

Tabelas de Flexão - EB3-1967 Prof. Fernando Lobo Carneiro

Prof.. Eduardo C. S. Thomaz Notas de aula



SUMÁRIO

BOLETIM ESTRUTURAL	109
ARTIGOS TÉCNICOS	
O dimensionamento à flexão simples no estádio III em face das modificações	
introduzidas na N B·1 pela E B·3/67 — Adolpho Polillo	140
Tabela prática para cálculo dos reservatórios cilíndricos — Marculino Bittencour	152
Tabelas para o cálculo no estádio III — Fernando L. Carneiro	157
Barragens de contrafortes — Sydney Santos	177
DIVERSOS	
O ensino de engenharia Civil na Universidade de Brasília — Aderson M. da Rocha	113
Notícias Sôbre concreto protendido	129
O 5.º Congresso da Federação Internacional de C. Protendido — Alberto El-	
necave.	135

TABELAS COM COEFICIENTES ADI-MENSIONAIS PARA O CALCULO DE PEÇAS DE CONCRETO ARMADO NO ESTADIO III (1)-

Instituto Nacional de Tecnologia

Divisão de Ensino e Documentação

(de acordo com a EB-3/67 e seu anexo)

FERNANDO LUIZ LOBO B. CARNEIRO

+ + +

I-FLEXÃO SIMPLES

A) SEÇÃO RETANGULAR COM ARMADURA SEMPLES

(1)
$$y = k_v \cdot h$$
 (2) $z = k_s \cdot h$

(3)
$$M_{\rm r} = k_{\rm mr}$$
. $(b.h^2.\sigma_{\rm R})$ (4) $S_{\rm f} = \frac{M_{\rm r}}{\sigma_{\rm o..}z}$

(5)
$$h = k_h \sqrt{\frac{M_r}{b \cdot \sigma_R}}$$
 (6) $k_h = \frac{h}{\sqrt{\frac{M_r}{b \cdot \sigma_R}}}$

(7)
$$k_{\text{mr}} = \frac{M_{\text{r}}}{b \cdot h^2 \cdot \sigma_{\text{R}}}$$
 $k_{\text{y}} = \mu \frac{\sigma_{\text{e}}}{\sigma_{\text{R}}}$

Os coeficientes k são adimensionais, e podem ser obtidos nas tabelas I e II anexas (2).

Todas as grandezas que figuram nas fórmulas devem ser expressas nas mesmas unidades (por exemplo b e h em cm, M em kgf.cm,

Estas tabelas podem ser livremente reproduzidas, desde que seja citada a fonte.

⁽²⁾ Cat. σ_e σ'_e Cat. σ_e σ'_g CA-24 2.400 2.400 CA-50A 5.000 4.200 CA-32 3.200 3.200 CA-50B 5.000 4.000 CA-40A 4.000 4.000 CA-60A 6.000 4.200 CA-40B 4.000 3.600 CA-60B 6.000 4.200 (em kgf/cm²)

TABELAS PARA DIMENSIONAMENTO COM COEFICIENTES ADIMENSIONAIS

TABELA I ARMADURA SIMPLES — SEÇÃO RETANGULAR

				Coeficiente de redução de σ_e para os aços B (1)							
k_y	k _z	k _{mr}	kh	CA 24	CA 32	CA 40A	CA 40B	CA 50A	CA 50B	CA 60A	CA 60B
0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,20 0,22 0,24 0,26 0,28 0,30 0,314 0,32 0,333	0,99 0,98 0,97 0,96 0,95 0,94 0,93 0,92 0,91 0,90 0,89 0,88 0,87 0,86 0,85 0,843	0,020 0,039 0,058 0,077 0,095 0,112 0,130 0,147 0,163 0,180 0,196 0,211 0,226 0,241 0,255 0,264 0,269 0,277	7,08 5,06 4,15 3,60 3,24 2,97 2,78 2,61 2,48 2,36 2,26 2,18 2,10 2,04 1,98 1,94	σ _e ————————————————————————————————————	σ _e	σ ₀	→		0,99	σθ	0,99
0,36 0,38 0,40 0,413 0,42 0,44 0,446	0,82 0,81 0,80 0,794 0,79 0,78 0,777	0,295 0,308 0,320 0,328 0,332 0,343 0,346	1,84 1,81 1,77 1,74 1,73 1,71 1,70				0,99 0,97 0,96 0,94 0,93		0,97 0,95 0,93 0,92 0,91 0,90	1	0,95 0,93 0,91 0,90
0,46 0,48 0,486 0,500	0,77 0,76 0,757	0,354 0,364 0,367 0,375	1,68 1,66 1,65 1,63				0,91 0,90 0,90	-1			

^{(1):} multiplicar σ_e pelos coeficientes de redução da tabela quando se desejar ultrapassar os valores-limite de k_y indicados para os aços B (no máximo até os valores limite indicados para os aços A correspondentes).

 $\sigma_{\rm R}$ e $\sigma_{\rm e}$ em kgf/cm²). Pode-se também adotar para $M_{\rm r}$ e b unidade de comprimento diferente da usada para h, $\sigma_{\rm R}$ e $\sigma_{\rm e}$, desde que a unidade de fôrça seja a mesma (por exemplo b em m, $M_{\rm r}$ em kgf.m, h em cm, $\sigma_{\rm R}$ e $\sigma_{\rm e}$ em kgf/cm²; ou b em m, $M_{\rm r}$ em t.m, h em cm $\sigma_{\rm R}$ e $\sigma_{\rm e}$ em t/cm²), menos em (4)!

