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Tensoes de Compressao no Concreto
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Figura 17.1 — Dominios de estado-limite tltimo de uma secao transversal

Ruptura convencional por deformacao plastica excessiva:
— reta a: tragao uniforme;
— dominio 1: tracao nao uniforme, sem compressao;

— dominio 2: flexao simples ou composta sem ruptura a compressao do concreto (e¢c < €cy € com
o maximo alongamento permitido).

Ruptura convencional por encurtamento-limite do concreto:

— dominio 3: flexao simples (secao subarmada) ou composta com ruptura a compressao do concreto
e com escoamento do ago (&g = gyq);

— dominio 4: flexao simples (se¢ao superarmada) ou composta com ruptura a compressao do con-
creto e ago tracionado sem escoamento (gs < €yd);

— dominio 4a: flexao composta com armaduras comprimidas;
— dominio 5: compressao nao uniforme, sem tragao;

— reta b: compressao uniforme.
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[24.5.4 Tensoes e deformacoes na flexao ]

24.5.4.1 Diagrama tensao-deformacao do concreto

Utilizando as hipoteses de calculo estabelecidas em 24.5.2, as deformacoes nas fibras extremas
devem ser limitadas por:

- EC g Ec‘lim = 0,0035;
- Ect S Ect]im = 0,00035.

Como simplificacao, pode-se admitir que o diagrama tensao-deformacao tem a configuracao de
parabola-retangulo, tanto na compressao como na tracao. Deve ser considerada a fluéncia do concreto
para os carregamentos de longa duracao (Figura 24.1).

0,85 h,‘ }

- 0,00035

0,001
0,002

Figura 24.1 - Diagrama de cadlculo tensao-deformacao do concreto com consideracao
da fluéncia

A pesquisa experimental, que definiu qual a curva Tensao x
Deformacédo a usar na zona do concreto comprimido pela
flexao, foi feita pelo Professor Hubert Riisch na Universidade
de Munique, na década de 1950 a 1960. No artigo publicado em
1960, ver adiante, Hubert Risch divulgou suas conclusoes.
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Researches Toward a General Flexural
Theory for Structural Concrete

By HUBERT RUSCH

This paper is directed toward formulation of a general flexural theory
based on a careful study of all important factors regarding the properties
of concrete. The fact that strength and deformation of concrete depend
on time is considered. The theory is based on recent tests permitting
determination of the behavior of the compression zone in flexure for con-
tinuous load increase at different strain rates, and for constant sustained
load. Having derived stress-strain relationships for these various types of
loading, other factors were studied systematically, such as effect of concrete
strength, position of neutral axis, and shape of cross section. The general
theory developed is primarily a study of the true behavior of structural
members. Since simplified assumptions are avoided, it naturally does not
lead to simple formulas such as are desired for structural design. The theory
fulfills the important function of furnishing a reliable method for the eval-
uation of simplified design formulas. It is also possible, however, to present
all new concepts and results of this theory in the form of a simple diagram
which can be used for the solution of design problems for selected cross
sections ranging from pure bending to pure compression, regardless of
concrete quality and the type of steel used, and independent of whether
prestressing is applied or not.

M RESEARCH IN THE STRUCTURAL CONCRETE FIELD is faced today with
problems of unusual challenge. We find ourselves in a period of change
characterized by the abandonment of the elastic theory in favor of the
plastic theory, and by a conversion from allowable stresses as a basis
of design to ultimate strength design. Although these trends have
persisted for some time, the new methods are finding slow acceptance
among design engineers in some countries. This is probably at least
in part due to the fact that structural engineering can look back on a
thousand-year tradition, and this tradition is by its nature a conservative
one. Another reason of equal importance is the lack of detailed and
extensive knowledge regarding the properties of materials desirable
in the development and introduction of new methods.

In recent decades, progress has been made toward replacing struc-
tural design methods disregarding plastic properties of materials by
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AC| member Hubert Rusch has been, since 1945, a professor and director of the
Engineering Materials Laboratory, Technical University, Munich, Germany. Dr. Rusch
has won much prominence in Europe and South America through his design and
construction of outstanding reinforced concrete structures. He has played an active
part in reinforced concrete research, and in the development of shell structures (for
which he received the Longstreth Medal prior to World War |1), prestressed concrete,
and precast construction.

new ones, which represent actual conditions to a greater degree. Numer-
ous investigations of structural concrete have been conducted leading
to several new design theories which generally are in good agreement
with test results in the case of pure flexure. However, these theories
start from very different, sometimes even contradictory, assumptions
about the physical behavior of the component materials. This is prob-
ably a major reason why none of the new methods has found world-wide
acceptance. An engineer seeks to analyze the true behavior of struc-
tures. He cannot be convinced by approximately correct results ob-
tained on the basis of widely different assumptions. The agreement
between the results of various theories in design, however, is not at
all surprising since only the case of under-reinforced beams has often
been cited in comparisons with test data. The tensile force in the steel
at failure is determined entirely by the yield point; the lever arm of
the internal forces is insensitive to assumptions regarding concrete
stress. Only tests of over-reinforced members can furnish a true meas-
ure of the validity of a flexural theory. There is a need for a theory
which is not restricted to approximate results in a limited range. Such
a theory must be based on the actual properties of the materials and
must be valid for all cases of loading, from pure bending to pure
compression.

The reason why authors differ so widely in appraising the physical
behavior of concrete in flexure probably lies in the fact that their
knowledge is based almost entirely on beam tests. Only three con-
ditions are available for the evaludtion of such tests: the equilibrium
condition, the deformation condition, and Bernouilli’s assumption of
plane sections remaining plane. As the number of unknowns is gen-
erally greater than the number of equations, some plausible assumptions
must be made in the evaluation of certain quantities. As the required
quantities are closely interrelated, it is quite understandable that one
may thus arrive at widely different solutions.

It is only lately that attempts were made to establish the needed
relationships in a direct manner. First among these should be men-
tioned tests on centrally and eccentrically loaded prisms conducted
by Hognestad,!? Moenaert,® and Riisch,* which led to an extensive
clarification of the behavior of the compression zone in flexure under
short-time load only.
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However, strength decreases under the action of sustained loads.
Creep of the concrete leads to an increase in concrete strain in the
extreme compressive fiber. This results in a lower neutral axis and
a reduction of the lever arm of the internal forces. Consequently, the
stress in the reinforcement becomes higher. A more important con-
sideration is the reduction of concrete strength under the action of
sustained load. This problem has been studied in detail only in recent
years.

The following discussion reports results of new tests whose objective
was to study effects of time such as age of concrete and duration
of loading. These tests constitute the basis of the new flexural theory.

MNotation

Notation is defined in Fig. 1 and frequently also in the text. In addi-
tion, some frequently used symbols are:

A. = area of concrete compression f§. .. =strength of concrete failing
zone (for symmetrical bend- under sustained load at the
ing of a rectangular cross sec- time t days after loading at
tion, A. = be) an age of a days

o = stress block factor = C/A.f’ f,., = stress in tensile steel at uiti-

= fave/ fo’ mate strength of reinforced
€ ta.1ss €1, ¢, = coefficients defined by conecrete member
Eq. (2) f'.« = stress in compression steel at
faeg = average siress in concrete ultimate strength of rein-
compression zone at ultimate forced concrete member
strength k. = ratio ¢/d at ultimate strength,

fe = concrete stress Fig. 1

fe = concrete cylinder strength Ju — wvalue of j at ultimate strength,

f'as = 28-day cylinder strength Fig. 1

Width of rectanqular section = b
€~
M
2 d t
P l
- 3

o /

® /

| N

External Internal

forces forces

Fig. 1—Notation
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M = moment of internal concrete e, — distance between centroid of
force about centroid of ten- tensile reinforcement and cen-
sile reinforcement; at ultimate troid of cross-section (for
strength M = M, symmetric loading of rectan-

m = relative internal resisting mo- gular section e, =d — t/2)
ment of concrete compression & = concrete strain
zone defined by Eq. (1), at . = concrete strain in extreme
ultimate strength m = m. fiber

M. = moment of external forces e — concrete strain In extreme
with respect to centroid of fiber at ultimate strength
cross section £4 = tensile strain in reinforcement

P, = external axial force acting in  e. = tensile strain in reinforcement
the centroid of cross section at ultimate strength

RATE OF LOADING EFFECTS

Standards of some countries require that in tests of materials the
load be applied at a certain constant rate. However, this requirement
cannot he satisfied at high loads for materials exhibiting an elasto-
plastic behavior. For example, in testing steel in the yield range, the
rate of deformation would become extremely high. Even if our testing
machines could satisfy this requirement, such testing would still have
to be ruled out because it leads to completely misleading results.

The above-mentioned requirement has another disadvantage. Under
constant rate of loading, the stress-strain diagram can be recorded only
up to a maximum stress, after which further load increase is no longer
possible. In this study, we wish to examine the portion of the stress-
strain curve beyond maximum stress, since it has a considerable effect
on the stresses produced in a concrete structure.

For these reasons, the requirement contained in some standards
specifying a constant rate of loading must be modified for research
purposes. It should be replaced by a more rational requirement, namely
that all tests of materials be carried out under constant rate of strain.
One can then determine the descending portion of the stress-strain
curve as the deformation continues to increase further under decreasing
load after the maximum stress is reached.

With increasing duration of loading, as mentioned earlier, strength
drops and deformation increases. Hence, the magnitude of the selected
rate of strain has a strong effect on the shape of the stress-strain curve.
This was specially pointed out by Rasch® who studied this effect on
three different quality classes of concrete at strain rates from 0.001
per min to 0.001 per 70 days under concentric load in the Munich
Materials Laboratory.

