as várias par-

celas de cada carga correspondem às respectivas decomposições de acôrdo com a fig. 2) (10):

Carga (fig. 7b)	P (t)	$\frac{a_x}{l_x}$	$\frac{a_y}{l_x}$	$10^4 \frac{M_X}{P}$	$10^4 \frac{M_Y}{P}$	<i>M_X</i> (tm/m)	My (tm/m)
A A	6,00	0,2125	0,15	2 118	2 034	1,270	1,220
В	36,00 -24,00	$0,2125 \\ 0,2125$	0,90 0,60			4,532 -3,739 0,793	2,815 -2,566 0,249
С.	14,12 -11,12	1,0000 0,7875	$0,15 \\ 0,15$		997 1 219	1,206 -1,175 0,031	1,408 -1,356 0,052
D	84,72 44,48 -56,48		0,90 0,60 0,60	881	750	5,117 3,919 -4,038	3,948 3,336 -3,502
	-66,72	0,7875	0,90	740	562	-4,937 0,061 	-3,750 0,032
E	- 0,72	0,2500	$^{1,20}_{1,20}$	484 966		0,139 -0,070 0,069	0,103 -0,043 0,060
Carga perma- nente	13,83	1,0000	1,20	484	359	2,224 0,669	

Os momentos $M_X = 2,224$ tm/m e $M_Y = 1,613$ tm/m, devidos à carga móvel, devem ser multiplicados pelo coeficiente de impacto (11) 1,372 e pelo coeficiente de segurança 2, e os momentos $M_X = 0,669$ tm/m e $M_Y = 0,496$ tm/m, oriundos da carga permanente, pelo coeficiente de segurança 1,65 (item 56 da NB-2), obtendo-se finalmente para momentos de ruptura:

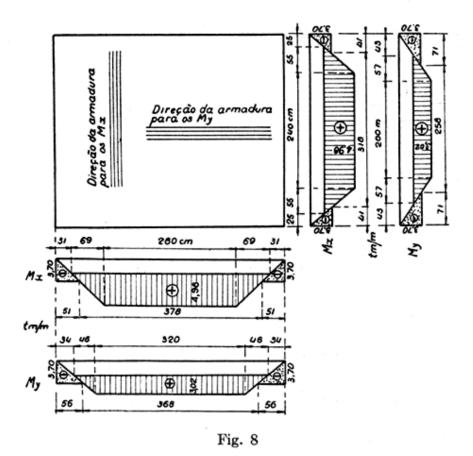
$$M_X = 2,224 \times 2,744 + 0,669 \times 1,65 = 7,20 \text{ tm/m}$$

 $M_Y = 1,613 \times 2,744 + 0,496 \times 1,65 = 5,24 \text{ tm/m}.$

⁽¹⁰⁾ Por exemplo, para a carga B, a primeira linha refere-se ao retângulo de 85 cm de largura e comprimento igual à distância externa das duas cargas, isto é 360 cm; a segunda linha corresponde ao retângulo da mesma largura 85 cm mas de comprimento igual à distância interna, ou seja, 240 cm. Em ambos os casos admite-se a mesma carga distribuída, isto é, 6 t por 60 cm de comprimento, o que dá respectivamente 36 t e 24 t. Para as cargas C e E age-se anàlogamente, mas tomando a metade da carga, pois só existe uma carga e não o par, como se dava com as cargas B. Para as cargas D, há quatro linhas, por não se acharem seus centros sôbre nenhum eixo de simetria da laje (veja-se a fig. 2).

⁽¹¹⁾ De acôrdo com o item 7 da NB-2, o coeficiente de impacto é $1,4-0,007 l_x = 1,4-0,028 = 1,372.$

A êsses valores correspondem os limites para M_b (de 3.1, com $M_X > 9 M_Y/8$):


$$0.5 M_X = 3.60 < M_b < 3.93 = 0.75 M_Y$$
.

Tomando $M_b=3.7$ tm/m, com h=17.5 cm, ter-se-á, da tabela II, para $\sigma_e=2~400$ kg/cm²;

$$c = \frac{h}{\sqrt{M_b}} = \frac{17.5}{\sqrt{3700}} = 0.288$$

$$\mu = 0.53\%$$
, $S_f = 0.0053 \times 1.750 = 9.3 \text{ cm}^2/\text{m}$

o que se consegue colocando uma barra \varnothing 1/2 cada 13,5 cm.

Os diagramas de momentos de ruptura a serem usados no cálculo do restante da armadura são os da fig. 8. Os máximos momentos positivos valem, nas duas direções:

$$\max M_x = M_X - 0.6 M_b = 4.98 \text{ tm/m}$$

 $\max M_y = M_Y - 0.6 M_b = 3.02 \text{ tm/m}$

a que correspondem, respectivamente, barras \varnothing 5/8 cada 15,5 cm e \varnothing 1/2 cada 15 cm (12).

Para verificar se há necessidade de armadura para resistir ao efeito das fôrças cortantes, usam-se as fórmulas 5.2 e 5.3 (com $a = 0,60 \text{ m}, b = 0,85 \text{ m}, a' = 0, b' = 1,225 \text{ m}, b'' = 0,225 \text{ m} e b_0 = 1,075 \text{ m}$):

$$Q_1 = \frac{1}{2.9} \left[36 \left(1 - \frac{3.6}{8} \right) + 0.3 \times 0.225 \times 4 \right] = 6.828 + 0.093 = 6.92 \text{ t/m},$$

$$Q_1 = \frac{12}{1,45} \left(1 - \frac{2,85}{8} \right) + 0,15 \frac{1,075^2}{4} = 5,328 + 0,043 = 5,37 \text{ t/m}$$

valores que, multiplicados pelo coeficiente de impacto $\varphi = 1,372$ e acrescidos dos oriundos da carga permanente (5.1):

$$Q_2 = \frac{gl_x}{2} \left[1 - \frac{(1.8 - 1.2)^2}{4} \right] = \frac{0.72 \times 4}{2} \times 0.91 = 1.31 \text{ t/m},$$

devem ser comparados com os limites dados pelo segundo membro de 5.5:

$$\frac{2 \times 150 \times 20}{75} = 80 \text{ kg/cm} = 8 \text{ t/m}$$

$$\frac{20}{3} \times 16 = 107 \text{ kg/cm} = 10.7 \text{ t/m},$$

verificando-se que aqueles limites são ultrapassados por:

$$Q = 1,372 \times 6,92 + 1,31 = 10,8 \text{ t/m}$$

 \mathbf{e}

$$Q = 1,372 \times 5,37 + 1,31 = 8,7 \text{ t/m}$$

respectivamente junto às transversinas e às longarinas. Há, pois, necessidade de armadura transversal. Admitindo que os Q se re-