Em edificios:
$$M_r = 1,65 (M_g + M_p) = 1,65 M$$

Nas pontes e em edifícios industriais com pontes rolantes o momento oriundo das cargas móveis deve ser multipicado por 2:

$$M_r = 1,65 (M_g + M_p) + 2 M_p$$
, môveis
= 1,65 $(M_g + M_p + 1,2 M_p)$, môveis)

TABELA II VALORES-LIMITE PARA ARMADURA SIMPLES

Categoria da armadura	$k_{ m yl}$	k_{z1}	$k_{ m mrl}$	$k_{\mathbf{h}}$
CA - 24	0,500	0,750	0,375	1,63
CA - 32	0,500	0,750	0,375	1,63
$CA-40$ A (ou 40 B com 0,9 σ_e)	0,486	0,757	0,367	1,65
CA-40 B	0,355	0,822	0,292	1,85
$CA - 50 A \text{ (ou } 50 B \text{ com } 0.9 \sigma_e)$	0,446	0,777	0,346	1,70
CA - 50 B	0,333	0,833	0,277	1,90
$CA - 60 A$ (ou 60 B com 0,9 σ_e)	0,413	0,794	0,328	1,74
CA-60 B	0,314	0,843	0,264	1,94

Momento máximo com armadura simples:

(8)
$$M_{rl} = k_{mr1} \cdot (b \cdot h^2 \cdot \sigma_R)$$
 (9) $y_1 = k_{y1} \cdot h$

(10)
$$z_1 = k_{z1} \cdot h$$
 (11) $S_{f1} = \frac{M_{r1}}{z_1 \cdot \sigma_e}$

Altura mínima com armadura simples:

(12)
$$k_1 = h_{h1} \cdot \sqrt{\frac{M_r}{b \cdot \sigma_R}}$$

Obs: pode-se também usar para os aços B os valores-limite dos aços A correspondentes, desde que no cálculo de S_{f1} se substitua σ_{e} por 0,9 σ_{e} .

B) SEÇÃO RETANGULAR COM ARMADURA DUPLA

$$M_r > M_{r1}$$
 ou $h < h_1$

 $M_{r2} = M_r - M_1$ (calcular M_{r1} pela fórmula (8))

(13)
$$S_{t2} = \frac{M_{r2}}{(h-h')\sigma_e}$$
 (14) $S_{t'} = \frac{M_{r2}}{(h-h')\sigma'_e}$

(calcular S_{t1} pela fórmula (11))

(15)
$$S_f = S_{f1} + S_{f2}$$
 $k_y = \mu \frac{\sigma_e}{\sigma_R} - \mu' \frac{\sigma_e'}{\sigma_R}$

Obs: si no cálculo de M_{r1} forem usados para os aços B os valoreslimite dos aços A correspondentes, substituir σ_{\bullet} por 0,9 σ_{\bullet} tanto no cálculo de S_{t1} como no de S_{t2} .

C) VIGAS T

(com mesa de espessura d e largura b e alma de largura b_o)

1.° caso) $y \leq d$

— fazer o cálculo como seção retangular de largura b Momento máximo para o 1.º caso:

(16)
$$M_{\rm rI} = b \cdot d \cdot \sigma_{\rm R} (h - \frac{d}{2}), \text{ com } z = h - \frac{d}{2}$$

2.° caso)
$$y > d$$

— decompor o momento total em duas parcelas, uma resistida pelas abas da mesa (largura total $= b - b_o$), e outra resistida pela alma, como viga retangular de largura b_o e altura útil h

abas: (17)
$$M_{rI} = (b - b_0) d \cdot \sigma_R (h - \frac{d}{2}), \text{ com } z_1 = h - \frac{d}{2}$$

$$(18 \quad S_{\rm fI} = \frac{M_{\rm rI}}{\sigma_{\rm o} \cdot (h - \frac{d}{2})}$$

alma: (19)
$$M_{rH} = M_r - M_{rI}$$

Calcular como seção retangular de largura b_0 e altura h, obtendo assim a seção S_{fII} (fórmulas —(6)— e —(4)—.