In carrying out these tests the compressive force was regulated
manually in such a way that strain increased at the desired constant
rate. Due to the heterogeneous nature of concrete, strain under a
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00

Fig. 2—Test arrangement and centering device (dimensions in millimeters).
Left—Front view. Right—Side view

concentrically applied load is not necessarily the same on all sides of
the test specimen. To eliminate this effect, the centering device shown
in Fig. 2 was built into the testing machine to permit lateral displace-
ment of the loaded test specimen in two directions with respect to
the force axis. At all load levels, the position of the specimen was so
adjusted by lateral displacements that strain on all four sides of the
specimen at midheight remained equal. Such manual regulation be-
comes difficult at very fast rates of strain, and is too time consuming
at very slow rates. This difficulty is eliminated by a testing machine,
developed in the Munich laboratory, provided with electronically pro-
grammed controls and automatic recorders as shown in Fig. 3. Con-
ventional testing machines are built in such a way that one has to
apply a given load to the test specimen, and record the corresponding
deformation. With the new machine, however, one can subject the
specimen to a predetermined deformation, and record the corresponding
load. The built-in programmed control makes it possible to increase
the deformation at a constant rate. The machine then records auto-
matically the desired stress-strain diagram.

Fig. 4 shows examples of the results obtained by the described
method for concretes of a 3000-psi average strength and loaded 56 days
after casting. The deformations shown in the diagram are not purely
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Fig. 3—Testing machine with electronically programmed control and automatic
recorders

elastoplastic. The slower the rate of loading, the greater are the effects
of creep and shrinkage. Naturally, there is a series of secondary factors
in addition to those of strength and time, such as type of cement and
cement conient, grading and modulus of elasticity of aggregates, tem-
perature, and moisture, which influence the stress-strain curve. Hence,
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Concrete Strain, £
Fig. 4—Stress-strain curves for various strain rates of concentric loading
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curves such as those shown in Fig. 4 may vary within certain limits.
However, they will always follow the trend indicated by this diagram,
which characterizes a predominating influence of time.

STRESS-STRAIN RELATIONSHIP IN FLEXURE

Seeking to establish the distribution of stresses in the concrete com-
pression zone in flexure, it should first be considered that every “fiber”
in this zone undergoes strain at a different rate. Assuming that cross
sections remain plane, the rate of strain becomes proportional to the
distance from the neutral axis. Furthermore, the desired stress distri-
bution depends on the nature of load; for increasing load, on the rate
at which the load is increased; for constant load, on the duration of
loading.

In his paper,” Rasch proposes that the stress distribution in the
compression zone in flexure be derived from stress-strain curves ob-
tained from concentrically loaded prisms. How this can be done is
illustrated schematically below for an example ‘of load increasing at
constant rate of strain. The stress-strain curves in Fig. 4 are used as
a basis.

Fig. 5 shows schematically the derivation of the stress-strain rela-
tionship in the concrete compression zone in flexure. It is determined
by the requirement that the strain of every fiber in the flexural com-
pression zone is attained in the same interval of time, 1 hr in the chosen
example. The stress corresponding to strain of 0.001 must then be
selected from that stress-strain curve in Fig. 4 which corresponds to
a deformation rate of 0,001 per hr. Similarly, stresses for strain of 0.003
and 0.000 are obtained from the stress-strain curves which were deter-
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Fig. 5—Determination of stress-strain relationship in flexure [schematic only}:

(left) Stress-strain curves for concentric compression and various strain rates;

(right) Stress-strain relationship for eccentric compression after | hr of loading
at constant strain rates
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Fig. 6—Stress-strain relationships for eccentric compression after various durations
of loading at constant strain rates

mined at strain rates of 0.003 and 0.005 per hr, respectively. When the
stress values determined in this manner are plotted against the corre-
sponding strains, the stress distribution for the compression zone in
flexure is obtained. This applies for all loading conditions attained
in 1 hr in the various fibers, under constant yet different rates of
strain. The magnitude of the strain in the extreme fibers is determined
by the given magnitude of load.

Several relationships are presented in Fig. 6, obtained in the above
manner for various loading durations. All curves apply to the case
of load increasing at constant strain rate and for an average concrete
strength of 3000 psi at 56 days. These curves show clearly how important
the effect of time is on the behavior of the compression zone in flexure.
With decreasing rate of straining, the value of maximum stress de-
creases gradually. The effect of creep, however, causes a rise of the
descending branch of the stress-strain curves.

The described proposal for the determination of a basic law of stress
distribution pre-supposes that, for each rate of strain in the various
fibers of the flexural compression zone, there appear the same stresses
as in corresponding fibers of a concentrically loaded prism. This need
not be strictly true in reality, because a mutual interaction of the
variously deformed fibers of the compression zone in flexure may
be possible due to transverse deformation. In any case the resulting
errors are small — as proven by comparative tests —and do not sub-
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stantially change any derived conclusions. They can be neglected in
favor of a systematic study of the time factor.

COMPRESSIVE STRAIN IN EXTREME FIBERS

An important question must be answered at this stage: for an
individual case, what are the values of compressive strain in the
extreme fibers according to the new laws of stress distribution? This
question has a simple answer: In every load test the strain in the
extreme fibers is always that which will yield the required internal
moment. The ultimate load is that corresponding to the maximum
attainable value of the internal moment.

Fig. 7 demonstrates how the stress law can be analyzed with this
aspect in mind. For a definite cross section of the compression zone
in flexure and a chosen position of the neutral axis (Fig. 7 concerns
a rectangular cross section and c¢/d = 0.4), the resisting moment is
plotted as a function of the strain in the extreme fibers. To determine
the magnitude of the internal moment, the stress block factor « and
the coefficient k; are used to compute the magnitude and position of
the concrete compressive force. These coefficients can be derived for
any assumed value g, of the strain in extreme fibers from the stress
distributions shown in Fig. 6. The curve of the relative internal

0:28 T Ll T . T T T
Rectangulor section
f.=3000 psi
at 56 doys
c _
027+ g 040
oo
£
w|e
':-':' 026F
g
EI;“
=]
E
025
Fig. 7—Resisting moment as
a function of strain and time
024 . .

000l Q003 0005 Qo7
Concrete strain in exireme fibers, S¢
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moment of the compression zone about the centroid of the tensile steel,

M__ e S (1=t 8) (D)

= Bazy,  “d d
shows a clearly defined maximum in Fig. 7 for each loading duration
which maximum corresponds to the ultimate moment, M,. The corre-
sponding strain in the extreme fibers is the ultimate strain, s,.

Fig. 7 further shows that the stress distributions applying to different
loading durations lead to different wvalues of ultimate moment and
ultimate strain. Joining the various ultimate moments by a curve
shown as a heavy line in Fig. 7, the dependence of the ultimate moment
on duration of loading is seen. This curve usually shows a clear
minimum. Hence, assuming that load is increased in such a manner
that the rates of strain in the various fibers remain constant with time,

there exists a definite duration of loading which leads to the lowest
ultimate moment.

EFFECT OF POSITION OF THE NEUTRAL AXIS AND OF SHAPE
OF CROSS SECTION ON ULTIMATE STRAIN

The results shown in Fig. 7 apply to one chosen position of the neutral
axis only and to a rectangular cross section. When the same compu-
tations are carried out for different positions of the neutral axis and
for various shapes of cross section, indications are obtained regarding

T T

\ /3.8

o
T

fe =3000 psi ot 56 days
BE= ® p=o°; k=
[_J o p=0;k;=0
p=reinforcement percentage

Q
Cn
T

ky = 5 at ultimate strength

Ratio of concrete stress to cylinder strength

{See also Fig.2)

O

L i | |
000l 0002 0003 0004 0005
Extreme fiber concrete strain, £y, at ultimate strength

Fig. 8—Ulitimate strain as a function of cross section and position of neutral axis
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the degree to which the extreme fiber strain and the stress distribution
at ultimate strength depend on these variables.

Examples of the results of such investigations are shown in Fig. 8.
It shows extreme fiber strains at ultimate strength for several typical
cross sections after 1 hr of loading and for an average concrete strength
of 3000 psi at 56 days. The two mathematically extreme cases of position
of the neutral axis were considered. The solid circles in the figure
represent the case where the neutral axis is located at the centroid
of the tension steel, the open circles denote the case when it lies at
the upper edge of the cross section. In actual cases involving bending
of reinforced concrete beams, the neutral axis will be between these
two extreme positions. Fig. 8 shows clearly that the shape of the cross
section has a decisive effect on the value of ultimate strain. For a
triangular compression zone, a case which often occurs in biaxial flexure
of columns, the ultimate strain is twice that for a T-beam. When the
neutral axis is located at the centroid of the tension steel, this can be

Bl A A F PR F V é
SHAPE OF CROSS-SECTION
0 0.5 10 0 0.5 10 0 05 10 f
1 T ic
k,=0
k,d
Y ky=0 ky =10
k, =10
r A == _Neutral Axis
00022 00038 0048 .
u
ky = k,=0
kyd k, =10 k, =10

STRAIN DISTRIBUTION

Fig. 9—5Strain and stress distribution at ultimate strength after | hr, £/ = 3000
psi at 56 days
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qualitatively understood by the stress distribution shown in Fig. 9. For
the idealized T cross section, most of the compression zone area is
located in the upper flange, so that maximum internal moment occurs
for that extreme fiber strain which gives maximum stress in the flange.
For the triangular cross section, however, a major portion of the
compression zone is located closer to the tension steel. Hence, maximum
internal moment occurs for a relatively large extireme fiber strain
giving maximum stress at some distance below the apex of the triangle.
This theoretical deduction was confirmed by tests.