(12) De
$$c = \frac{17.5}{\sqrt{4\,980}} = 0.248 \,, \qquad \mu = 0.72\% \,, \qquad S_f = 0.72 \times 17.5 = 12.6 \,\mathrm{cm^2/m}$$

$$c = \frac{16}{\sqrt{3\,020}} = 0.291 \,, \qquad \mu = 0.52\% \,, \qquad S_f = 0.52 \times 16 = 8.4 \,\mathrm{cm^2/m} \,.$$

duzam linearmente, até a secção em que acaba a carga da primeira roda, do pêso desta multiplicado pelo coeficiente de impacto e dividido pela largura a + b da faixa suposta, chega-se ao resultado da fig. 9, devendo dispor-se armadura para resistir ao esfôrco total T

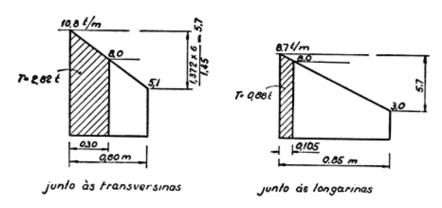


Fig. 9

definido pela área do diagrama no trecho em que suas ordenadas são maiores que o limite 8 t/m. Se a armadura fôr disposta a 45°, a área necessária S_d é, como se sabe (13), dada por (z agora no estádio II):

$$S_d = \frac{T}{\sigma_f \sqrt{2} z} = \frac{282\,000}{1\,500\,\sqrt{2} \times 15.6} = 8.5 \text{ cm}^2/\text{m}$$

junto às transversinas, e

$$S_d = \frac{88\,000}{1\,500\,\sqrt{2}\times15.6} = 2,66\,\mathrm{cm}^2/\mathrm{m}$$

junto às longarinas.

7. Exemplo de painel adjacente a uma laje em balanço.

"Dimensionar um dos vários paineis iguais que se sucedem ao longo do tabuleiro de uma ponte da classe 12, com a secção transversal da fig. 10. A distância entre transversinas (cuja largura é de 15 cm) é de 2,5 m, de eixo a eixo. O material a ser usado é aço CA-T40 e concreto com $\sigma_R = 180 \text{ kg/cm}^2$."

⁽¹³⁾ Como se vê, por exemplo, em (5), 2.º volume, § 228.

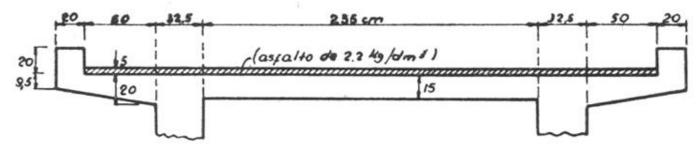


Fig. 10

Agindo como no exemplo anterior (§ 6), dispõe-se o trem-tipo como se mostra na fig. 11, obtendo-se os momentos fletores M_X e M_Y na tabela I, com $l_y/l_x = 1$, como se vê no quadro seguinte:

Carga	P (t)	$\frac{a_x}{l_x}$	$\frac{a_y}{l_x}$	$10^4 \frac{M_X}{P}$	$10^4 \frac{M_Y}{P}$	(tm/		My (tm/	
A	4	0,22	0,18	1 877	1 951		0,751		0,781
В	0,938 -0,375	1,00 0,40	1,00 1,00			0,040 -0,029	$\frac{0,011}{0,762}$		$\frac{0,015}{0,796}$
Carga perma- nente	2,938	1,00	1,00	429	429		0,126		0,126

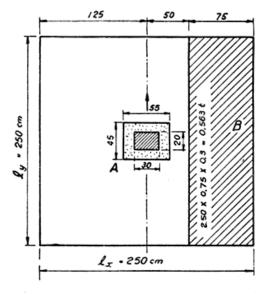


Fig. 11

Multiplicando os momentos devidos à carga móvel $M_X = 0.762$ tm/m e $M_Y = 0.796$ tm/m pelo coeficiente de impacto $1.4 - 0.007 \times 2.5 = 1.383$ e pelo coeficiente de segurança 2 e somando-os aos oriundos da carga permanente $M_X = M_Y = 0.126$ tm/m, multiplicados pelo coeficiente de segurança 1.65, acham-se os momentos de ruptura:

$$M_X = 0.762 \times 2.766 + 0.126 \times 1.65 = 2.32 \text{ tm/m}$$

 $M_Y = 0.796 \times 2.766 + 0.126 \times 1.65 = 2.41 \text{ tm/m}.$

De 3.1, com $8 M_Y/9 < M_X < M_Y$, obtêm-se os limites para o momento de borda M_b :

$$\frac{M_Y}{2} = 1,20 < M_b < 1,61 = \frac{2 M_Y}{3}$$
.

Antes de escolher o valor definitivo de M_b , convém calcular o momento que se dá sôbre os apoios como efeito das cargas situadas nas lajes vizinhas. No sentido longitudinal as lajes se repetem igualmente, o que leva a adotar o mesmo M_b . No sentido transversal, porém, há as lajes em balanço, que levam a momentos sôbre o apoio que não se podem alterar. O cálculo dêsses momentos faz-se fàcilmente para cargas que se distribuam uniformemente dentro de um retângulo, com a fórmula

$$M = \frac{P_i}{2} \tag{7.1}$$

onde P_i é a carga concentrada que substitui a carga real. Admitida a distribuição dos efeitos a 45°, de acôrdo com o item 12, in fine, da NB-1 (14), o momento mencionado não depende do afastamento de P_i , pois se êste fôr z (fig. 12a), por exemplo, o momento será $P_i z$, mas como se distribui sôbre um comprimento 2 z, ter-se-á por unidade de comprimento o resultado dado por 7.1.

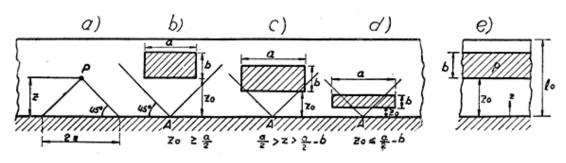


Fig. 12

A carga P_i , para dada carga retangular de lados a (paralelo ao apoio) e b, depende de sua posição. De acôrdo com a hipótese feita, em um dado ponto A do apoio (fig. 12), só há influência da carga que fica dentro do ângulo reto formado pelas linhas inclinadas de 45° , sôbre a reta do apoio. A parte da carga que se acha dentro dêsse ângulo é o P_i procurado, pois cada uma de suas parcelas elementares exercem o mesmo efeito sôbre o momento procurado, correspondendo

⁽¹⁴⁾ Considera-se, nesse caso, o retângulo de aplicação da carga sôbre o pavimento e não o que se obtém distribuindo-o até o plano médio da laje.