$$(20) S_f = S_{fI} + S_{fII}$$

II - FLEXÃO COMPOSTA

TABELA III

CONCRETO ARMADO NO ESTADIO III — FLEXÃO COMPOSTA —

SEÇÃO RETANGULAR

	σ _{au} = Tensão na Armadura de Tração (t/cm²)										
k_y	k_z	$k_{ m mr}$	$k_{\mathbf{h}}$	CA 24	CA 32	CA 40A	CA 40B	CA 50A	CA - 50B	CA 60A	CA 60B
0,02	0,99	0,020	7,08	2,40	3,20	4,00	4,00	5,00	5,00	6,00	6,00
0,04 0,06	0,98 0,97	0,039 0,058	5,06 4,15	2,40 2,40	3,20 3,20	4,00	4,00	5,00 5,00	5.00 5,00	6,00	6,00
0,08	0,96	0,077	3,60	2,40	3,20	4,00	4,00	5,00	5,00	6,00	6,00
0,10	0,95	0,095	3,24	2,40	3,20	4,00	4,00	5,00	5,00	6,00	6,00
0,12	0,94	0,112	2,97	2,40	3,20	4,00	4,00	5,00	5,00	6,00	6,00
0,14	0,93	0,130	2,78	2,40	3,20	4,00	4,00	5,00	5,00	8,00	6,00
0,16 0,18	0,92 0,91	0,147 0,163	2,61	2,40	3,20	4,00	4,00	5,00	5,00	6,00	6,00
0,20	0,90	0,180	2,48 2,36	2,40 2,40	3,20 3,20	4,00	4,00 4,00	5,00 5.00	5,00 5,00	6,00	6,00
0,22	0.89	0.196	2,26	2,40	3,20	4,00	4,00	5,00	5,00	6,00	6,00
0,24	0,88	0,211	2,18	2,40	3,20	4.00	4,00	5,00	5,00	6,00	6,00
0,26	0,87	0,226	2,10	2,40	3,20	4.00	4,00	5,00	5,00	6,00	6,00
0,28	0,86	0,241	2,04	2,40	3,20	4,00	4,00	5,00	5,00	6,00	6,00
0,30 0,314	0,85 0,843	0,255 0,264	1,98 1,94	2,40 2,40	3,20 3,20	4,00 4,00	4,00 4,00	5,00 5,00	6,00 5,00	6,00	6,00 6,00
0,32	0,84		1.02	1		1					
0,333	0,833	$0,\!269 \\ 0,\!277$	1,93 1,90	2,40 2,40	3,20 3,20	4,00 4,00	4,00 4,00	5,00 5,00	5,00 5.00	6,00 6.00	5,95 5,86
0,34	0,83	0,282	1,88	2,40	3,20	4,00	4,00	5,00	4,96	6,00	5,81
0.355	0,822	0,292	1,85	2,40	3,20	4,00	4,00	5,00	4,88	6,00	5,71
0,36	982	0,295	1,84	2,40	3,20	4,00	3,98	5,00	4,85	6,00	5,69
0,38	0,81	0 308	1,81	2,40	3,20	4,00	3,90	5,00	4,76	6,00	5,57
0,40 0,413	0,80 0,794	0,320 0,328	1,77 1,74	2,40 2,40	3,20 3,20	4,00 4,00	3,84 3,79	5,00 5,00	4,68 4,62	6,00 6,00	5,47 5,40
0,42	0,79	0,332	1,73	2,40	3,20	4,00	3,77	5,00	4,59	5,77	5,30
0,44	0,78	0,343	1,71	2,40	3,20	4,00	3,72	5,00	4,52	5,19	5,00
0,446	0,777	0,346	1,70	2,40	3,20	4,00	3.69	5,00	4,50	5,00	4,90
0,46	0.77	0,354	1,68	2,40	3,20	4,00	3,66	4,64	4,32	4,64	4,64
0,48	0,76	0,364	1,66	2,40	3,20	4,00	3,61	4,14	4,07	4,14	4,14
0,486	0,757	0,367	1,65	2,40	3,20	4,00	3,60	4,00	4,00	4,00	4,00
0,500	0,750	0,375	1,63	2,40	3,20	3,67	3,44	3,67	3,67	3,67	3,67
Tensão pres	Tensão na Armadura de Compressão (t/cm²): σ'au = σe'					[4.00	3,60	4,20	4,00	4,20	4,20

O valor de k_y , dado na tabela para o k_h obtido neste cálculo, deverá ser inferior ao valor limite indicado para a categoria da armadura. Se, no caso de aços B, fôr ultrapassado êsse valor-limite (no máximo até o valor-limite da categoria A correspondente), deve-se substituir σ_0 pelo valor reduzido indicado na tabela I, tanto para o cálculo de S_{f1} como de S_{fII} .

tanto no 1.º caso como no 2.º a altura $y = k_x$. h da zona de compressão equivalente deverá além disso satisfazer à condicão de que o momento estático dessa zona de compressão em relação ao centro de gravidade da armadura de tração não seja superior a 3/4 do momento estático da área total da seção transversal.

INSTRUÇÕES PARA O USO DA TABELA PARA FLEXÃO COMPOSTA, SEÇÃO RETANGULAR

(TABELA III) NOTACÕES

 M_r = momento fletor no estado-limite último (ruptura).

 N_r = força normal no estado-limite último (ruptura).

em edificios:
$$M_r = 1,65 (M_g + M_p) = 1,65 M$$

 $N_r = 1,65 (N_g + N_p) = 1,65 N$

nas pontes (e em edifícios industriais com cargas rolantes):

$$M_{\rm r} = 1,65 \ (M_{\rm g} + M_{\rm p}) + 2 M_{\rm p,moveis} =$$
 $= 1,65 \ (M_{\rm g} + M_{\rm p}) + 1,2 M_{\rm p,moveis}$
 $N_{\rm r} = 1,65 \ (N_{\rm g} + N_{\rm p}) + 2 N_{\rm p,moveis} =$
 $= 1,65 \ (N_{\rm g} + N_{\rm p}) + 1.2 N_{\rm p,moveis}$

$$M_{\rm cr} = M_{\rm r} + N_{\rm r} \left(\frac{h-h'}{2}\right) =$$

$$M_{\rm er} = M_{\rm r} + N_{\rm r} (\frac{h-h'}{2}) =$$
 $M'_{\rm er} = M_{\rm r} - N_{\rm r} (\frac{h-h'}{2}) =$

momento fletor (no estado-limite último) referido ao centro de gravidade da armadura de tração (ou situada do lado menos comprimido)

momento fletor (no estado-limite último) referido ao centro de gravidade da armadura de compressão.

Observação: ao usar as fórmulas aqui indicadas, deve-se considerar positiva a força normal, quando de compressão, e negativa quando de tração, e sempre positivo o momento fletor.

- $\sigma_{\rm au}=$ tensão na armadura de tração no estado-limite último (ruptura), igual à tensão de escoamento $\sigma_{\rm e}$ quando $k_{\rm y}=y/h \leq k_{\rm y1}$ (v. tabela II; na tabela III os valores de $k_{\rm y1}$ correspondem às tensões $\sigma_{\rm au}$ grifadas)
- σ'au = tensão na armadura de compressão no estado-limite último, igual a σ'e em todas as regras de dimensionamento adiante descritas, desde que, na flexão composta com grande excentricidade, se tenha

$$h' \leq \frac{4}{7} \cdot y$$

Observação: ao usar as fórmulas aqui indicadas, devem-se considerar positivas as tensões σ_{au} e $\sigma'_{au} = \sigma'_{e}$.

Os valores de σ_{au} são dados na tabela III em função de $k_y = y/h$. Os coeficientes $k_z = z/h$, $k_{mr} = k_y$. k_z e $k_h = \sqrt{\frac{1}{k_{mr}}}$ são os mesmos da tabela I.