Fig. 8 also shows that the position of the neutral axis is of marked
influence. This effect is least for T-beams and greatest for a triangular
compression zone, which can be understood as follows. In an idealized
T cross section, the magnitude of the lever arm of the internal forces
is almost independent of the position of the neutral axis., Thus, at
ultimate load, the strain in the extreme fibers is always close to that
which yields the maximum internal compressive force. Conditions are
different for a triangular compression zone. The magnitude of the
ultimate moment is strongly affected by the length of the lever arm
of the internal forces as well as by the magnitude of the internal

0.010 I T T T T
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004 gChamboud N\

+ Habel

Ultimate Concrete Strain

002

Limiting Values Torroja Bittner

[ |
0 2000 4000 6000
Cylinder Strength f'  in psi

Fig. 10—Ultimate strain-concrete strength relationships
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compressive force. In a rectangular cross section the position of the
neutral axis still has an appreciable effect on ultimate strain.

The wvalues reproduced in Fig. 8 and 9 apply to average concrete
strength of 3000 psi and a rate of deformation at which failure takes
place in 1 hr. In spite of this limitation, the value of the ultimate strain
in the extreme fiber varies from about 0.0022 to 0.0048. If other concrete
strengths and other rates of deformation are considered, even more
pronounced differences may be expected.

A very important point is arrived at here. Most ultimate strength
design theories advanced heretofore started out from the assumption
that the stress distribution in the flexural compression zone, as well as
the value of ultimate strain, were constant or at most dependent on
concrete strength. In reality, however, these important design quan-
tities are affected not only by concrete strength, but even to a greater
degree by the rate of loading, the position of the neutral axis, and the
shape of the cross section.

This qualitatively explains the wide divergence of the wvalues of
ultimate strain arrived at on the basis of earlier theories published
by various authors, as shown in Fig. 10. It can even be argued that
all these reported values, though apparently contradictory, can actually
occur side-by-side. They were probably recorded under widely different
conditions, and the fundamental error consisted in generalization.

EFFECT OF SUSTAINED LOADS

This discussion has so far dealt with a loading method characterized
by a constant rate of strain. Even at very slow strain rates, therefore,
maximum load exists only for a very short time period. This loading
method is close to conditions existing in laboratory tests of structural

specimens. The loading of actual structures generally takes place in a
more unfavorable manner. In such structures, the load is applied rela-
tively quickly and is then held constant.

The difference between these two types of loading is schematically
illustrated in Fig. 11. The curves drawn with dashed lines correspond
to loadings at constant strain rates. The rates shown correspond to
failure after 1 hr, 1 day, and 3 months. The curves drawn by full lines
correspond to loads applied in about 20 min and then held constant.
It is seen that, for failure after a given period of time, the constant
loads lead to somewhat lower failure loads than loading at constant
strain rates. The investigations described below contribute to the study
of these phenomena.

For some years the Munich Materials Laboratory has conducted tests
of the effect of sustained load on the strength and deformation of
concrete.®™® Difficulties in keeping a relatively high load constant over
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Fig. | l—Influence of type of loading on ultimate strength (schematic behavior
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a long period of time, even when concrete contracts under creep, were
overcome by the development of a hydraulic loading arrangement such
as is shown diagrammatically in Fig. 12. The piston rests on a rubber
capsule which is connected to a constant pressure source, Piston leakage
is eliminated, and the load can be kept constant practically without
attendance. Eccentricity of loading can be varied by the hand crank
arrangement shown, thus displacing the specimen laterally with respect
to the force axis. Deformation was measured by mechanical strain gages.

A climate-controlled testing laboratory was used, in which a number
of test specimens were subjected to load simultaneously. In these tests
several identical specimens were subjected to concentric sustained load.
The magnitude of load was varied for individual specimens. Its ratio
to the ultimate load in a short-time test was designated as degree of
loading. In this manner, the load can be determined at which the test
specimen will just be able to sustain over an infinite length of time
without breaking. The corresponding average compressive stress is

called the sustained load strength. In addition, one observed increases in
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deformation, i.e., creep under very
high degrees of loading. Fig. 13 and
14 show selected results of these in-
vestigations for concentric loading
and concrete of a 5000 psi average
strength. The eccentricity of load
was varied in other tests series.

Fig. 13 shows the influence of
the degree of loading on the defor-
mation and time elapsed up to fail-
ure. All specimens were concentri-
cally loaded 56 days after casting.
The failure in a conventional short-
time test occurs in about 20 min at
an ultimate strain of about 0.0025.
For specimens subjected to a sus-
tained load with degree of loading
less than one, two families of
curves with different characteris-
tics are obtained. As long as the
degree of loading is higher than
that corresponding to the sustained

v T
Centermg | [
Device A ,:t i

Fig. 12—Testing arrangement for sus-
tained load tests

load strength, the deformations eventually increase rapidly and lead to
failure. For loading below the sustained load strength, the deformation
curves become stabilized and approach limiting values of strain.
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The same results are given in Fig. 14 in terms of curves for applied
load versus strain with time after loading at an age of 56 days as a
parameter. It can be expected that the limiting line on the left of the
diagram will become close to a straight line for extremely short dura-
tions of loading, until finally it will coincide with the elastic straight
line relationship denoted E, in the figure. On the lower right the
diagram is limited by the creep deformations corresponding to an
infinite duration of loading. At the top, the diagram is limited by the
failure line, which shows decreasing strength for increasing load dura-
tion. The two parameter curves shown between these limits correspond
to conditions after 100 min and after 7 days, respectively. The limiting
lines of the diagram described above, enclose all possible relationships
between stress and strain.

The Munich tests have shown that sustained load strength of a con-
centrically loaded concrete specimen amounts to at least 75 percent,
and on the average to about 80 percent of the strength determined in
a short-time test. The short-time strength is then defined as the
strength of an identically cast and identically old specimen, which
remains without load and is tested in a standard short-time test of
about 10 min duration at the time when the twin specimen under
sustained load has collapsed. This short-time strength depends on age
and storage conditions and is usually greater than the strength at the
time of loading which is used as a basis in Fig. 13 and 14.

The ratio of sustained-load strength to short-time strength is, according
to our evidence, independent of concrete strength. In accordance with
the chosen definitions it is also fairly independent of concrete age at




A GEMERAL FLEXURAL THEORY 17

l.4 I 1 1 i L) I L}
LE = fl -
L+ ] c{utﬂ fl
cze
1.0 2
- q_. &
= fé.[o 1 ° : = ?ﬂ Y §a Y v ¥ Y .
208F G —_ * a © * o % Y, -
o Cx fee
E .
& 8T Age of l0ad / 7
application = * 20 days f/
_4 B L] / -
O e 56 ;/
A4 160 =« f{
oled o v 448 _ -
. _-
Q- 10 min, I hr. G hr. | daoy 7 days-28 days-3mos. |yr.

Time, log t for ¢y, log (a+1) for cg.n

Fig. |15—Effects of time on strength

application of sustained load. However, since short-time strength in-
creases with time after casting, the time elapsed until failure still
has a pronounced effect on the absolute value of the sustained-load
strength.

Concrete loaded shortly after casting is subjected to two different
effects. The strength reduction caused by sustained load is counteracted
by the strength increase with time. As the strength reduction due to
sustained loading is particularly pronounced immediately following
application of load, failure of a young concrete constitutes a danger
only during the first days after
load application. The effect of addi- 10

tional hardening becomes predomi-

nant thereafter. In contrast to this, 08 s Leteenhy A

for a very old concrete which has fewatihyeo o

reached practically its full strength  Sos Ly .
before it is loaded, failure under £ i

sustained load may occur after very %oat -l :
long periods of loading. This effect ° m

of age at loading can be approxi- o2} —“- -
mately expressed by the following M

relation, set up on the basis of the o e =

test findings shown in Fig. 15 and Rotip of eccentricity to depth of sectior, A

16. The strength of a concrete . .
1i Fig. |6—Effect of tricit

failing under sustained load at the '9 une:{_m?‘ga‘“:"“ rieiry
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Fig. |7—Effect of age at load application on sustained load strength

time t days after loading at an age of a days is:
j’tﬂu‘-l_’ = j’t‘m Cn“,u [ ] Ch = ](*ra Ci Ch .................................(2}

in which f'o3 represents the concrete strength at the age of 28 days;
a denotes the age of concrete at the beginning of sustained load appli-
cation; t is duration of load after the full load (applied in a period of
20 min) has been reached; f’.. is the short-time concrete strength at
an age of (a4 t) days; and A is the relative eccentricity of the load
A=-e/t. In this manner, the effects of continued hardening and of
eccentricity of load are expressed by the coefficients ¢+ and o,
which can be obtained directly from experimental data. The wvalues
of the coefficient ¢; expressing the influence of the sustained load,
were derived by means of Eq. (2) from sustained load test data. The
curve to the right in Fig. 15 shows the effect, ¢4+, of continued curing
on short-time strength for.a concrete with a 28-day strength of 4300
psi. The flat curve beginning to the left expresses the effect of sustained
loading, ¢;, and was determined for sustained loadings applied from 20
to 448 days after casting. Fig. 16 shows the effect, c,, of eccentricity
on the average compressive stress at failure. The tests indicated that
c) is independent of the duration of loading. Hence, values determined
with particular care in short-time tests were used to develop the
relationship shown in Fig. 16.