sua soma àquêle P_i . Distinguem-se os três casos das figs. 12b a 12d (z_0 é a distância do apoio ao lado mais próximo do retângulo da carga):

$$z_0 \ge \frac{a}{2}: P_i = pab = P \tag{7.2}$$

$$\frac{a}{2} > z_0 > \frac{a}{2} - b : P_i = p \left[ab - \left(\frac{a}{2} - z_0 \right)^2 \right] =
= P \left[1 - \frac{(a - 2z_0)^2}{4ab} \right]$$
(7.3)

$$z_0 \le \frac{a}{2} - b$$
: $P_i = pb (b + 2 z_0) = P \frac{b + 2 z_0}{a}$ (7.4)

onde P é a carga total e p = P/ab é a carga distribuída no retângulo (15). Quando o retângulo da carga encosta no apoio, tem-se $z_0 = 0$ e as fórmulas acima passam a escrever-se:

$$a < 2b$$
: $P_i = \frac{pa}{4} (4b - a) = P\left(1 - \frac{a}{4b}\right)$ (7.5)

$$a \ge 2b: P_i = pb^2 = P\frac{b}{a}.$$
 (7.6)

Poderia parecer que a hipótese citada no item 12 da NB-1, da distribuição dos efeitos a 45°, só se devesse aplicar às cargas das rodas, porquanto, para cargas distribuídas por todo o comprimento da laje, o efeito só se pode supor transmitido perpendicularmente sôbre o apoio (fig. 10e). O resultado, porém, é o mesmo, pois, terse-ía então

$$M = pb\left(z_0 + \frac{b}{2}\right); (7.7)$$

o que coincide com 7.4 e 7.1.

Nesse caso de carga distribuída, pode acontecer (na consideração do pêso próprio da laje) que p varie com z; tem-se então:

$$M = \int_0^{l_0} p \, z \, dz \,. \tag{7.8}$$

⁽¹⁵⁾ Supôs-se a laje indefinida na direção do apoio. Se a carga se achar próxima à sua extremidade real, a distribuição se dará por um comprimento menor; evita-se êsse inconveniente pondo uma viga transversal em balanço sob a referida extremidade da laje.

No exemplo em causa, a situação mais desfavorável dá-se quando a roda encosta no guarda-roda (fig. 13), isto é, quando, com a notação precedente, a = 20 cm, b = 30 cm e $z_0 = 20 \text{ cm}$, recaindo-se em 7.2 (isto é,

$$P_i = P = 4 t$$
) e obtendo-se de 7.1:

$$M_1 = 2 \text{ tm/m}.$$

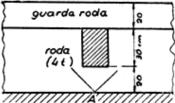


Fig. 13

O pêso do guarda-roda ($p = 0.48 \text{ t/m}^2$) causa, por sua vez, o momento (7.7):

$$M_2 = 0.48 \times 0.2 \times 0.6 = 0.058 \text{ tm/m};$$

o pêso do revestimento (7.7):

$$M_3 = 0.11 \times 0.5 \times 0.25 = 0.014 \text{ tm/m};$$

e o pêso próprio da laje $p = 2,4 (0,20 - 0,15 z) t/m^2 (7.8)$:

$$M_4 = \frac{24}{1\,000} \int_0^{0.7} (20\,z - 15\,z^2) \,dz = \frac{24}{1\,000} (4,900 - 1,715) = 0,077 \text{ tm/m}.$$

Há ainda o momento proveniente da fôrça horizontal de 4 t/m aplicada no tôpo do guarda-roda (NB-6, item 6):

$$M_5 = 4 \times 0.2 = 0.8 \text{ tm/m}.$$
 (16)

O momento total de ruptura obtém-se somando os anteriores, multiplicados pelos respectivos coeficientes de segurança e, o primeiro, também pelo coeficiente de impacto (que é, tomando, em vez de l_x , na fórmula da nota de rodapé (11), o dôbro do comprimento de balanço, $1.4 - 0.007 \times 1.4 = 1.39$):

$$M = 2,78 M_1 + 1,65 (M_2 + M_3 + M_4) + 2 M_5 =$$

= 5,56 + 0,25 + 1,60 = 7,41 tm/m.

⁽¹⁶⁾ A redação do item 6 da NB-6 permite a interpretação de que só é necessária a consideração dêsse momento para o cálculo do próprio guardaroda e não para o da laje; na dúvida, levamo-lo em conta mas tomamos para braço de alavanca só a altura do guarda-roda e não a distância de seu tôpo à horizontal do centro de gravidade da secção de engastamento. Lembramos a conveniência de ser êsse ponto elucidado na redação definitiva do item 8 da NB-2.

A armadura necessária, com h=17.5 cm obtém-se da Tabela I, para aço CA-T40, $\sigma_R=180$ kg/cm² e $c=h/\sqrt{\rm M}=17.5/\sqrt{7410}=0.203$:

$$\mu = 0.66\%$$
, $S_f = 0.66 \times 17.5 = 11.55 \text{ cm}^2/\text{m}$

o que se consegue com barras de \emptyset 1/2 espaçadas de 11 cm.

A essa mesma armadura na laje central, com altura útil de 12,5 cm, corresponde o momento (de $\mu = 0.925\%$ na Tabela, e, portanto c = 0.174):

$$M = \frac{12,5^2}{0,174^2} = 5\ 160\ \mathrm{kgcm/cm} = 5,2\ \mathrm{tm/m}$$
 ,

muito maior que o limite superior de M_b atrás achado. De acôrdo com o item 24 da NB-2, a armadura de barras \emptyset 1/2 espaçadas de 11 cm deve ser posta em todo o contôrno da laje, mas no cálculo dos momentos usar-se-á o limite superior de M_b , isto é, 1,6 tm/m, chegando-se aos diagramas da fig. 14.

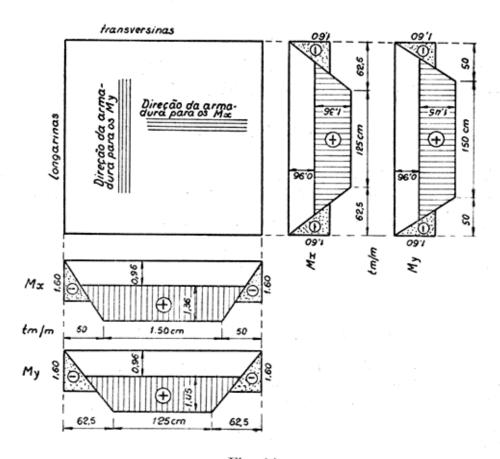


Fig. 14

Quanto à necessidade de se usar armadura para resistir ao efeito das fôrças cortantes, há a considerar o lado da laje em balanço e o da laje central.