As demais notações são as da NB-1/60 e do Anexo da EB-3/67

EXPLICAÇÕES TEORICAS

GRANDE EXCENTRICIDADE: Definem-se aqui como de "flexão composta com grande excentricidade" todos os casos em que é possível equilibrar os esforços solicitantes utilisando-se armadura simples (de tração) ou dupla (de tração e de compressão), sem que a altura y da "zona de compressão equivalente" ultrapasse o valor 0.5 h, isto é, desde que $h_y \leq 0.5$. No caso limite, fronteira entre a "grande excentricidade" e a "excentricidade intermediária", a armadura de tração é teòricamente nula, embora se deva sempre colocar uma armadura mínima; e o equilíbrio é obtido com utilização de uma armadura mínima; e o equilíbrio é obtido com utilização de uma armadura mínima;

dura de compressão, sendo a altura da "zona de compressão equivalente" y = 0.5 h, ou $k_y = 0.5 \text{ m}$

Para todos os casos de "grande excentricidade" o dimensionamento é feito como se se tratasse de flexão simples, tomando-se em lugar de M_r o momento fletor referido ao centro de gravidade da armadura de tração $M_{\rm er} = M_r + N_r (\frac{h-h'}{2})$, e subtraindo-se da armadura de tração assim obtida o valor $N_r/\sigma_{\rm eu}$, ou $(N_r/\sigma_{\rm e}$ quando $k_y \leq k_{y1})$. Conforme o caso, ter-se-á de usar armadura simples ou dupla. Na "marcha de cálculo" exposta mais adiante estão pormenorizados todos os casos que possam ocorrer. Si a força normal fôr de tração, o dimensionamento será feito considerando-se N_r negativo.

Si a armadura de tração encontrada fôr negativa, isso significa que a marcha de cálculo seguida já não mais se aplica, pois o caso não é de "grande excentricidade", mas de "excentricidade intermediária".

Estabelecendo a equação de equilíbrio de momentos em relação ao centro de gravidade da armadura de compressão para $k_y = 0.5$ e armadura de tração nula, é fácil deduzir a seguinte condição para que se tenha "grande excentricidade":

$$M'_{\rm er} = M_{\rm r} - N_{\rm r} \ (\frac{h-h'}{2} \ge - \ [0.5 \ (0.25 - h'/h)]. \ b \ h^2 \ \sigma_{\rm R}$$

(atende-se para o fato de que o 2.º membro da desigual de é negativo)

Essa condição também pode ser escrita em função de excentricidade da força normal, condiderándo-se que $h^2 \cong (h-h')$. d

$$M_{\rm r}/N_{\rm r} = e \ge (\frac{h-h'}{2}) \left[1 - \frac{(0.25 - h'/h)}{N_{\rm r}/(b \sigma_{\rm r})} \right]$$

excentricidade intermediária" todos os casos de flexão composta com excentricidade intermediária" todos os casos de flexão composta com força normal de compressão em que é possível equilibrar os esforços solicitantes utilizando-se unicamente uma armadura de compressão (isto é, considerando-se armadura nula junto à borda tracionada ou menos comprimida), sendo a altura y da zona de compressão equivalente" compresendida entre 0,5 h e a altura total d. Quando forem necessárias duas armaduras de compressão, o caso será de "pequena excentricidade".

Nos casos de "excentricidade intermediária" a borda mais afastada do ponto de aplicação da força nromal excêntrica de compressão pode ser tracionada (deformação unitária = alongamento), sempre que x < h ou y < 0.75 h, ou comprimida (deformação unitária = = encurtamento), sempre que x > h ou y > 0.75 h. Como se supõe nula, de acôrdo com a condição anterior, a armadura junto a essa borda, não interessa conhecer o valor de deformação unitária correspondente. A tensão na armadura de compressão, situada junto à borda mais próxima da força normal excêntrica de compressão, será $\sigma'_{au} = \sigma'_{e}$, e portanto conhecida, independentemente do valor de y. Por outro lado, seja qual fôr o valor de y (desde que $0.5 h \le y \le d$), o momento da resultante das tensões de compressão no concreto será constante, e igual a 0,375 b h²σ_R (momento-teto). A equação de equilíbrio, em relação ao centro de gravidade da armadura situada junto à borda tracionada ou menos comprimida, independe portanto do conhecimento do valor de y (e do valor da tensão última de compressão no concreto, definida na alínea e do item 3 do Anexo da EB-3/67). Essa equação fornece imediatamente:

$$S'_{\rm f} = \frac{M_{\rm er} - 0.375 \, b \, h^2 \, \sigma_{\rm R}}{\sigma'_{\rm e} \, (h - h')}$$

sendo $S_f = 0$ teòricamente, embora se deva sempre colocar uma armadura mínima, junto à borda tracionada ou menos comprimida.

A condição para que se tenha "excentricidade intermediária" é fàcilmente obtida combinando o limite dado no item anterior com o que se obtém estabelecendo a equação de equilíbrio em relação à armadura de compressão (situada junto à borda mais comprimida), para o caso extremo em que, sendo $S_{\rm f}=0$, tem-se y=d (e a tensão de compressão última do concreto é $0.75\sigma_{\rm R}$, de acôrdo com as hipoteses do Anexo da EB-3/67):

$$-0.5 (0.25 - h'/h) b h^2 \sigma_R \ge M'_{er} \ge -0.375 b h^2 \sigma_R$$

(atente-se para o fato de que todos os membros das desigualdades são negativos).