Fig. 17 reproduces results derived from Eq. (2) for two groups of
concentrically loaded test specimens (A=20; cy=1.0), loaded at ages
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of 10 days and 1 year. The selected logarithmic scale provides a good
general trend, but does not reveal the details of strength changes occur-
ring immediately after loading. Therefore, the same values were plotted
in Fig. 18 on a larger time scale and as a function of duration of load.
This diagram reveals clearly that the lowest strength is attained in
the young concrete after a loading duration of 6 hr, while no minimum
is apparent for old concrete even after a loading duration of several years.

The interrelationship between the sustained load strength, the age
of concrete at application of load, the duration of loading, and the
eccentricity of the applied load has been discussed. The question of
deformation existing at failure is a more difficult problem. The failure
does not occur suddenly, but it is a result of a gradual destruction of
the internal structure of the material accompanied by a rapid increase
of the deformation as shown in Fig. 13. Hence, it is difficult to give
a reliable value for the deformation at ultimate strength. The {est
values vary within a wide range and apply to a stage in which the
deformations already have reached values that are excessive in terms
of practical usefulness.

Under these circumstances it is suitable for design purposes to con-
sider a state of deformation which precedes failure. This can be done
in various ways, for example, one could consider the deformation just
at the onset of its rapid increase, indicating that failure is imminent.
The writer feels that a suitable choice of deformation is that which
exists at one-half of the loading duration to failure in sustained load

I.'4 T T T T T T L
ﬂﬂe ot load ﬂpplil:ﬂﬁﬁn 1 yr. Minimum still
L2f not reached \-\'
10 P
~
_— -~

- 08} Age af lood application 10 days ~ -
-4 P -~
2 =
© 06} 4

femin ofter 6 hrs.

0 i . L i L L i
| min. 10 min, | hr. &hr. day 7 days-28 doys-3mos.  lyr.
Time from loading to failure, log t

Fig. i8—Influence of time on strength under sustained concentric load
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o8 T . ; . Fig. |9 — Average stress at
ultimate eccentric sustained
- load
F o7
°
E<l f. o = 5000 psi
S
: 06} oo , :
WP fc-l:ﬁsﬂo:’ 5450 psi
ﬂ_ﬁ L i [ [
0 Qo2 004 Q06 o8 Ql0

Ratio of eccentricily 1o depth of section, A

tests. As another possibility deformations to be used in design could be
obtained by a test, in which the degree of loading is below the sustained
ultimate strength, say 90 per cent. '

It is not intended to discuss the advantages and disadvantages of
such possibilities here. This would be worthwhile only if sufficient
experimental data were available, so that the relative merits of the
various methods could be evaluated. In the following, therefore, only
the basic concepts of the new approach will be presented. The principal
reason for selecting the deformation at one-half the time to failure is
that sufficient experimental data were available from sustained load
tests of 70 days duration between loading and failure.

Fig. 19 and 20 reproduce some results of the eccentric sustained load
fest series of concrete prisms which results are used as a basis for
the present formulation of flexural theory. Fig. 19 shows the relation-
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ship between load eccentricity and the average compressive stress
causing failure after 70 days under sustained load. The load was
applied 56 days after casting. The corresponding edge deformations
are shown in Fig. 20 for load duration of 35 and 70 days, that is, for
half the failure time and the complete time to failure.

In Fig. 19 and Fig. 20 the deformation developing at both edges and
the corresponding average value of the stresses leading to failure after
a duration of loading of 70 days can be read off for variable eccentricity.
It was attempted to derive a stress-strain relationship which would
correlate these test results. To this end a stress diagram limited by
the two edge deformations was drawn for each value of eccentricity.
The area and center of gravity of the diagram must conform to the
measured values. As a first attempt diagrams were used whose upper
boundaries were parabolic. The boundary lines shown in Fig. 21 fit
rather well into a continuous stress-strain envelope. By trial and error
better curves can be found as more test results become available. The
remaining deviations will be tolerable and to a large extent attributable
to unavoidable scatter of test results.

Fig. 22 presents the derived stress-strain envelope which applies for
one-half the load duration in tests carried out on concrete which failed
after 70 days’ duration of sustained load, applied 56 days after casting.
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This curve establishes another basic law of stress distribution which
permits study of strength in the compression zone of structural members
as a function of shape of cross section and position of the neutral axis.
This can be carried out in the same manner as described in the present
paper for stress-strain curves derived for constant rates of deformation.

The curve of Fig. 22 applies only to an age at loading of 56 days and
a duration to failure under sustained load of 70 days. In the same
manner one can, of course, by further experiments find curves which
would apply to other ages, loadings, and load durations.

PRESENTATION OF THE RESULTS IN A DIAGRAM

The author suggested in 1950 ? plotted the values required in ultimate
strength design of rectangular cross sections as a function of the reduced
moment of the internal concrete compressive force about the centroid
of tensile reinforcement: m, = M,/bd?f/. Two coefficients are plotted
as ordinates which define values at ultimate strength of the position of
the neutral axis (k,=c/d), the lever arm of the internal forces
(j« = jud/d), and also the strain (g,) in tensile reinforcement.

Fig. 23 shows the values of these coefficients at ultimate strength
for a case of rectangular cross section and average concrete strength
of 5000 psi at 400 days for constant strain rate, and at 56 days for sustained
load. The diagram also takes into account effects of time. Several cases of
loading at constant rate of strain were considered, the time elapsing to
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failure being 10 min to 1 year. In addition, the case of sustained load

applied at the age of 56 days and held constant to failure at 70 days was

considered. The following comments will serve to explain the diagram:
(a) Because the values m.,= M./bd?f.' = (M.+ P. e,)/bd?f.’ were se-
lected as abscissae,* this diagram applies to the case of pure flexure as
well as to the case of combined flexure and compression. In general, low

m. values correspond to pure bending, and high m. values to combined
flexure and compression.

(b) The lowest coefficient in the diagram for the lever arm of the
internal forces is j. = 0.50. The resultant of the internal compressive stresses
then is at the center of the cross section, that is, the case is one of a con-
centrically loaded column.

(¢) The coefficients k. and j., which determine the position of the neutral
axis and the lever arm of the internal forces, are least affected by dura-
tion of loading. The coefficient k. increases with increasing duration of
loading, since the strength reduction due to time is compensated for by a
lowering of the neutral axis. This leads to a reduction of the lever arm
of the internal forces, expressed by a reduction of the coefficient j..

(d) The strain in tensile reinforcement, e.., is most strongly affected
by duration of loading.

CONCLUDING REMARKS

This paper presents only an outline of a new flexural theory. The
author is well aware that this work has not yet come to a decisive
conclusion, and that the proposed design method does not constitute
a completed solution. Thus, for example, there may be divided opinions
as to the selection of the loading state from which the deformations
forming the basis for sustained load design are to be determined.

Naturally it is unthinkable that practical design should involve the
effect of duration of loading in detail. Not only would such a procedure
be much too laborious, but it must also be admitted that in most cases
it cannot be foreseen at all what service loads a structure will actually
be called upon to carry during its lifetime.

Under these circumstances one is forced to start out from the least
favorable conditions which can normally occur. The diagrams shown
above permit us to realize clearly that these least favorable conditions
occur under long-time action of a constant load.

The safety of reinforced concrete structures is generally related to
their strength at 28 days. According to the reasoning followed in this
paper, failure under sustained load can occur in young concrete only
during the first few days, as long as ordinary portland cement is used.
Furthermore, the case of young concrete being subjected to high loads
is possible in most structures due to so-called construction loads.

*Mu is internal moment of concrete force about centroid of tensile reinforcement at ulti-
mate strength; M. is moment of external forces about centroid of section: P. is external
axial force acilng in centroid of section; and e. is distance between tensile reinforcement
and section centroid.
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Therefore, the requirement to design all structural units for a low
age at loading, such as 28 days, is not unreasonable.

In this manner, it appears possible to replace the families of curves
in Fig. 23 by a new design diagram, which presents only one curve for
each of the three quantities needed in design, k., j., and g,. Tests
which could be used in establishing these curves are lacking at present.
However, by interpolating tests for other ages at loading, it is possible
to estimate the probable shape of these curves. This is presented in
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Fig. 23—Values of k, j, and ¢, at ultimate strength of rectangular cross sections
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Fig. 24, although only for an average concrete strength of 4300 psi at
28 days. The final design chart should contain the three curves for
each of several concrete qualities. The j, curves will probably be so
close together that they can be replaced by a single curve.

Such a diagram appears to offer the best opportunity to summarize
in a simple form all the results of the theory of flexure developed
here. Naturally, there are many other methods of presenting the
quantities needed in everyday design, such as diagrams, tables, and
simplified empirical formulas.

The advantage of a design chart of the type shown in Fig. 24 lies
in its general scope of application. It embraces the entire range of
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stress conditions from pure bending to concentiric compression. It can
be used for all concrete strengths and steel qualities and applies to
reinforced concrete as well as prestressed concrete. The diagram applies,
however, only to rectangular cross sections, although similar diagrams
can be plotted for other cross sectional shapes. The general applicability
of such a diagram is illustrated in the appendix.
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APPENDIX — DESIGN EXAMPLES

The four examples below apply to a rectangular cross section with dimensions
as shown in Fig. A-1. The quantities k., j., .. needed in design are taken from
the design diagram in Fig. 24. It should be emphasized again that the internal
and external forces given in the examples of this appendix correspond to
ultimate strength.