Para a laje em balanço, se se usar o mesmo critério adotado para o cálculo dos momentos fletores (fórmulas 7.2 a 7.4), acha-se (fig. 12).

$$z_0 \ge \frac{a}{2}$$
: $Q = \frac{P}{2b} \ln \frac{b + z_0}{z_0}$ (7.9)

$$\frac{a}{2} > z_0 > \frac{a}{2} - b$$
: $Q = \frac{P}{2b} \ln 2 \frac{b + z_0}{a} + \frac{b}{a}$

$$+ p\left(\frac{a}{2} - z_0\right) \tag{7.10}$$

$$z_0 \le \frac{a}{2} - b$$
: $Q = pb = \frac{P}{a}$. (7.11)

No exemplo em questão tem-se para a carga móvel (fig. 13, comparada com a fig. 12b):

$$Q_1 = \frac{4}{0.6} \ln \frac{50}{20} = 6.11 \text{ t/m},$$

e para o pêso do guarda-roda, da laje e do revestimento (7.11):

$$Q_2 = 0.096 + 0.248 + 0.055 = 0.399 \text{ t/m}$$

donde, com o coeficiente de impacto 1,39:

$$Q = 1.39 Q_1 + Q_2 = 8.89 \text{ t/m}$$
,

valor inferior aos dos segundos membros de 5.5:

$$\frac{2 \times 180 \times 20}{75} = 96 \text{ kg/cm} = 9.6 \text{ t/m}$$

$$\frac{20}{3} \times 16 = 107 \text{ kg/cm} = 10.7 \text{ t/m},$$

o que mostra a desnecessidade de armadura transversal na laje em balanço.

Para a laje central, não se podem usar as fórmulas 5.2 e 5.3 por ter a laje menos de 3 m de vão, mas as 5.1 e 5.4 podem ser empregadas. Destas obtém-se, para o efeito da carga permanente $(0,15 \times 2,4 + 0,05 \times 2,2 = 0,47 \text{ t/m}^2)$:

$$Q_2 = 0.47 \times 2.5 \times 0.42 = 0.50 \text{ t/m}.$$

Com o mesmo critério do § 5, acha-se o efeito da carga móvel dispondo-a como se vê na fig. 15, donde, respectivamente para os lados junto às transversinas (fig. 15a) e às longarinas (fig. 15b):

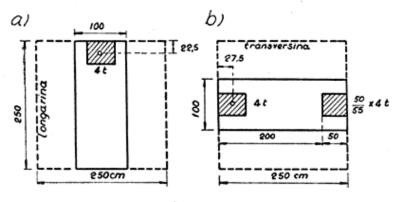


Fig. 15

$$Q_1 = \frac{4 (250 - 22,5)}{250 (0,45 + 0,55)} = 3,64 \text{ t/m}$$

$$Q_1 = \frac{1}{250} \left[4 (250 - 27,5) + \frac{50}{55} \times 4 \times 25 \right] = 3,92 \text{ t/m}.$$

Finalmente, usando o coeficiente de impacto 1,39:

$$Q = 1,39 \times 3,64 + 0,50 = 5,56 \text{ t/m}$$

 $Q = 1,39 \times 3,92 + 0,50 = 5,95 \text{ t/m}$

ambos valores menores que os limites 5.5:

$$\frac{2 \times 180 \times 15}{75} = 72 \text{ kg/cm} = 7.2 \text{ t/m}$$

 $\frac{15}{3} \times 16 = 80 \text{ kg/cm} = 8.0 \text{ t/m}$

donde se conclui a desnecessidade da armadura transversal.

8. Bibliografia

- (1) Projeto de Revisão da NB-2, Estrutura, n. 26, 1960, p. 423/443.
- (2) Timoshenko, S. Theory of Plates and Shells, McGraw-Hill Book Company Inc., Nova Iorque, 1940.
- (3) BITTNER, ERNST Momententafeln und Einflussflächen fur kreuzweise bewehrte Eisenbetonplatten, Julius Springer, Viena, 1938.
- (4) RÜSCH, HUBERT Farhbahnplatten von Strassenbrücken, Deutscher Ausschuss fuer Stahlbeton, Heft 106, Berlim ,1956.
- (5) LANGENDONCK, TELEMACO VAN Cálculo de Concreto Armado, Editôra Científica, Rio de Janeiro, 1960.

to Barra

TABELA I VALORES DE 1000 M_X/P

 $l_y = 1,0 l_x$

v = 1/6

a //	a_x/l_x												
a_y/l_x	0,05	0,1	0,2	6,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0		
0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8	319,3 293,3 253,1 223,8 200,9 181,9 165,4 150,8 137,4	268,6 255,0 228,7 206,2 187,2 170,6 156,0 142,5 130,2	211,1 204,7 190,6 176,5 163,0 150,4 138,6 127,4 116,8	176,0 171,9 162,8 153,1 143,0 133,1 123,5 114,1 104,9	151,2 148,2 141,7 134,1 126,3 118,4 110,2 102,2 94,3	132,1 129,7 124,5 118,6 112,3 105,7 98,8 92,0 84,9	116,9 115,0 110,6 105,7 100,3 94,7 88,9 82,9 76,6	104,3 102,6 98,9 94,8 90,2 85,2 80,1 74,8 69,1	93,7 92,2 89,0 85,2 81,3 77,0 72,5 67,5 62,5	84,5 83,1 80,3 77,0 73,5 69,6 65,6 61,1 56,8	76,4 75,2 72,6 69,7 66,4 63,0 59,3 55,4		
0,9 1,0	125,1 113,4	118,6 107,6	106,6 96,8	96,0 87,1	86,5 78,4	78,0 70,8	70,3 63,9	63,6 57,9	57,6 52,4	52,1 47,4	47,3 42,9		

VALORES DE 1000 M_Y/P

 $l_y = 1.0 l_x$

a_y/l_x		a_x/l_x													
ay, ox	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0				
0,05	319,3	293,3	253,1	223,8	200,9	181,9	165,4	150,8	137,4	125,1	113,4				
0,1	268,6	255,0	228,7	206,2	187,2	170,6	156,0	142,5	130,2	118,6	107,6				
0,2	211,1	204,7	190,6	176,5	163,0	150,4	138,6	127,4	116,8	106,6	96,8				
0,3	176,0	171,9	162,8	153,1	143,0	133,1	123,5	114,1	104,9	96,0	87,1				
0,4	151,2	148,2	141,7	134,1	126,3	118,4	110,2	102,2	94,3	86,5	78,4				
0,5	132,1	129,7	124,5	118,6	112,3	105,7	98,8	92,0	84,9	78,0	70,8				
0,6	116,9	115,0	110,6	105,7	100,3	94,7	88,9	82,9	76,6	70,3	63,9				
0,7	104,3	102,6	98,9	94,8	90,2	85,2	80,1	74,8	69,1	63,6	57,9				
0,8	93,7	92,2	89,0	85,2	81,3	77,0	72,5	67,5	62,5	57,6	52,4				
0,9	84,5	83,1	80,3	77,0	73,5	69,6	65,6	61,1	56,8	52,1	47,4				
1,0	76,4	75,2	72,6	69,7	66,4	63,0	59,3	55,4	51,4	47,3	42,9				