Essa condição também pode ser escrita em função da excentricidade da força normal, considerando-se que $h^2 \cong (h-h') \cdot d$:

$$\frac{(h-h')}{2} \left[1 - \frac{(0,25-h'/h)}{N_{\rm r}/(bd\sigma_{\rm R})} \right] \ge M_{\rm r}/N_{\rm r} = e \ge$$

$$\ge \frac{(h-h')}{2} \left[1 - \frac{1}{N_{\rm r}/(0,75\ b\ d\ \sigma_{\rm R})} \right]$$

PEQUENA EXCENTRICIDADE: Definem-se aqui como de "ftexão composta com pequena excentricidade" os seguintes casos:

- a) "Compressão excêntrica": todos os casos de flexão composta com força normal de compressão em que, sendo a seção totalmente comprimida, com y=d., são necessárias duas armaduras de compressão, uma junto à borda mais próxima do ponto de aplicação da fôrça normal excêntrica de compressão (S'_t) , e outra junto á outra borda (S_t) , para equilibrar os esforços solicitantes;
- b) "tração excêntrica": todos os casos de flexão composta com força normal de tração em que são necessárias duas armaduras de tração para equilibrar os esforços solicitantes, sendo a seção transversal totalmente tracionada, e portanto nula a contribuição do concreto.

A condição para que se tenha "compressão excêntrica" já foi dada no item anterior:

$$M'_{\rm er} \le -0.375 \, b \, h^2 \, \sigma_{\rm R}$$
 ou $e \le (\frac{h-h'}{2}) \left[1 - \frac{1}{N_{\rm g}/(0.75 \, b \, d\sigma_{\rm R})} \right]$

A condição para que se tenha "tração excêntrica" consiste simplesmente em que $M_{\rm er}$ (com N_r negativo), seja negativo, isto é, em que o valor absoluto da excentricidade seja inferior a $(\frac{h-h'}{2})$.

Tanto para a "compressão excêntrica" como para a "tração excêntrica" o equilíbrio póde ser obtido utilizando-se armaduras diferentes nas duas bordas, e supondo-se que as deformação nas duas bordas são iguais. $(x=\infty)$. Póde-se também, por motivos construtivos, adotar armadura simétrica, colocando, junto a ambas as bordas, armaduras iguais à maior armadura calculada pelo processo anterior; neste caso teremos $x \leq \infty$, e a tensão na armadura mais afastada do ponto de aplicação da força normal será inferior á da outra. Em qualquer dos casos o dimensionamento independe do conhecimento de x.

Compressão excéntrica:
$$S'_{f} = \frac{M_{er} - 0,375 b h^{2} \sigma_{R}}{\sigma'_{e}(h-h')}$$
$$S_{f} = \frac{-0,375 b h^{2} \sigma_{R} - M'_{er}}{\sigma'_{e}(h-h')}$$

(atente-se para o fato de que M'_{er} é negativo).

Observe-se que $S_f + S'_f = \frac{N_r - 0.75 \, b \, d \, \sigma_R}{\sigma'_e}$ isto é, a soma das duas armaduras independe da excentricidade e é igual a armadura total que seria necessária no caso de compressão axial (segundo a nova fórmula de cálculo de pilares do Anexo da EB-3/67).

Tração excêntrica:
$$S'_{\mathbf{f}} = \frac{-M_{\text{er}}}{\sigma_{\mathbf{e}}(h-h')}$$
 $S_{\mathbf{f}} = \frac{M'_{\text{er}}}{\sigma_{\mathbf{e}}(h-h')}$ (atente-se para o fato de que M'_{er} é positivo e M_{er} negativo)

MARCHA DE CALCULO PARA DIMENSIONAMENTO

Esta marcha de cálculo aplica-se à flexão composta com força normal de compressão, seções retangulares. Para o caso de força normal de tração, bastam as indicações da "esplicação teórica".

I — Dados: M_r , N_r , σ_R , a categoria do aço, b e h, determinam-se as armaduras S_t e S'_t de acôrdo com a marcha a seguir. Se a altura útil h não fôr prefixada, póde ser determinada por tentativas, como se se tratasse de flexão simples com momento fletor igual a M_{er} (as tentativas são necessárias, pois para calcular M_{er} é preciso conhecer $\frac{h-h'}{2}$ e portanto h). V. notações).

21)
$$M_{\rm er} = M_{\rm r} + N_{\rm r} \left(\frac{h - h'}{2} \right)$$

22)
$$M'_{er} = M_r - N_r(\frac{h-h'}{2})$$

Póde ser adotado para h' o valor aproximado h' = 0.05 h.

O dimensionamento nos casos de "grande excentricidade" póde ser feito dispensando-se o cálculo de M'_{er} ; si a armadura S_{f} encontrada fôr negativa, isso significa que o caso não é de "grande excentricidade", mas de "excentricidade intermediária" ou de "pequena excentricidade".

III — Grande excentricidade: quando
$$\frac{M'_{\text{er}}}{b h^2 \sigma_{\text{R}}} \ge$$

$$\ge - [0.5 (0.25 - h'/h)]$$
(supondo $h'/h = 0.05$: quando $\frac{M'_{\text{er}}}{b h^2 \sigma_{\text{R}}} \ge -0.100$)

a) Armadura simples: quando
$$\frac{M_{\rm er}}{b \; h^2 \sigma_{\rm R}} \leq 0.375$$

$$23) \quad k_{\rm mr} = \frac{M_{\rm er}}{b \; h^2 \, \sigma_{\rm R}}$$

Na Tabela III, na linha correspondente a $k_{\rm mr}$, obtém-se $k_{\rm y}, k_{\rm s}$ e a tensão na armadura $\sigma_{\rm au}$. Quando $k_{\rm y} \leq k_{\rm yl}$, tem-se $\sigma_{\rm au} = \sigma_{\rm e}$, como se pode verificar na Tabela III. V. notações e Tab. II.