Example No. 1

Design load: Pure bending; M.= 2620 in.-kips
Material: Reinforced concrete; f’ = 4300 psi; cold worked de-
formed bars (see Fig. A-1)
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Example No. 2a
Design load:

Material:

Moment about tensile
reinforcement:

Relative moment:

Internal moment arm:

Steel stress:

A, required:

Example No. 2b
Design load:

Material:

Moment about tensile 1

reinforcement;

Estimated position of
neutral axis:
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jud = 0.832 % 19 = 15.8 in.
for .. = 0.0085, f.. = 59.8 ksi (steel yielding)

M. _ 2620
Tdfn 158 X 59.8

-= 277 &q in.

Bending and axial load acting at section centroid;
« = 2620 in.fkips, P, =— 156 kips

Same as in Example 1
M= M., + P. (d —1t/2) = 2620 4 156 (19 — 10)

= 4024 in.-kips
_ 4024 _
e =15 490 — 0024

jud = 0.690 % 19 = 13.1 in.
fﬁr Esu = ﬂ.ﬂﬂlﬁﬁ, f:u = 461-5 kSi

1/ M. 1 /4024 ‘
2 (M _p, Y=L (2922 _ 156 )= 3.25 .
fre\ Gud ) 46.5( 13.1 ) a1

Bending and axial load acting at section centroid;
M, = 3500 in.-kips, P.= 156 Kkips

Same as Example 1, plus compressive reinforcement:
A, =10805sq in, d =1 in.

= 3500 + 156 (19 — 10) = 4900 in.-kips

k. =10.80; ¢ =k =0.80 19 =15.2 in.
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Tensile steel strain: £« = 0.00162
Compressive steel o e—d _ 152 —1 — 0.0060

atrain: Esu — Esu d— c -_ 00"]162 —19 — 152

Moment resisted by
compressive rein-
forcement:

Moment resisted by
concrete:

Relative moment:
New position of
neutral axis:
Internal moment arm:
Stress in tensile

reinforcement:

A, required:

Example No. 3
Design load:
Material:

Relative moment:

Internal moment arm:

Strain at level of
reinforcement:

Strain in reinforce-

ment due to effective

prestress:

Total strain in
reinforcement:

Steel stress:

A, required:

Received
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= A/ fu (d—d) = 0.8 ¥ 58.6 X 18 = 844 in.-kips

M. = 4900 — 844 = 4056 in.-kips

4056
12,420

k. = 0.813 (0.80 estimated k. is all right)

My = = 0.327

jud = 0.685 X 19 = 13.0 in.
for €.. = 0.0015, f.. = 45.0 ksi

! (.BE*—P.) + A

fu\id 056 o 58.6
— 1 4056 go 08:6
= ol — 1% ) +080 555
= 4,51 sq in.

Pure bending; M. = 3500 in.-kips

Prestressed concrete, bonded, f,’ = 4300 psi; prestress-
ing steel, see Fig. A-1

3500

jud = 0753 x 19 = 14.3 in.
g = 0.0037
Eap = ﬂ-ﬂﬂ‘lﬂ

Esuw = Ecu + Eus — nﬂﬂ?‘?

fou = 227 ksi

M. _ 3500
judfe 143 x 227

= 1.08 sq in.
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Anexo 1 - Experimentos para a determinacao da influéncia do
tempo na Resisténcia e na Deformacao ( do concreto ) — (1956 )
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Anexo 1 - Experimentos para a determinacao da influéncia
do tempo na Resisténcia e na Deformacao ( do concreto )

Equipamentos usados :




Anexo 2 — A influéncia das propriedades de deformacéo do
concreto sobre a distribuicao das tensdes ( 1959 )

71, Jahrgang  Heft 9 SCHWEIZERISCHE BAUZEITUNG 26, Februar 1959

ORGAN DES SCHWEIZERISCHEN INGENIEUR- UND ARCHITEKTEN-VEREING B.1.A. UND DER GESELLSCHAFT EHEMALIGER STUDIERENDER DER EIDGENOSSIBCHEN TECHNISCHEN HOCHSCHULE 6.E.P.

Der Einfluss der Deformationseigenschaften des Betons auf den Spannungsverlauf

Erweiterte Fassung des Vortrages, gehalten am 22, Marz 1958 in Locarno an der Tagung S.1.A./SYMT/SNGT von o. Prof. Dr.-Ing. H. Riisch,
Technische Hochschule Minchen,

Equipamentos usados :

Bild 15. Aufstellung der Dauerstand-Pressen im Klimaraum
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~ Researches Toward a General
Flexural Theory for Structural Concrete

%

By IQBAL ALI, EIVIND HOCNESTAD,
LADISLAV B. KRIZ, R. G. SMITH, and AUTHOR

By IQBAL AL

The writer some time ago presented a rather limited analytical study?
wherein the ultimate flexural strength of rectangular reinforced con-
crete sections was intepreted in terms of the stress-strain relationship
of concrete under axial compression. An idealized curve was used for
the analysis. Ultimate strength was identified with stress distribution
resulting in the maximum internal moment. It was demonstrated that,
even for the same concrete, the maximum compressive strain is by no
means a constant, and is influenced to a considerable extent by the
location of the neutral axis. Conclusions, identical to those of the author,
were reached regarding the apparent discrepancies between the values
of the ultimate concrete strain in flexural compression, as observed by
different workers.

Professor Riisch is to be complimented on his lucid exposition of a
very significant contribution towards a better understanding of the
behavior of structural concrete in flexure at ultimate loads. Of special
importance are the investigations on the influence of the strain rate
on the stress-strain response of concrete and the studies on the be-
havior and strength of concrete under sustained loads. The design curves
presented are ingenious and practical.

The derivation of the stress-strain relationship of concrete under
sustained load, from observations on specimens under eccentric com-
pression and the suggested approach for determination of the ultimate
strength of structural members on this basis, may however need some
further elucidation.

*ACI Joumsar, V. 32, No. 1, July 1960 (Proceedings V. 51 1. '
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ﬂ[emher &m::lun Concrete Institute, Research Officer, Department of Engineering Re-
HJI. “The mtlnute Fl.exnnl 5 of Reinforced Concrete—A New Approach,” Indian
Cnm:-uu Journal (Bombay}, V. 33, No. 3, Mar. 1859, pp. 83-87, 104. PP
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Ultimate load design involves the concept of a load, which if imposed,
would result in failure of the structural member. The available margin
of safety is then defined in relation to the anticipated service loads and
this ultimate load. The ultimate load may be considered as a purely
fictitious load, larger in magnitude by a specified margin than the nor-
mally expected service load, but essentially similar in nature and distri-
bution, irrespective of the possibility of its actual occurrence. Alter-
natively it could be considered as a possible “catastrophic” load to which
a structure might be actually exposed and suffer failure. Such loads
can be entirely different in nature from the normal service loads. Im-
pulsive or shock loads due to seismic or other sources, vibration stresses
due to wind or waves, and stresses due to settlement, are a few of the
possible causes that can result in structural failure. The assumption of
a sustained over load as suggested by the author may therefore not
be justifiable, on grounds of realism, in all cases. It may, under certain
circumstances, not even correspond to the worst situation.
~ 'The construction of the stress-strain curve for concrete under sus-

tained load, from tfests on specimens under eccentric compression, is
very ingenious. The maximum eccentricity used does not, however,
exceed 1/10 of the lateral dimension of the test specimen, which corre-
sponds to a location of the neutral axis almost at the edge of the section.
It is therefore felt that flexural tests on reinforced concrete beams
would have provided useful additional data for developing the desired
stress-strain relationship.

Design curves shown in Fig. 23 include constant strain as well as
sustained load conditions. It is presumed that in the former case the
descending portion of the stress-strain curve has been included for
analysis, and the ultimate moments derived by maximizing the resisting
moment of the concrete compressive stresses about the tensile reinforce-
ment. It may be pointed out in this case, that when compressive rein-
forcement is used, the total resisting moment need not necessarily
reach a maximum value, simultaneously with the moment of the con-
crete stresses considered by themselves, unless the compression steel
yields before the ultimate moment is reached, and has a practically
constant yield stress. In other cases therefore, the design curves will
give a somewhat over-designed section, when compressive reinforce-
ment is involved.

The emphasis laid by the author on the necessity of an intensive
study of the stress-strain response of concrete under various conditions
of loading and for different types of concrete is highly significant. The
writer is convinced that in this direction lie the major clues to a fuller
understanding of the strength of structural concrete, not only in flexure

and compression, but perhaps also in the more elusive modes of shear
and torsion.
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The writer would like to take this opportunity to remark that the
problem of determining realistic ultimate load conditions for use in
design is not receiving its due share of study and thought. The use of
almost arbitrarily chosen values of load factors in conjunction with
highly refined techniques of ultimate strength analysis is, to say the
least, incompatible.

By EIVIND HOGNESTAD*

The paper by Professor Riisch presents a broad outline of the most
rigorous flexural theory for structural concrete known at the present
time. In some respects, the paper represents a milestone in evolution
of prior work carried out in many parts of the world and leading to
the first practically useful forms of ultimate strength design. In its
important aspects, however, the paper is a pathfinder for researches
of the future toward improvement and generalization of present design
methods.

Several new contributions have been made to general flexural theory
after adoption of the 1956 ACI Building Code, ACI 318-56. Whenever
such new information has become available, its implications in terms
of the ultimate strength design criteria of the 1956 Code appendix have
been evaluated,'’* and repeated confirmations of the 1956 criteria
have resulted. It is the purpose of this discussion again to re-evaluate
the 1956 criteria and current American ultimate strength design prac-
tice in the light of Riisch’s far-reaching new concepts and test data.