TABELA I $\label{eq:VALORES} \text{VALORES DE 1 000 } M_X/P$

 $l_y = 1,1 l_x$

 $\nu = 1/6$

- 0	a_x/l_x											
a_y/l_x	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9	329,3 303,3 263,1 233,9 211,2 192,3 176,1 161,7 148,6 136,6 125,3	278,6 264,9 238,6 216,2 197,4 181,0 166,5 153,3 141,3 130,1 119,5	220,9 214,4 200,5 186,5 173,1 160,7 149,1 138,1 127,8 117,9 108,4	185,7 181,5 172,5 162,8 152,9 143,2 133,7 124,5 115,6 107,0 98,6	160,4 157,5 150,9 143,5 135,9 128,0 120,2 112,4 104,6 97,1 89,5	141,1 138,7 133,5 127,7 121,5 115,0 108,4 101,7 94,9 88,1 81,3	125,4 123,4 119,2 114,4 109,2 103,7 98,0 92,0 86,0 80,0 73,9	112,4 110,6 107,0 102,9 98,4 93,7 88,6 83,5 78,1 72,7 67,2	101,1 99,7 96,4 92,9 89,0 84,8 80,4 75,7 70,9 66,0 61,1	91,4 90,0 87,2 84,0 80,5 76,8 72,8 68,7 64,3 60,0 55,4	82,7 81,5 79,0 76,1 72,9 69,6 65,9 62,2 58,3 54,4 50,3	

VALORES DE 1000 M_Y/P

 $l_y = 1,1 l_x$

a /I	a_x/l_x													
a_y/l_x	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0			
0,05	317,4	291,4	251,2	222,0	199,1	180,1	163,8	149,3	136,1	123,8	112,3			
0,1	266,8	253,2	226,7	204,3	185,4	169,0	154,3	141,0	128,8	117,4	106,4			
0,2	209,2	202,8	188,8	174,7	161,4	148,7	137,0	126,0	115,4	105,4	95,7			
0,3	174,2	170,2	161,1	151,3	141,4	131,5	122,0	112,6	103,6	94,7	86,1			
0,4	149,5	146,6	139,9	132,5	124,8	116,9	108,9	101,0	93,1	85,3	7.7,5			
0,5	130,6	128,3	123,0	117,2	110,9	104,3	97,6	90,8	83,8	76,9	69,8			
0,6	115,6	113,6	109,3	104,4	99,2	93,6	87,8	81,8	75,6	69,5	63,1			
0,7	103,3	101,6	97,9	93,8	89,2	84,4	79,2	73,9	68,5	62,9	57,2			
0,8	92,8	91,3	88,2	84,6	80,6	76,4	71,8	67,1	62,2	57,1	51,0			
0,9	84,0	82,7	79,9	76,7	73,1	69,3	65,3	61,0	56,6	52,0	47,4			
1,0	76,4	75,2	72,6	69,8	66,6	63,1	59,5	55,6	51,6	47,4	43,2			
1,1	69,7	68,6	66,2	63,7	60,8	57,6	54,3	50,8	47,0	43,3	39,4			

Tabela I ${\rm VALORES~DE~1~000~} M_X/P$

 $l_y = 1,2 l_x$

 $\nu = 1/6$

~ /l	a_x/l_x												
a_y/l_x	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0		
0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7	337,5 311,4 271,2 242,3 219,6 200,9 184,8 170,6 157,9	286,8 273,1 246,8 224,5 205,8 189,5 175,3 162,4 150,5	228,9 222,6 208,7 194,6 181,4 169,1 157,7 147,0 136,9	193,5 189,4 180,4 170,7 161,0 151,4 142,2 133,2 124,5	168,1 165,1 158,6 151,4 143,8 136,1 128,4 120,8 113,2	148,4 146,2 141,0 135,2 129,0 122,7 116,3 109,7 103,1	132,4 130,5 126,3 121,4 116,4 111,0 105,4 99,7 93,9	119,0 117,3 113,7 109,6 105,2 100,6 95,7 90,7 85,6	107,3 105,9 102,7 99,1 95,4 91,2 87,0 82,5 77,9	97,1 95,8 93,0 89,8 86,4 82,8 78,9 74,9 70,8	87,9 86,7 84,2 81,4 78,3 75,0 71,5 67,9 64,1		
0,9 1,0 1,2	146,1 135,1 115,1	139,6 129,2 110,2	127,3 118,2 100,9	116,1 108,0 92,3	105,9 98,6 84,4	96,6 90,1 77,1	88,1 82,2 70,5	80,3 75,1 64,4	73,1 68,4 58,7	66,6 62,1 53,4	60,4 56,4 48,4		

VALORES DE 1 000 M_Y/P

 $l_y = 1,2 l_x$

a /l	a_x/l_x												
a_y/l_x	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0		
0,05	315,3	289,2	249,0	219,9	197,1	178,2	161,9	147,5	134,4	122,3	110,8		
0,1	264,5	251,0	224,6	202,2	183,4	167,0	152,4	139,2	127,1	115,8	105,1		
0,2	207,0	200,7	186,7	172,7	159,3	146,9	135,2	124,2	113,9	103,9	94,3		
0,3	172,1	168,1	159,0	149,3	139,4	129,7	120,2	110,9	102,0	93,2	84,7		
0,4	147,4	144,4	137,9	130,6	122,8	115,0	107,2	99,3	91,5	83,8	76,1		
0,5	128,7	126,3	121,1	115,3	109,1	102,6	95,9	89,2	82,4	75,5	68,7		
0,6	113,7	111,8	107,5	102,7	97,4	92,0	86,2	80,3	74,3	68,1	62,0		
0,7	101,6	99,9	96,1	92,2	87,7	82,9	77,9	72,6	67,2	61,7	56,1		
0,8	91,3	89,8	86,7	83,1	79,1	75,0	70,6	65,9	61,1	56,1	51,0		
0,9	82,7	81,4	78,6	75,3	72,0	68,1	64,3	60,0	55,7	51,1	46,6		
1,0	75,3	74,1	71,6	68,8	65,6	62,3	58,7	54,9	50,9	46,8	42,6		
1,2	63,4	62,4	60,3	57,9	55,3	52,4	49,5	46,2	42, 9	39,4	35, 9		