$$24) z = k_z \cdot h$$

$$(25) S_{\rm f} = \frac{M_{\rm er}}{\sigma_{\rm au} \cdot z} - \frac{N_{\rm r}}{\sigma_{\rm au}}$$

b) Armadura dupla: quando
$$\frac{M_{\rm er}}{b~h^2~\sigma_{\rm R}} \geq 0.375$$

26)
$$M_{\rm r0} = 0.375$$
 $b h^2 \sigma_{\rm R}$ (correspondente a $k_{\rm y} = 0.5$)

27)
$$M_{\rm er} - M_{\rm r0} = M_{\rm er} - 0.375 \, b \, h^2 \, \sigma_{\rm R}$$

Com o valor de σ_{au} tirado da última linha da Tabela III, correspondente a $k_y = 0.5$, calcula-se S_i :

28)
$$S_i = \left[\frac{M_{r0}}{\sigma_{an} \cdot 0.75 \, h} + \frac{M_{er} - M_{r0}}{\sigma_{an} \cdot (h - h')} \right] - \frac{N_r}{\sigma_{an}}$$

29)
$$S'_{f} = \frac{M_{er} - M_{r0}}{\sigma'_{e} (h - h')}$$

c) Alternativas:

Muitas vezes, quando se empregam aços especiais (categorias CA-40, 50 e 60), será mais econômico colocar armadura de compressão maior que a acima indicada, reduzindo-se ao mesmo tempo a armadura de tração. Para realizar esta alternativa de dimensionamento, basta adotar um valor de h_y inferior a 0,5, aumentando-se deste modo a tensão σ_{au} ; nas fórmulas (26) e (27) o coeficiente 0,375 deve então ser substituído pelo k_{mr} correspondente a êsse k_y . e na fórmula (28) o coeficiente 0,75 deve ser substituído pelo k_z também correspondente a êsse k_y . Si a armadura S_f encontrada fôr negativa, a alternativa deve ser desprezada. Um confronto das diversas alternativas, (inclusive a que corresponde a armadura simétrica), só é prático quendo se utilizam ábacos. No entanto, quando o dimen-

sionamento é feito com tabelas, convém estudar pelo menos a alternativa em que $k_y = k_{y1}$, com $\sigma_{au} = \sigma_e$. V. Tabela II.

A marcha de cálculo é então a seguinte:

26 A)
$$M_{r1} = k_{mr1} \cdot b \, h^2 \sigma_R$$

$$27) A) M_{r2} = M_{er} - M_{r1}$$

28) A)
$$S_{\rm f} = \left[\frac{M_{\rm r1}}{\sigma_{\rm o} \cdot z_{\rm 1}} + \frac{M_{\rm r2}}{\sigma_{\rm o} (h - h')}\right] - \frac{N_{\rm r}}{\sigma_{\rm o}}$$
, com $z_{\rm 1} = k_{\rm s1}$. h

29) A)
$$S'_{f} = \frac{M_{r2}}{\sigma'_{e}(h-h')}$$

Os valores de k_{y1} e k_{z1} podem ser obtidos na Tabela II, ou na Tabela III, na linha em que a tensão na armadura de tração aparece grifada. Se $S_f > 0$, esta alternativa póde ser adotada com vantagem, do ponto de vista econômico.

IV — Excentricidade intermediária,

quando
$$-0.5$$
 $(0.25 - h/h) \ge \frac{M'_{er}}{b h^2 \sigma_R} \ge -0.375$

(supondo
$$h'/h = 0.05$$
, quando $-0.100 \ge \frac{M'_{\rm er}}{b h^2 \sigma_{\rm R}} \ge -0.375$)

Neste caso o dimensionamento se reduz ao simples cálculo da armadura de compressão S'_f , pela fórmula (29):

29)
$$S'_{f} = \frac{M_{er} - M_{r0}}{\sigma_{e}'(h-h')} = \frac{M_{er} - 0.375 b h^{2} \sigma_{R}}{\sigma'_{e} (h-h')}$$

A armadura de tração é teóricamente nula. É necessário no entanto colocar uma armadura mínima junto à borda mais afastada do ponto de aplicação do esforço normal de compressão, de acôrdo com o disposto no item 34 da NB-1:

30)
$$\begin{cases} a\cos CA - 24 = 32 & S_{i} \geq 0.25 \frac{b \ h}{100} \\ a\cos CA - 40, 50 = 60 & S_{i} \geq 0.15 \frac{b \ h}{100} \end{cases}$$

Se, para outras hipóteses de carga, a peça for solicitada por carga axial, como por exemplo no caso de momentos variáveis alternados, ou variando de zero a um máximo, a armadura S_i deverá ser pelo menos igual à metade da armadura mínima de pilares:

31)
$$S_{\rm f} \ge 0.4 \, \frac{bd}{100}$$

V — Pequena excentricidade (compressão excéntrica):

quando
$$\frac{M'_{\rm er}}{b h^2 \sigma_{\rm R}} \le -0.375$$

Neste caso são necessárias armaduras de compressão em ambas as bordas, designando-se então como S_i a armadura de compressão situada junto à borda mais afastada do ponto de aplicação da força normal de compressão.

29)
$$S'_{f} = \frac{M_{er} - 0.375 b h^{2} \sigma_{R}}{\sigma'_{e} (h - h')}$$

32)
$$S_{\rm f} = \frac{-M'_{\rm er} - 0.375 \, b \, h^2 \sigma_{\rm R}}{\sigma'_{\rm e} \, (h - h')}$$

Como $M'_{\rm er}$ é negativo, e de valor absoluto $> 0,375 \ b \ h^2 \ \sigma_{\rm R}$, vê-se que o numerador da fração da fórmula (32) é também positivo.

A armadura total deverá ser pelo menos igual à armadura mínima de pilares.