RECTANGULAR STRESS DISTRIBUTION
The 1956 ACI Code specifies that: “The diagram of compressive con-
crete stress distribution may be assumed a rectangle, trapezoid, parabola,
or any other shape which results in ultimate strength in reasonable

agreement with comprehensive tests.” However, the specific design
equations given in the 1956 Code imply the use of a rectangular distri-
bution, and this distribution has become widely used in American every-
day design practice.’® It has commonly been assumed that the stress
intensity of the rectangular stress block equals the maximum stress
of the actual curved stress distribution to be approximated; a stress not
to exceed 0.85 f,” is given by the 1956 Code. This limitation in the use

of the rectangle is not strictly necessary.

The actual curved stress distribution sketched in Fig. A can be char-
acterized by a stress coefficient k; giving a maximum stress of ksf.,
an integration coefficient k; giving an internal compressive force of

e ————

*Member American Concrete Institute, Manager, Structural 1 Section, Portlan
Cement Association Laboratories, Skokie, L. Develapmont d
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Fig. A—Nature of rectangular stress block

ky (ksf.) be, and a centroid coefficient k. giving a centroid depth of k.
for the internal compressive force. For rectangular cross sections, ulti-
mate strength calculation by a generalized rectangular stress distribu-
tion can be made identical to those resulting from an actual curved
distribution, in spite of the fact that the geometry of the rectangle
always gives a centroid depth, a/2, equal to one-half of the stress block
depth, ¢ = k,,c. To obtain such identical calculation, the centroid depth
and the total internal force must both be identical for the two stress
distributions, so that

_;_-_-sn,.c:k.c and  kikafobe = knkaf.be

which gives k, =2k, and k,; =ks(k:/2k;). The same linear strain
distribution is used for both the actual and the rectangular stress dis-
tribution.

When a rectangular stress distribution so determined is applied t
members with nonrectangular compression zones, mathematical identity
with solutions based on an actual curved distribution will no longer
exist. This is particularly so since, as shown in the Riisch paper, the
actual stress distribution corresponding to maximum ultimate moment
varies with cross section shape and depth of the neutral axis. Compari-
sons of calculations and new test data for nonrectangular members
have shown, however, that in such cases the rectangular distribution
still leads to a good approximation in calculations of ultimate strength’*

SUSTAINED LOAD

Riisch’s Fig. 24 “probable ultimate strength design chart for sustained
load on rectangular members” is reproduced in Fig. B. A corresponding
rectangular stress distribution was derived as follows. For the neutral
axis at the centroid of the tension steel, k,=1.0, Riisch’s ch  gives
j« = 0.62. The rectangular distribution gives j, =1— %k,,, wh  leads
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to k., = 0.76. Then m, = 0.358 = k,,db (k,sf.") j.d, bd?*f;, which gives k,;
=0.76. Finally, for k,= 04, Riisch’s chart gives f, = 0.010. Hence,
£/0.4 = ¢,/ (1 — 0.4), which yields ¢, = 0.0067.

The values k,; = k,s = 0.76 and ¢, = 0.0067 so determined were then
used to calculate all points shown in Fig. B. It is seen that an extremely
close agreement with the Riisch chart results, except when k, is greater
than about 1.1, that is, when the neutral axis falls outside the cross
section. It will be shown later that, because a minimum eccentricity
is specified, such positions of the neutral axis have little practical sig-
nificance in American ultimate strength design.

mo | 1 1 lﬂ
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Fig. B—Rectangular stress block approximation of Risch's Fig. 24, sustained load
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CONSTANT RATE OF STRAIN LOADING
The tests of reinforced concrete beams and columns, on which the
ACI 318-56 design criteria are based, have usually been carried out in
intervals of time from 1 hr to a few hours. In Fig. C, therefore, com-
parison is made with the curves of Riisch’s Fig. 23 corresponding to
total testing times of 1 hr and 1 day. The characteristics of the rectangu-
lar stress distribution used to compute the coordinates for the points

-..‘
Ju

2

Volues of k, and

Fig. C—Comparison of AC| 318-56 rectangular stress block to Risch's Fig. 23
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plotted in Fig. C were not derived from Riisch’s curves as they were
in Fig. B. The values k, = k,; = 0.85 and ¢, = 0.003 were used as speci-
fied by ACI 318-56. Even so, an excellent agreement exists. The calcu-
lated values of ¢,, are somewhat low as compared to the curves, which
results from the fact that ¢, = 0.003 was purposely chosen as a low and
safe value in the development of the 1956 Code. In this manner, the
practical design criteria of the 1956 Code are confirmed by Riisch's
findings.
APPLICATION TO COLUMNS

The implications of Riisch’s sustained load design chart in terms of
American column design practice were studied by comparing rectangu-
lar stress distribution calculations based on the 1956 Code (k,; = ks =
0.85, ¢,=0.003) and on sustained load (k, =k;s=0.76, &, = 0.0067).
The difference between ultimate strengths so calculated depends on
the eccentricity of loading, the proportions of the cross section, and
properties of the concrete and steel used. A reduction in ultimate
strength for sustained loading of (0.85 — 0.76) /0.85 = 10.6 percent occurs
for the academic case of a concentrically loaded plain concrete column.
For the heavily reinforced column shown in Fig. D, which is typical
of advanced American designs for tall buildings, the reduction for con-
centric loading is (3569 — 3370) kips/3569 kips — 5.6 percent. This is
because a major portion of the load is carried by the reinforcement,
which for both calculations is assumed to be yielding at ultimate
strength.

The two interaction curves for load and moment shown in Fig. D were
evaluated recognizing that concrete is displaced by the compression
reinforcement. Stress in the compression and tension reinforcement were
both calculated by consideration of strains. The compression reinforce-
ment was not always assumed to be yielding, which over-simplification
of the 1956 Code should probably be discontinued in a future code
revision.

It is seen in Fig. D that the low values of k,; = k,3 = (.76 for sustained
loading, as compared to k; =k,; =085 for the 1956 Code, are com-
pensated in some cases by the high sustained load strain, e, = 0.0067,
which strain is only 0.003 by the Code. Thus, in the region of large
eccentricities where strength is governed by yielding of the tension
steel, sustained load calculations lead to slightly greater ultimate loads
for a given eccentricity than the Code calculations. This is partly due
to the fact that the compression steel is calculated to be yielding at
ultimate strength for sustained loading at much greater eccentricities
than for the 1956 Code, as indicated by arrows at the lower right in
Fig. D.

The difference between the two loading cases, as illustrated by the
two curves in Fig. D, may first be viewed in terms of normal scatter
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of well executed tests of reinforced concrete columns and beams, for
which a coefficient of variation of at least 6 percent must be expected.
This corresponds to a total scatter of about plus or minus 10 percent.
Secondly, the difference may be viewed in terms of the minimum load
factor of 2.0 given for columns by the 1956 Code. It does not seem un-
reasonable to let the load factor for the relatively unlikely case of
sustained overload remain reduced to 1.8 or 1.7.

It should finally be noted that, as indicated by arrows in the top left
corner of Fig. D, the case of uniform compression over the entire con-
crete cross section calculated by the rectangular stress distribution
begins at eccentricities less than the minimum of 0.1t given by the 1956
Code. Hence, the mathematical discontinuity of calculations by the rec-
tangular stress distribution occurring when k, = 1/k,,, that is when the
neutral axis is outside the section so that the rectangular stress block
covers the entire cross section, are more of academic than of practical
interest. This is particularly so because calculations by the 1956 Code
rectangular distribution reduces for zero eccentricity to the equation

P. = ﬂ.35 fl'{A'_AI'I} + At!_f’

which equation was originally derived from numerous tests of concen-
trically loaded columns during the ACI column investigation in the
1930’s.
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This study of the implications of Riisch’s findings on American column
design is, of course, highly incomplete. It appears to the writer, however,
that the calculation methods of the 1956 ACI Code are probably reason-
able for practical design purposes, even in the light of Riisch’s new
findings regarding effects of sustained loading.

APPLICATION TO BEAMS

Implications of Riisch’s sustained load findings on American beam
design methods were studied in a similar manner as for columns. A com-
parison for beams with tension reinforcement only is shown in Fig. E.
It is seen that consideration of sustained loading leads to an insignificant
departure from calculation by the 1956 Code methods.

CONCLUSIONS

Riisch has presented a greatly improved and broadened base for struc-
tural concrete flexural theory. His conclusion that “it is unthinkable
that practical design should involve the effect of duration of loading
in detail” is certainly entirely reasonable. To this the writer would
add that the use of the rectangular concrete stress distribution in every-
day design practice, with which American designers have become fairly
well accustomed, should not be discontinued unless it is reasonably
imperative to do so. Riisch’s work has “not yet come to a decisive con-
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clusion.” On the basis of the limited studies presented in this discussion,
it seems reasonable to anticipate that a future mature development of
Riisch’s general theory can be utilized in American design practice by
relatively minor adjustments of the rectangular stress distribution co-
efficients given the values k,, =k, = 0.85 and ¢, = 0.003 in the 1956
ACI Building Code. A case of such adjustment already exists in the
1956 Code, namely, that k,, = 0.85 “is to be reduced at the rate of 0.05
per 1000 psi concrete strength in excess of 5000 psi.”