Tabela I ${\it VALORES~DE~1~000~M_X/P}$

 $l_y = 1.3 l_x$

 $\nu = 1/6$

a_y/l_x	a_x/l_x													
ayrex	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0			
0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0	344,6 318,0 277,9 249,0 226,4 207,9 192,0 178,0 165,4 153,9 143,3 114,8	293,2 279,6 253,4 231,2 212,5 196,4 182,3 169,5 158,0 147,3 137,2 110,2	235,4 229,0 215,2 201,3 188,2 176,0 164,7 154,2 144,3 134,9 126,1 101,5	199,9 195,8 186,8 177,3 167,6 158,1 149,0 140,2 131,8 123,6 115,7 93,4	174,4 171,4 164,8 157,7 150,1 142,6 135,0 127,7 120,4 113,1 106,2 85,9	154,4 152,1 147,0 141,3 135,2 129,0 122,7 116,3 109,9 103,6 97,3 78,9	138,1 136,1 131,9 127,3 122,3 117,0 111,5 105,9 100,4 94,8 89,1 72,3	124,3 122,7 119,1 115,0 110,8 106,2 101,5 96,6 91,6 86,6 81,6 66,2	112,4 110,9 107,8 104,2 100,6 96,5 92,3 88,0 83,6 79,1 74,4 60,6	101,6 100,3 97,6 94,5 91,1 87,6 83,9 80,0 75,9 71,9 67,7 55,2	92,0 90,9 88,4 85,7 82,7 79,5 76,0 72,6 68,9 65,2 61,5 50,1			

VALORES DE 1000 M_Y/P

 $l_y = 1.3 l_x$

a_y/l_x		a_x/l_x													
ay, ox	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0				
0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7	313,0 262,4 204,9 170,0 145,4 126,6 111,7 99,6	287,1 248,8 198,5 166,0 142,4 124,2 109,8 97,9	246,9 222,5 184,6 156,9 135,8 119,1 105,5 94,3	217,9 200,2 170,6 147,2 128,6 113,3 100,8 90,2	195,1 181,3 157,4 137,4 120,9 107,2 95,6 85,8	176,2 165,1 145,0 127,8 113,2 100,7 90,1	160,1 150,6 133,3 118,3 105,4 94,2 84,5	145,8 137,5 122,5 109,2 97,6 87,5 78,8	132,8 125,5 112,2 100,4 90,0 80,8 72,9	120,8 114,3 102,4 91,8 82,4 74,1 66,8	109,4 103,7 93,0 83,4 74,8 67,4 60,8				
0,8 0,9 1,0 1,3	89,5 81,1 73,9 57,5	97,9 88,1 79,8 72,7 56,6	94,3 84,9 76,9 70,1 54,6	90,2 81,4 73,8 67,3 52,5	85,8 77,5 70,4 64,3 50,2	81,1 73,3 66,7 60,9 47,6	76,2 69,0 62,9 57,4 44,8	71,0 64,5 58,7 53,7 42,0	65,8 59,7 54,4 49,7 39,0	60,4 54,9 50,0 45,7 35,8	55,0 49,9 45,5 41,7 32,7				

 $l_y = 1.4 l_x$

 $\nu = 1/6$

a /l						a_x/l_x					
a_y/l_x	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0,05	349,4	298,4	240,6	205,0	179,2	159,2	142,6	128,6	116,3	115,4	95,4
0,1	323,3	284,9	234,2	200,8	176,2	156,8	140,6	127,0	114,9	104,1	94,3
0,2	283,3	258,7	220,4	191,9	169,7	151,7	136,4	123,4	111,8	101,3	91,8
0,3	254,3	236,6	206,6	182,4	162,6	146,1	131,8	119,4	108,4	98,3	89,0
0,4	232,0	218,0	193,5	172,8	155,2	140,2	126,9	115,2	104,7	95,1	86,1
0,5	213,4	202,0	181,5	163,5	147,7	134,0	121,7	11(,7	100,7	91,6	83,0
0,6	197,7	188,0	170,3	154,5	140,4	127,8	116,4	106,1	96,7	87,9	79,7
0,7	183,8	175,4	160,0	145,9	133,1	121,6	110,9	101,3	92,4	84,1	76,3
0,8	171,4	164,0	150,3	137,6	125,9	115,4	105,5	96,5	88,2	80,3	72,8
0,9	160,2	153,6	141,3	129,7	119,0	109,2	100,1	91,7	83,8	76,3	69,2
1,0	150,0	143,9	132,5	122,1	112,3	103,2	94,7	86,8	79,3	72,4	65,7
1,4	113,9	109,7	101,5	93,8	86,5	79,8	73,4	67,4	61,7	56,2	51,1

VALORES DE 1000 M_Y/P

 $l_y = 1.4 l_x$

. ,						a_x/l_x					
a_y/l_x	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0,05	311,1	285,0	245,0	215,9	193,2	174,5	158,3	144,1	131,2	119,4	108,
0,1	260,4	246,9	220,4	198,2	179,5	163,2	148,9	135,9	124,1	112,9	102,
0,2	202,9	196,5	182,7	168,7	155,4	143,1	131,6	120,9	110,7	101,1	91,
0,3	168,0	164,0	155,0	145,3	135,5	126,0	116,7	107,6	99,0	90,5	82,
0,4	143,4	140,4	133,9	126,6	119,0	111,4	103,7	96,1	88,4	81,0	73,
0,5	124,6	122,2	117,2	111,4	105,3	99,0	92,5	85,9	79,3	72,7	66,
0,6	109,8	107,9	103,6	98,9	93,8	88,4	82,9	77,2	71,3	65,5	59,
0,7	97,7	96,0	92,4	88,4	84,0	79,5	74,6	69,6	64,4	59,1	53,
0,8	87,7	86,3	83,0	79,5	75,7	71,7	67,4	63,0	58,3	53,6	48,
0,9	79,3	78,0	75,2	72,1	68,6	65,1	61,2	57,2	53,0	48,8	44,
1,0	72,0	70,9	68,4	65,7	62,7	59,4	55,9	52,3	48,5	44,5	40,
1,4	52,1	51,3	49,6	47,6	45,4	43,1	40,6	38,1	35,3	32,4	29