33)
$$S_t + S'_t \ge 0.8 \frac{b}{100}$$

e, no caso descrito acima da fórmula (31):

$$S'_{\mathbf{f}} \ge 0.4 \, \frac{b \, d}{100}$$
 e $S_{\mathbf{f}} \ge 0.4 \, \frac{b \, d}{100}$

Frequentemente, por motivos construtivos, convém adotar armadura simétrica, com $S_i = S'_i$, e sendo S'_i calculada pela fórmula (29).

III — FLEXÃO OBLIQUA (SEÇÃO RETANGULAR)

Na falta de cálculo mais rigoroso, o cálculo na ruptura (estádio III) das peças solicitadas em flexão obliqua póde ser feito, ficando-se a favor das segurança, segundo o processo aproximado na Norma Ny TU 123/55, da U. t.S.S., item 105, e também adotado pela nova norma portuguesa (art. 31) e pelo projeto de norma venezuelana, elaborado pelo eng. Paez (item 12.4).

Flexão simples obliqua

Sejam:

M_{rx} a componente do momento fletor segundo o eixo principal paralelo ao lado menor da seção (flexão em plano paralelo ao lado maior), calculada no estado-limite último;

M_{ry} a componente do momento fletor segundo o eixo principal paralelo ao lado maior (flexão em plano paralelo ao lado menor), calculada no estado-limite último;

 \mathbf{M}_{rd} o momento fletor com a mesma direção de \mathbf{M}_{rx} , e capaz de romper a peça por flexão atuando isoladamente (momento fletor de ruptura da seção de altura total d, e largura b);

 \mathbf{M}_{rb} o momento fletor com a mesma direção de \mathbf{M}_{ry} , e capaz de romper a peça por flexão atuando isoladamente (momento fletor de ruptura da seção com altura total b e largura d)

O processo aproximado de cálculo é baseado na condição:

$$rac{M_{rx}}{M_{rd}} + rac{M_{ry}}{M_{rb}} \leq 1$$

Para que essa condição seja verificada é necessário dimensionar a seção, nas direções d e b, para momentos M_{rd} e M_{rb} maiores, respectivamente, que M_{rx} e M_{ry} , supondo-se que cada um atue isoladamente. De acôrdo com as conveniências, uma vez arbitrado um $M_{rd} > M_{rx}$, calcula-se M_{rb} pela condição acima.

Como mostra o eng.º Paez em comentário ao projeto de norma venezuelana. uma solução conveniente é dimensionar a seção, nas duas direções, para os momentos $M_{rd} = 2 M_{rx}$ e $M_{rb} = 2 M_{ry}$, supostos atuando isoladamente.

Dados M_{rx} e M_{ry} , componentes do momento M_r que atua em direção obliqua relativamente aos eixos principais da seção, basta portanto dimensionar a seção, em cada direção, para um momento de ruptura igual ao dôbro da componente de M_r correspondente.

Flexão composta obliqua

Sejam:

 $e_x = M_{ry}/N_r$; $e_y = M_{rx}/N_r$, as excentricidades da força normal N_r , calculada no estado-limite último, nas direções respectivamente paralelas ao menor lado e ao maior lado da seção transversal;

 N_{rx} a fôrça normal capaz de romper a peça por flexão composta, atuando isoladamente com a excentricidade e_x ;

 N_{ry} a fôrça normal capaz de romper a peça por flexão composta, atuando isoladamente com a excentricidade e_y ;

 N_{ro} a fôrça normal capaz de romper a peça por compressão simples, isto é, com excentricidade nula:

$$N_{ro} = (bd) \cdot 0.75 \, \sigma_R + (S_f + S_{f'}) \, \sigma_{e'}.$$

O processo aproximado de cálculo é baseado na condição:

$$\frac{1}{N_{rx}} + \frac{1}{N_{ry}} \le \frac{1}{N_r} + \frac{1}{N_{ro}} = \frac{1 + N_r/N_{ro}}{N_r}$$

Para que essa condição seja verificada é necessário dimensionar a seção, nas direções d e b, para forças normais N_{ry} e N_{rx} , maiores que N_r , supondo-se que cada uma atue isoladamente com excentricidade igual, respectivamente, a e_y e e_x . Uma dessas fôrças normais pode ser arbitrada sendo a outra calculada pela condição acima. Referindo os esforços solicitantes ao centro de gravidade da seção, esta será dimensionada, na direção d, para a fôrça normal N_{ry} e o momento $M_{rd} = N_{ry} \cdot e_y$; e na direção b para a fôrça [normal N_{rx} e o momento $M_{rb} = N_{rx} \cdot e_x$.

Uma solução conveniente é dimensionar a seção, nas duas direções para

$$N_{rx} = N_{ry} = \frac{2 N_r}{1 + \frac{N_r}{N_{ro}}}$$

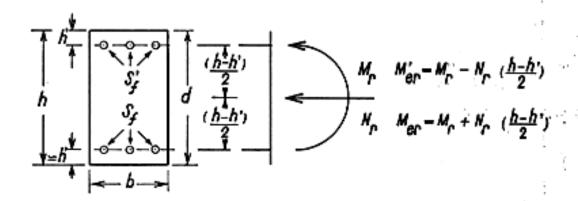
'e os momentos $M_{rd} = N_{ry}$. e_y e $M_{rb} = N_{rx}$. e_x , supostos cada um deles atuando em combinação com essa fôrça normal, e isoladamente do outro.