REFERENCES
10. Hognestad, E., “Confirmation of Inelastic Stress Distribution in Concrete,”
Proceedings, ASCE, V. 83, ST2, Mar. 1957, pp. 1-17.

11. Kriz, L. B, “Ultimate Strength Criteria for Reinforced Concrete,” Pro-
ceedings, ASCE, V. 85, EM3, July 1959, pp. 95-110.

12. Mattock, A. H.; Kriz, L. B.; and Hognestad, E., “Rectangular Concrete Stress
Distribution in Ultimate Strength Design,” ACI Journar, V. 32, No. 8, Feb. 1961
(Proceedings V. 57), pp. 875-928.

13. Ferguson, Phil M., Reinforced Concrete Fundamentals, John Wiley and
Sons, Inc., New York, 1958.

14. Mattock, A. H, and Kriz, L. B, “Ultimate Strength of Nonrectangular
Structural Concrete Members,” ACI JournaL, V. 32, No. 7, Jan. 1961 (Proceedings
V.57), pp. 737-766.

By LADISLAV B. KRIZ*

The outstanding contributions to ultimate flexural strength theory
presented by Professor Riisch involves a determination of that strain
in the extreme compressive fibers, which corresponds to the maximum
moment of the internal compressive force with respect to the centroid
of the tensile forces in the reinforcement. This strain is determined by
assuming that the position of the neutral axis is constant, while the
strain in the extreme fibers varies. This assumption is not in complete
mathematical agreement with the actual observed behavior of reinforced
concrete members, in which the position of the neutral axis shifts as
the curvature of the member changes under increasing moment. The
objective of this discussion is to examine the errors due to this simpli-
fying assumption in qualitative and quantitative terms.

The resisting moment of a rectangular reinforced concrete cross sec-
tion, Fig. F, can be expressed by the equation:

M —_ de — bd‘jkfaoa ........................................... (3)

The values of j, k, and f,., can all be expressed as functions of the

strain in the extreme fibers. Hence, at ultimate strength in pure bending,
the equation:

*Member American Concrete Institute, Associate Development Engineer, Structural Devel-
opment Section, Portland Cement Association Laboratories, Skokie, Ill.
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must be satisfied provided that M (e,) is continuous at e,. According to
Fig. F,

T B 58 (5
so that
di . dke o dk
L= (!4; T+ kgl ds-) (B

Substituting Eq. (5) and (6) into Eq. (4) yields:

[y e — e fun, S 4 (1= 2 G ], _ = 0D
Eq. (7) is the criterion for the ultimate flexural strength, and there-
fore it is the equation from which the corresponding strain ¢, in the
extreme fibers should be determined.
Keeping the value of k constant, as proposed by Professor Riisch, is
equivalent to setting dk/de. =0, so that Eq. (7) becomes

[u — ksl ke Gfeee. df"- — K fane %"1 T B ®
Es LR |

The strain ¢; determined by Eq. (8) cannot satisfy Eq. (7). Hence,
it does not lead to a strictly correct value of the ultimate moment. Since
it does not yield the maximum value of the resisting moment, it can
be concluded immediately that the error involved must be on the safe
side. Nevertheless, it is desirable to examine the magnitude of the
error involved.

The values of ultimate strain and ultimate moment were computed
for a series of beams by two methods: one based on Eq. (7), the other
on Eq. (8) which was obtained from the theory proposed by Riisch.

— ah 4
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4 Axisp ,

ke, 4
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Fig. F—Conditions in a reinforced concrete beam in pure bending
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Two stress-strain curves of concrete in flexure were assumed: (1) the
stress-strain relationship given by Riisch in Fig. 6 for 1 hr loading and
f¢ = 3000 psi; and (2) a stress-strain curve obtained at the PCA Lab-
oratories for .’ = 5000 psi2*® The stress-strain relationship of the re-
inforcement was assumed to be

_f| = E.tEl ﬂ = £s = .%":.
f' = ;, £ "i-_ “g_"_ ........................ {9}
E,= 30 X 10° psi

The reinforcement ratio was chosen at p = 0.01, 0.02, 0.03, ... 0.7

The strain ¢,, which satisfies Eq. (7) was determined by calculating
the value of the resisting moment for increasing values of €. The value
of k was also computed for each strain increment. The values of the
maximum moment, M,, and the corresponding extreme fiber strain, ¢,
were then selected from a graph of M/bd?,’ versus ¢, by inspection.

The values of k which satisfy Eq. (8) were likewise determined for
each strain increment. To facilitate the solution of Eq. (8), the differ-
entiation with respect to ¢, was performed, and after simplification the
following expression was derived:

= = ki (10
(k}hﬂlh T ——

The symbols used in Eq. (10) are defined in Fig. F.

The value of ¢z which satisfies Eq. (8) is that value of the strain in
the extreme fibers, at which the value of k, obtained from conditions
of linear distribution of strains and of equilibrium of forces, is equal
to the value obtained from Eq. (10). The moment M; is the resisting
moment corresponding to the strain es.

The procedure described above is illustrated in Fig. G, where two
beams are considered.

The results obtained from analysis of 14 beams are presented in
Table A. The values of the ultimate moments, obtained by the two
methods, are close indeed, the error being less than 1 percent in all
14 beams. The results also confirm the conclusion drawn previously,
i.e, the error involved in the theory proposed by Professor Riisch is
on the safe side.

The results show further that the strains at M are smaller than those
at M, in case of beams controlled by compression, and larger in case
of beams controlled by tension.

In the rectangular beams controlled by tension, the strain e, is a
function of the stress-strain relationship of concrete only. This is in
agreement with the findings reported earlier.
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The errors in the calculated ultimate moments are negligibly small
although the errors in the calculated ultimate strains may be consider-
able. This points out that the values of ultimate strain are relatively
unimportant, as long as values of k;ks and ks, corresponding to the
assumed value of the ultimate strain, are used in calculating the ulti-
mate moment.

This examination of the results of the flexural theory proposed by
Professor Riisch has been limited to rectangular reinforced concrete
beams. Similar comparison could be made for T-beams and for beams
with triangular compression zone. The ultimate strain for T-beams given
by Riisch in Fig. 8 appears to be independent of the position of the
neutral axis. The same value of ultimate strain is given for both k=1
and k = 0. This ignores the fact that as k in a given T-section approaches
zero, the neutral axis must enter the flange of the T-section, no matter
how small the thickness of the flange is. Hence, for k = 0, the ultimate
strain should be the same as for a rectangular section. Otherwise it may
be expected that the observations made above regarding the conditions
at ultimate strength of rectangular reinforced concrete beams, apply
equally well to the T-beams and the beams with a triangular com-
pression zone.
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TABLE A —BEAM ANALYSIS

Siress. | Percentage | 10 te strain | Ultimate moment & | M. |Controled
N:Ih'jipt:n— toru;nenlr o 6 |Mub@ | Me/bd®e | Mz by
Rilsch 0.01 0.00280 | 0.00340 | 0.1785 01780 | 0424 | 1.008 T+
14 = 3000 0.02 0.00280 | 0.00328 | 03140 03126 | 0.854 | 1.004 T
! hr 0.03 0.00360 | 0.00321 | 03741 03709 |1121 | 1.008 Ct
0.04 0.00350 | 000318 | 03887 03866 |1.101 | 1,008 c
0.05 0.00342 | 0.00316 | 0.3990 03970 | 1.082 | 1.005 c
0.08 0.00335 | 0.00315 | 0.4063 04050 | 1.063 | 1.003 c
0.07 0.00328 | 0.00313 | 04119 04110 | 1.048 | 1.002 c
PCA 0.01 0.00240 | 0.00267 | 0.1118 01117 | 0838 | L.00L T
¢ = 5000 0.02 0.00240 | 0.00282 | 02072 02066 | 0.851 | 1.008 T
0.08 0.00240 | 0.00276 | 02862 02850 | 0870 | 1.004 T
0.04 000208 | 0.00273 | 0327 03205 | 1.002 | 1.007 c
005 0.00290 | 0.00272 | 0.3353 03358 | 1.066 | 1.008 c
0.06 000287 | 0.00270 | 0.3450 0332 | 1063 | 1.005 ¢
0.07 000286 | 0.00269 | (.3523 03510 [ 1.083 | 1.004 c

*T = Tension controlled.
tC = Compression controlled,
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By R. G. SMITH*

Professor Riisch and his colleagues are to be congratulated for their
elucidation of the effects of creep and shrinkage on the distribution
of stress and strain on concentrically and eccentrically loaded prisms.

The derivation of the stress-strain relationships for a flexural mem-
ber by the method proposed by Rasch,® is based on the assumption that
the rate of strain in any fiber remains constant. In a reinforced or
prestressed concrete beam, the depth of the neutral axis, ¢, is decreased
as the load is increased, so that the rate of strain in any fiber in the
compression zone is not constant and at cerfain fibers may even be
negative.

In Fig. H, ¢ is the depth of the neutral axis at time ¢, due to some
intermediate loading; c, is the depth of the neutral axis at time ¢, when
failure occurs.

Considering as a special case the strain in the fiber at depth z, it can
be seen that the total change in strain in time t, —t, is zero. It is also
obvious that other fibers in the compression zone will be subjected
to a variable rate of strain. To obtain a “true” correlation between the
prism tests and a flexural member, it would seem necessary to take

*Lecturer in Engineering, University of Aberdeen, Aberdeen, Scotland.
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Fig. H—Strain distributions
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into account the rate of change of the neutral axis depth so that the
strain history of each fiber could be obtained. It would be interesting
to know the magnitude of the error involved, especially in the case of
the triangular cross section.