Tabela I $\label{eq:VALORES} \ \, \text{DE 1000} \ \, M_X/P$

 $l_y = 1.5 l_x \qquad \qquad \nu = 1/6$

a_y/l_x						a_x/l_x					
ay/cx	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0,05	353,5	302,7	244,9	209,1	183,2	163,0	146,2	132,0	119,4	108,3	98,0
0,1	327,6	289,2	238,5	204,9	180,2	160,6	144,3	130,3	118,1	107,0	96,9
0,2	287,6	262,9	224,6	196,0	173,8	155,5	140,1	126,8	115,0	104,2	94,4
0,3	258,5	240,7	210,8	186,6	166,8	149,9	135,6	122,9	111,5	101,3	91,8
0,4	236,3	222,4	197,8	177,1	159,4	144,1	130,7	118,8	107,9	98,0	88,9
0,5	217,9	206,5	185,9	167,8	151,9	138,1	125,5	114,3	104,2	94,6	85,8
0,6	202,2	192,6	174,9	158,9	144,7	131,9	120,3	109,9	100,2	91,1	82,6
0,7	188,5	180,1	164,7	150,4	137,5	125,8	115,0	105,2	96,0	87,4	79,3
0,8	176,3	169,0	155,0	142,3	130,6	119,7	109,8	100,4	91,8	83,6	75,9
0,9	165,2	158,6	146,1	134,5	123,8	113,7	104,5	95,7	87,6	79,8	72,4
1,0	155,0	149,0	137,7	127,0	117,1	107,9	99,2	91,0	83,4	76,0	69,0
1,5	112,6	108,6	100,9	93,5	86,7	80,1	73,8	68,0	62,3	57,0	51,6

VALORES DE 1 000 M_Y/P

 $l_y = 1.5 l_x$ v = 1/6

a //						a_x/l_x					
a_y/l_x	0,05	0,1	0,2	6,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0,05	309,4	283,2	243,2	214,2	191,5	172,9	156,9	142,8	129,9	118,1	107,1
0,1	258,5	245,0	218,8	196,5	177,8	161,6	147,3	134,5	122,6	111,7	101,3
0,2	201,2	194,8	180,9	166,9	153,8	141,5	130,1	119,4	109,4	99,8	90,6
0,3	166,3	162,1	153,3	143,6	134,0	124,4	115,2	106,2	97,5	89,2	81,0
0,4	141,7	138,7	132,1	124,9	117,5	109,8	102,2	94,7	87,1	79,7	72,5
0,5	122,9	120,6	115,4	109,7	103,7	97,4	91,0	84,5	78,0	71,4	65,0
0,6	108,1	106,1	101,9	97,2	92,2	86,8	81,4	75,8	70,1	64,3	58,4
0,7	96,0	94,3	90,7	86,7	82,4	77,8	73,0	68,1	63,0	57,9	52,7
0,8	85,9	84,4	81,3	77,9	74,2	70,1	65,9	61,6	57,0	52,3	47,7
0,9	77,5	76,2	73,4	70,3	67,1	63,5	59,8	55,8	51,7	47,5	43,3
1,0	70,4	69,3	66,7	64,0	61,0	57,9	54,4	50,9	47,2	43,4	39,5
1,5	47,3	46,6	45,0	43,2	41,2	39,1	36,8	34,5	32,0	29,4	26,8

Tabela I $\label{eq:VALORES} \ \, \text{DE 1 000} \ \, M_X/P$

 $l_y = \infty$

 $\nu = 1/6$

						a_x/l_x					
a_y/l_x	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0	368,0 341,8 302,0 273,3 251,3 233,1 217,9 204,9 193,3 182,9 173,5	317,0 303,4 277,5 255,5 237,2 221,8 208,4 196,5 185,8 176,3 167,6	259,1 252,7 238,9 225,2 212,5 200,9 190,3 180,6 171,7 163,6 155,9	222,8 218,8 210,0 200,7 191,4 182,6 174,1 166,2 158,6 151,5 145,0	196,6 193,7 187,3 180,4 173,3 166,3 159,4 152,8 146,5 140,3 134,5	175,8 173,6 168,6 163,2 157,5 151,8 146,1 140,5 135,1 129,7 124,6	158,5 156,7 152,5 148,2 143,5 138,8 133,9 129,1 124,3 119,7 115,2	143,6 142,0 138,4 134,8 130,9 126,8 122,6 118,3 114,2 110,1 106,1	130,4 129,0 126,0 122,6 119,2 115,7 112,0 108,3 104,7 101,0 97,4	118,3 117,1 114,4 111,6 108,5 105,4 102,1 98,8 95,5 92,2 88,9	107,2 106,1 103,7 101,1 98,4 95,5 92,7 89,7 86,7 83,7 80,8

VALORES DE 1000 M_Y/P

L = 0

,						a_x/l_x					
a_y/l_x	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0,05	301,7	275,5	235,6	206,8	184,2	165,9	150,2	136,4	124,1	112,8	102,2
0,1	250,7	237,3	211,2	189,0	170,5	154,6	140,7	128,2	116,9	106,2	96,3
0,2	193,4	187,1	173,2	159,5	146,5	134,6	123,4	113,1	103,5	94,3	85,6
0,3	158,4	154,4	145,6	136,0	126,6	117,3	108,4	99,9	91,6	83,7	76,0 67,4
0,4	133,8	130,7	124,3	117,3	110,0	102,7	95,4 84,1	88,2 78,0	81,1 71,9	74,3 65,8	59,9
$^{0,5}_{0,6}$	114,9 99,9	112,6 98,0	107,5 93,8	102,0 89,3	96,2 84,5	$90,1 \\ 79,5$	74,3	69,1	63,8	58,5	53,2
0,7	87,6	86,0	82,5	78,7	74,7	70,4	66,0	61,3	56,8	52,0	47,3
0,8	77,4	76,0	73,0	69,7	66,2	62,5	58,6	54,6	50,6	46,4	42,2
0,9	68,9	67,6	65,0	62,0	59,0	55,7	52,3	48,8	45,2	41,5	37,8
1,0	61,5	60,4	58,1	55,5	52,8	49,8	46,9	43,7	40,5	37,2	33,9

TABELA II

CA 24 = AÇO 37-CA (σ_e = 2 400 kg/cm²) com patamar de escoamento

$$b = c^2 \frac{M_R}{h^2} = \frac{S_f}{\mu h}$$
, $h = c \sqrt{\frac{M_R}{b}} = \frac{S_f}{\mu b}$, $S_f = \mu b h$, $M_R = \frac{b h^2}{c^2}$

Unidades: cm, cm², kgcm Valores de 1 000 c

		Valores	de 1 000	c		
μ em %			σ_R (em l	kg/cm ²) =		
	110	135	160	180	200	220
0,25	414	413	412	412	411	411
0,30	379	378	377	376	376	376
0,35	352	351	350	349	349	348
0,40	330	32 9	328	327	327	326
0,45	312	311	310	309	308	308
0,50	297	295	294	294	293	293
0,55	284	282	281	280	280	279
0,60	273	271	270	269	268	268
0,65	263	261	260	259	258	258
0,70	254	252	251	250	249	249
0,75	246	244	243	242	241	241
0,80	239	237	235	235	234	233
0,85	232	230	229	228	227	227
0,90	227	224	223	222	221	221
0,95	221	219	217	216	216	215
1,00	216	214	212	211	211	210
1,10	207	205	203	202	201	201
1,20	200	197	195	194	193	193
1,30	193	190	188	187	186	186
1,40	187	184	182	181	180	180
1,50	182	179	177	176	175	174
1,60	178	174	172	171	170	169
1,70	173	170	168	166	165	164
1,80	170	166	164	162	161	160
1,90	166	162	160	158	157	156
2,00	163	159	157	155	154	153
2,10	160	156	153	152	151	150
2,20	158	153	151	149	148	147
2,30	156	151	148	146	145	144
2,40	153	149	146	144	142	141
2,50	151	146	143	141	140	139
2,60	150	144	141	139	138	137
2,70	İ	142	139	137	136	135
2,80		141	137	135	134	133
2,90 3,00		139 138	136 134	133 132	132 130	$\frac{131}{129}$
imite de μ em						
% para peça	2,60	3,19				
sub-armada.						