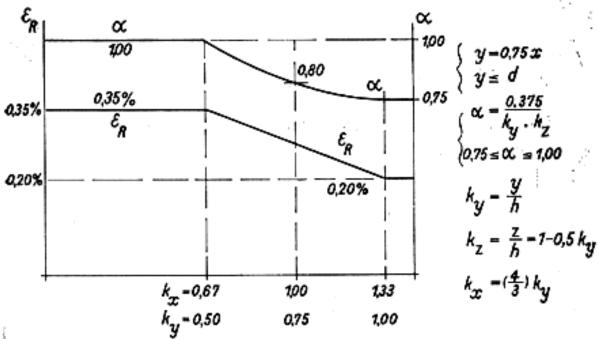
Segundo a norma venezuelana é também possível fazer o cálculo aproximado tomando a fôrça normal N_r atuando sucessivamente na direção d com a excentricidade e_{vo} , e na direção b com a excentricidade e_{xo} , devendo estas excentricidades satisfazer à seguinte condição:

$$\frac{e_x}{e_{xo}} + \frac{e_y}{e_{yo}} \le 1$$

Quando se usa êste último processo de cálculo, uma solução conveniente é adotar $e_{xo} = 2 e_x$ e $e_{yo} = 2 e_y$, isto é, dimensionar a seção para a fôrça normal N_r e, em cada direção, para os momentos $M_{rd} = 2 M_{rx}$ e $M_{rb} = 2 M_{ry}$, respectivamente.

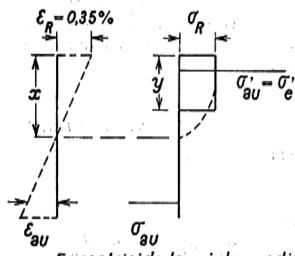
FLEXÃO SIMPLES OU COMPOSTA — SEÇÃO RETANGULAR (de Acôrdo com o Anexo da EB-3/67)





Para 0.5h = y = d: $(by. \propto \sigma_R)z = 0.375 bh^2 \sigma_R$ (momento-této)

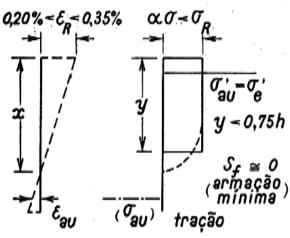
$$y = 0.5 h (com S_f = 0)$$

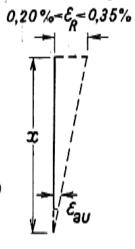


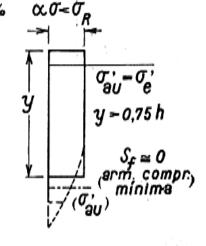
Para
$$y = \frac{\mathcal{E}_R}{\mathcal{E}_R + \mathcal{E}_e} \cdot 0.75$$
:
$$\mathcal{E}_{au} - \mathcal{E}_e \quad e \quad \sigma_{au} = \sigma_e$$

$$com \, \mathcal{E}_e - \frac{\sigma_e}{E} \qquad \mathcal{E}_e = \frac{\sigma_e}{E} + 0.2\%$$
(Aços A) (Aços B)

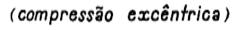
Excentricidade intermediária $(0.5h - y - d)(comS_{f} = 0)$

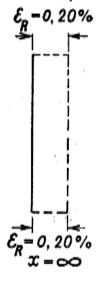


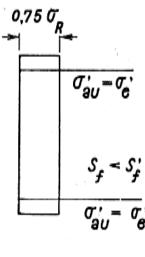


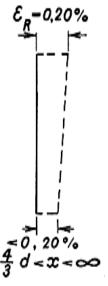


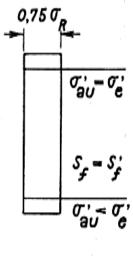
Pequena excentricidade











CEB/FIP Manual on

BENDING AND COMPRESSION

DESIGN OF SECTIONS UNDER AXIAL ACTION EFFECTS AT THE ULTIMATE LIMIT STATE

Prepared by

Comité Euro-International du Béton (CEB)

Euro-International Committee for Concrete

in co-operation with

Fédération Internationale de la Précontrainte (FIP)

International organisation for the development of concrete, prestressing and related materials and techniques

Editorial team

E Grasser, München, W Germany (Chairman)

A G Meseguer, Madrid, Spain

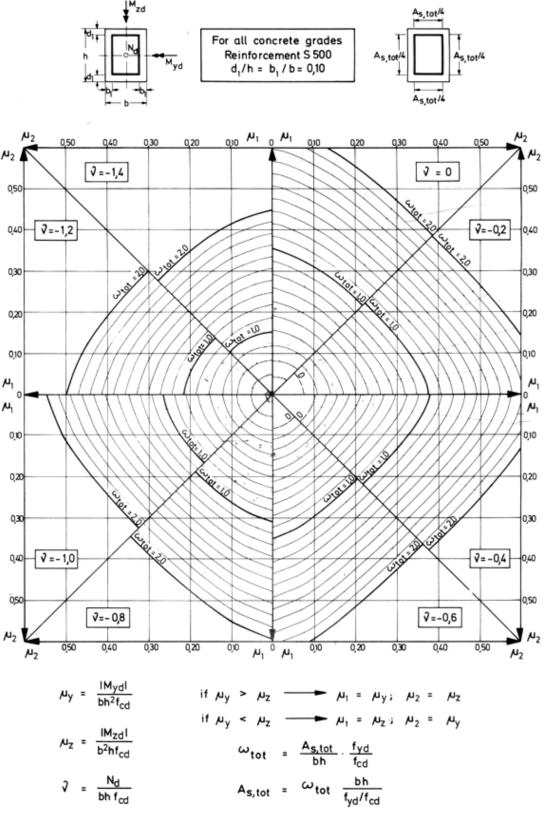
P J Montoya, Madrid, Spain
W Moosecker, München, W Germany
F Morán Madrid, Spain
J Perchat, Paris, France Paris, France G Thielen,

1982

Construction Press

London and New York

Design Chart 51 Interaction diagram for a rectangular section under biaxial bending and axial force (S 500; reinforcement arrangement 2)



Reinforcement arrangement see section at head of the table

Para pilares com dimensões maiores que 80cm ocorre uma imprecisão (a favor da segurança) pois os cobrimentos adotados no gráfico, d1 e b1, ficam muito grandes, pois d1/h = b1/b = 0.10