Professor Riisch’s “general theory” seems to be limited to the case
of flexural members where there is good bond between the concrete
and the reinforcement, as the assumption is made that the strain in the
reinforcement is equal to the nominal strain in the adjacent concrete,
plane sections beings considered to remain plane throughout the depth
of the member. This would seem to preclude the application of the theory
to prestressed post-tensioned members, unbonded or bonded by grouting.

Short term loading tests have been made at the University of Aberdeen
on unbonded prestressed concrete beams, subjected to four-point loading.
They are of rectangular cross section, 6 in. deep by 3 in. wide and are
prestressed by horizontal wires located at the edge of the “middle third.”
Details of two typical beams are given in Fig. I and Table B. The aggre-
gate used was 3% in. crushed granite with river sand using a cement
to aggregate ratio of 1:3.7 by weight. Concrete strains were measured
by a 2-in. demountable strain gage, readings being taken along the
whole length of the beam between the central load positions.

It may be seen that in the case of Beam A where only one crack
developed, there is a high concentration of strain in the concrete above
the crack, with a maximum value of 0.011.

In the case of Beam B where four cracks developed, the strain con-
centration is much lower.

TABLE B— BEAM DETAILS

Wire Initial Cylinder Loading
Beam diameter, | Number | prestress, | strength, K. time,
mm of wires percent psi hr
A ] 2 15 6250 0.14 15
B 5 4 40 6880 0.35 20
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The difference in the magnitudes of the maximum strains between the
two beams cannot be accounted for as a time effect, although differences
in the values of K, and the cylinder strengths may have secondary
effects. Eccentric loading tests on prisms made from the same concrete
and tested over approximately the same time interval had ultimate
strains not exceeding 0.46 percent.!® It seems, therefore, that the magni-
tude of the ultimate strain depends to a great extent on the number
and spacing of the cracks in the region of constant bending moment.
In the case of a reinforced concrete or prestressed pretensioned beam
with good bond, sufficient cracks develop to ensure an approximately
uniform depth of the neutral axis with a consequent uniform distribu-
tion of strain. Correlation of the stress-strain curves obtained by prism
tests to flexural members of this type is probably sufficiently accurate.
In the case of members where bond is less efficient, and particularly
in the case of unbonded beams, the application of the results of prism
tests can lead to significant errors in the estimation of the compressive
stress distribution.

Yet another reason for the differences in the values of ultimate strain,
a, etc., found by different investigators, is the effect of the gage lengths
of the strain gages used. Fig. J shows the apparent ultimate strains that
would have been measured for Beams A and B, by various strain gage
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Fig. J—The effect of gage length on the apparent ultimate strain

lengths. Empirical constants used in certain theories based on experi-
mental work using a particular gage length may in some cases be subject
to errors of as much as 100 percent. The writer wholeheartedly agrees
with Professor Riisch when he says that the engineer “cannot be con-
vinced by approximately correct results obtained on the basis of widely

different assumptions.”

Finally, it is well known that geometrically similar prisms of different
sizes are subjected to a “scale effect,” i.e, the compressive strength and
standard deviation of the concrete is decreased as the size of the specimen
is increased. Does Professor Riisch think that this phenomenon is of
sufficient significance to be included in a general theory?
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[ AUTHOR’S CLOSURE J

The author appreciates the excellent comments made on his paper. The
discussers added some interesting aspects and thus have increased the
scope of the original work.

The results of the computations carried out by Dr. Hognestad were
very satisfactory. They prove that the design procedures currently in
use result in structures having a sufficient degree of safety.

A number of problems were briefly referred to which can be clarified
only by some additional investigations. Mr. Smith mentioned the in-
fluence of gage length on strain measurements and pointed out that
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size of specimens, shifting of the neutral axis due to creep of concrete,
and imperfect bond between steel and concrete are of importance. Mr. Ali
indicated the influence of compression reinforcement. The author grate-
fully acknowledges these stimulating contributions. However the prin-
cipal purpose of his paper was only twofold:

1. To study the influence of time on strength and deformation properties
of concrete.

2. To find a reasonable explanation for some discrepancies between sev-
eral investigations on similar problems.
The author himself pointed out that this flexural theory still is quite
incomplete and needs to be worked on further.

An extremely interesting contribution was presented by Mr. Kriz.
In the author’s paper the maximum moments were determined under
the assumption that the position of the neutral axis remains constant.
Mr. Kriz studied the possible error due to this assumption. The author
regrets that he did not specially mention that this assumption was intro-
duced as an approximation. He is thankful to Mr. Kriz for having proved
that this simplification did not cause an appreciable error in the
final results. In connection with this, the author would like to refer
readers to a paper by Pucher* which is only little known among con-
crete researchers. This paper deals with somewhat similar problems.

Several discussers mentioned that it might be too unrealistic to base
a design procedure on the assumption of sustained over loads. To give
an exact answer to this question consideration has to be given to the
theory of safety of structures, but this appears to be beyond the scope
of this paper. However, even without further proof, the author still
believes his assumption to be quite reasonable, i.e., that concrete at an
age of 28 days might be subjected to the calculated external moments
for a period of 1 day.

Finally the author wholeheartedly agrees with Mr. Ali that one of
the most important tasks in concrete research will be to extend our
knowledge in the theory of safety of structures.

The author would be very happy if some other laboratories and re-
searchers will contribute to the solution of the problems necessary to
improve his still quite incomplete suggestion for a flexural theory.

*Pucher, A., "Der Einfluss der Bruchstauch des Betons auf die Tragtihigkeit von Stahl-
betonbalken,” Die Bauwissenschaft {M},%.
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e) o alongamento maximo permitido ao longo da armadura de tracdo € de 10 %o, a fim de prevenir
deformagdes plasticas excessivas. A tensdo nas armaduras deve ser obtida conforme o diagrama tensdo-
deformagdo de calculo do ago (ver Figura 6);

f) a distribuicdio de tensdes de compressdo no concreto € feita de acordo com o diagrama tensdo-
deformagdo pardabola-retdngulo, com tensdo maxima 6.4 de 0,85f.4 (Figura 12). Esse diagrama pode ser
substituido por um retangular, simplificado, com profundidade y = Ax, onde:

y=0,8x — para os concretos do Grupo I (f < 50 MPa);

Eq. 12
y =[0,8 — (fok — 50)/400] x  — para os concretos do Grupo II (fo > 50 MPa).

8w=3,5%ﬂ Oy . o,

2 %o

y=08x

Figura 12 — Diagramas o x £ pardabola-retingulo e retangular simplificado para distribuicdo de tensdes
de compressdo no concreto, para concretos do Grupo I de resisténcia (fox <50 MPa) .

A tensdo de compressdo no concreto (Gcq) pode ser tomada como:

f1) no caso da largura da secdo, medida paralelamente a linha neutra, ndo diminuir da linha neutra
em dire¢do a borda comprimida (Figura 13), a tensdo €:

0.85f — para os concretos do Grupo I (fo < 50 MPa);

Ocd = O,SSfcd = Y
c Eq. 13

Goq = [1-(f —50/200)0,85f,4  — para os concretos do Grupo II (fu > 50 MPa).
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Figura 15 — Distribuigdo de tensées e deformagdes em viga de segdo
retangular com armadura simples.
UNESP(Bauiru/SP} — Prof. Dr. Paulo Sérgio dos Santos Bastos
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Para ilustrar melhor a forma de distribui¢io das tensdes de compressio na se¢io, a Figura 16 mostra
a secdo transversal em perspectiva, com os diagramas parabola-retdngulo e retangular simplificado, como
apresentados no item 5. O equacionamento apresentado a seguir serd feito segundo o diagrama retangular
simplificado, que conduz a equagdes mais simples e com resultados muito proximos aqueles obtidos com
o diagrama parabola-retdngulo.

Rst
Figura 16 — Distribuicdo de tensdes de compressdo segundo os diagramas
parabola-retangulo e retangular simplificado.

a) Equilibrio de Forcas Normais

Considerande que na flexio simples ndo ocorrem forgas normais solicitantes, ¢ que a forga
resultante das tensdes de compressdo no concreto deve estar em equilibrio com a forga resultante das
tensdes de tragdo na armadura A, como indicadas na Figura 15, pode-se escrever:

Ree = Ry Eq 15

Tomando da Resisténcia dos Materiais que 6 = R/A, a forga resultante das tensdes de compressio
no concreto, considerando o diagrama retangular simplificado, pode ser escrita como:

Rec =0ca A'c

Considerando a area de concreto comprimido (A’:) correspondente ao diagrama retangular
simplificado com altura 0,8x fica:

Rec = 0,854 0,8x by,

Ree = 0,68by, X fea Eq. 16
e a forca resultante das tensdes de tragdo na armadura tracionada:

Re = 0sa As Eq. 17

com Gy = tensdo de cdlculo na armadura tracionada;

com Gy = tensdo de calculo na armadura tracionada;
A; = area de a¢o da armadura tracionada.

b) Equilibrio de Momentos Fletores

Considerando o equilibrio de momentos fletores na se¢do, o momento fletor solicitante deve ser
equilibrado por um momento fletor resistente, proporcionado pelo concreto comprimido e pela armadura
tracionada. Assumindo valores de calculo, por simplicidade de notagdo ambos os momentos fletores
devem ser iguais ao momento fletor de calculo My, tal que:

Maolic = Miesist = M
UNESP(Bauru/5P) — Prof. Dr. Paulo Sérgio dos Santos Bastos
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