TABELA II

$CA 50 A = ACO 50-CA (\sigma_e = 3 000 \text{ kg/cm}^2)$ com patamar de escoamento

$$b \, = \, c^2 \, \frac{M_R}{h^2} \, = \, \frac{S_f}{\mu \, h} \; , \quad h \, = \, c \, \sqrt{\frac{M_R}{b}} \; = \, \frac{S_f}{\mu \, b} \; , \quad S_f \, = \, \mu \, b \, h \; , \quad M_R \, = \, \frac{b \, h^2}{c^2} \; . \label{eq:barrier}$$

Unidades: cm, cm², kgcm Valores de 1 000 c

μ em %			σ_R (em k	g/cm ²) =		
/ Cim 70	110	135	160	180	200	220
0,25 0,30 0,35 0,40 0,45	372 340 316 297 281	370 339 315 295 279	370 338 314 294 278	369 338 313 294 277	369 337 313 293 277	368 337 312 293 276
0,50 0,55 0,60 0,65 0,70	267 256 246 237 229	266 254 244 235 227	264 253 243 234 226	264 252 242 233 225	263 251 241 232 224	263 251 241 232 224
0,75 0,80 0,85 0,90 0,95	223 216 211 205 201	220 214 208 203 198	219 212 206 201 196	218 211 205 200 195	217 211 205 199 194	216 210 204 199 194
1,00 1,10 1,20 1,30 1,40 1,50	196 189 182 177 172 167	194 186 179 173 168 163	192 184 177 171 166 161	191 183 176 170 164 159	190 182 175 169 163 158	189 181 174 168 162 157
1,60 1,70 1,80 1,90 2,00	163 160 157 154	159 155 152 149 146	157 153 149 146 143	155 151 148 144 141	154 150 146 143 140	153 149 145 142 139
2,10 2,20 2,30 2,40 2,50		144 142 140 138	141 138 136 134 132	139 136 134 132 130	137 135 132 130 128	136 134 131 129 127
2,60 2,70 2,80 2,90 3,00			130 129 127	128 126 125 123 122	126 124 123 121 120	125 123 121 120 118
limite de μ em % para peça sub-armada,	1,88	2,305	2,73	3,07		

O último número de cada coluna interrompida só consta da tabela para fins de interpolação, pois a êle corresponde peça super-armada.

TABELA II

Aço nervurado CA 40 = AÇO CA-T40 ($\sigma_e = 4\,000 \text{ kg/cm}^2$) sem patamar de escoamento

$$b = c^2 \frac{M_R}{h^2} = \frac{S_f}{\mu h}$$
, $h = c \sqrt{\frac{M_R}{b}} = \frac{S_f}{\mu b}$, $S_f = \mu b h$, $M_R = \frac{b h^2}{c^2}$

Unidades: cm, cm², kgcm Valores de 1 000 c

μ em %			σ_R (em kg	/cm ²) =		
, , ,	110	135	160	180	200	220
0,15 0,20	414 360	413 359	412 358	412 358	411 357	411 357
0,25 $0,30$ $0,35$ $0,40$ $0,45$	324 297 276 260 246	322 295 274 258 244	321 294 273 256 243	321 294 273 256 242	320 293 272 255 241	320 293 272 255 241
0,50 0,55 0,60 0,65 0,70	235 225 216 209 202	232 222 214 206 200	231 221 212 205 198	230 220 211 204 197	229 219 211 203 196	229 219 210 202 195
0,75 0,80 0,85 0,90 0,95	196 191 187 182 178	194 188 183 179 175	192 186 181 177 173	191 185 180 176 172	190 184 179 175 171	189 184 179 174 170
1,00	175	171	169	168	167	166
1,10 1,20 1,30 1,40 1,50	169 163 159	165 159 154 150 146	162 157 152 147 143	161 155 150 145 141	160 154 149 144 140	159 153 148 143 139
1,60 1,70 1,80 1,90 2,00			140 137 134	138 135 132 129 127	136 133 130 127 125	135 132 129 126 124
2,10 2,20 2,30 2,40 2,50					123 121 119	121 119 117 115 114
limite de μ em % para peça sub-armada.	1,21	1,49	1,76	1,98	2,203	2,42

O último número de cada coluna interrompida só consta da tabela para fins de interpolação, pois a êle corresponde peça super-armada.

TABELA II

Aço nervurado CA 50 = AÇO CA-T50 ($\sigma_e = 5\,000\,\text{kg/cm}^2$) sem patamar de escoamento

$$b = c^2 \frac{M_R}{h^2} = \frac{S_f}{\mu h}, \quad h = c \sqrt{\frac{M_R}{b}} = \frac{S_f}{\mu b}, \quad S_f = \mu b h, \quad M_R = \frac{b h^2}{c^2}$$

Unidades: cm, cm², kgcm

Valores de 1000 c

μ em %			σ_R (em	kg/cm ²)		
	110	135	160	180	200	220
0,15 0,20	372 324	370 322	370 321	369 321	369 320	368 320
0,25 0,30 0,35 0,40 0,45	291 267 249 235 223	290 266 247 232 220	289 264 246 231 219	288 264 245 230 218	287 263 244 229 217	287 263 244 229 216
0,50 0,55 0,60 0,65 0,70	212 204 196 190 184	210 201 194 187 181	208 199 192 185 179	207 198 191 184 178	207 198 190 183 177	206 197 189 182 176
0,75 0,80 0,85 0,90 0,95	179 175 171 167	176 171 167 163 160	174 169 165 161 157	173 168 163 159 156	172 167 162 158 155	171 166 161 157 154
1,00		157	154	152	151	150
1,10 1,20 1,30 1,40 1,50		151	148 143 139	146 141 137 133	145 140 136 132 128	144 139 134 130 127
1,60 1,70					125	124 121
limite de μ em % para peça sub-armada.	0,85	1,04	1,24	1,39	1,55	1,70

O último número de cada coluna interrompida só consta da tabela para fins de interpolação, pois a êle corresponde peça super-armada.