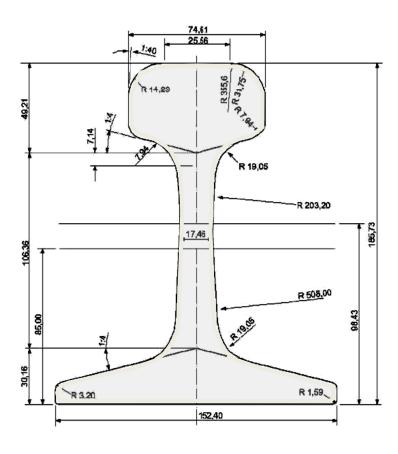


Estacas de trilhos usados

Tensão Admissível no E.L.Serviço = 80 MPa Desempenamento de trilhos usados Prof.. Eduardo C. S. Thomaz Notas de aula

DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES DIRETORIA DE INFRAESTRUTURA FERROVIÁRIA COORDENAÇÃO-GERAL DE OBRAS FERROVIÁRIAS


Procedimentos de Inspeção de Materiais - PIMs

PIM 01 - TRILHO PARA LINHA FÉRREA

2015

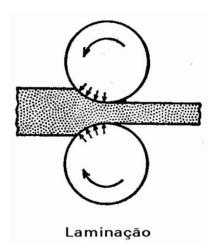
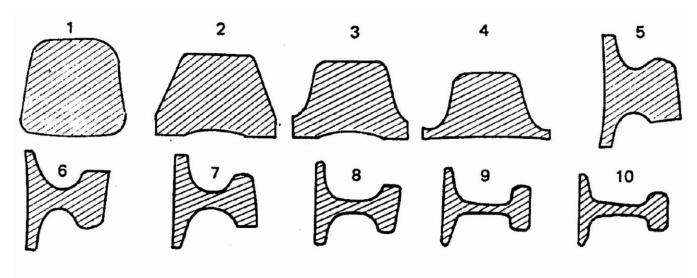

https://www.gov.br/dnit/pt-br/ferrovias/instrucoes-e-procedimentos/procedimentos-para-inspecao/pim-001-trilho-para-linha-ferrea.pdf

Figura 7 – Trilho tipo TR68 (Dimensões em mm)



FABRICAÇÃO

A laminação, um dos tipos de conformação mecânica, é o processo de deformação plástica no qual o metal tem sua forma alterada ao passar entre rolos e rotação. É o de maior uso em função de sua alta produtividade e precisão dimensional. Pode ser a quente ou a frio.

No caso do trilho ferroviário a laminação é realizada a quente.

Laminação a quente de perfis. Esquema de passes enpregado para a laminação de um trilho ferroviário.

O trilho é fabricado nos comprimentos de 12m, 18m, 24m, 36m.

Todas as barras de trilho são garantidas até, no mínimo, 31 de dezembro do ano N+5, sendo o ano marcado na barra, contra todo defeito imputável à sua fabricação e não detectado no recebimento.

No que se refere à estocagem, o trilho deve ser mantido separado por corrida até a aprovação dos ensaios de propriedades mecânicas: resistência à tração, de alongamento, de escoamento e de dureza Brinell.

Armadura de Bloco com Quatro Estacas de Trilho

Fotos cedidas por Eng. Renato Costa - BH - MG
Calculistas-Bahia

Detalhe da Ligação das Estacas com o Bloco de Fundação

4/35 **ZOOM**

Para cálculo das armaduras do bloco ver os links :

http://aquarius.ime.eb.br/~webde2/prof/ethomaz/bloco_sobre_estacas/bloco_sobre_estacas_02.pdf (página 15 e seguintes) http://aquarius.ime.eb.br/~webde2/prof/ethomaz/bloco_sobre_estacas/blevot.pdf (figura 38)

Trilho Vignole — Requisitos

NBR 7590 - 2012

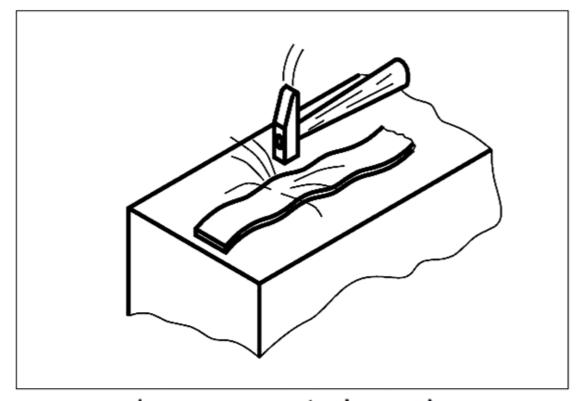
Propriedades mecânicas dos trilhos- NBR 7590

Tipo de aço		Resistência à tração mínima (Mpa)	Alongamento mínimo (%)	Escoamento mínimo (Mpa)	Dureza Brinell (HB)
Aço-carbono (resistência	3	880	10	420	260 a 310
mínima)	4	980	10	510	280 a 320
Aço-liga (média	7	1.000	10	580	310 a 340
resistência)	8	1.190	8	770	340 a 370
Aço tratado (alta resistência)	10	1.200	10	840	370 a 420

Composição química dos trilhos- NBR 7590

		Aço-carbono			Aço-liga	l
		3	4	7	8	10
Carbono	Máxima	0,80	0,82	0,80	0,92	0,92
Carbono	Mínima	0,60	0,72	0,70	0,72	0,72
Manganês	Máxima	1,30	1,10	1,40	0,79	1,25
Manganes	Mínima	0,80	0,80	1,00	0,60	1,11
Silício	Máxima	0,50	0,60	1,00	0,60	0,60
Silicio	Mínima	0,10	0,10	0,60	0,10	0,10
Fósforo	Máxima	0,02	0,02	0,02	0,02	0,02
Enxofre	Máxima	0,02	0,02	0,02	0,02	0,02
Níquel	Máxima	_	_	_	0,15	0,15
Cromo	Máxima	0,15	0,15	0,40	0,70	0,70
Cionio	Mínima	-	_	0,15	0,15	0,15
Molibdênio	Máxima	<u> </u>	_	_	0,05	0,05
Vanádio	Máxima	_	_	_	0,01	0,01
Nióbio	Máxima	_	_	0,05	_	_
NIOUIO	Mínima	_	-	0,02	_	_

Se necessário!


Desempenamento de trilhos usados

https://essel.com.br/cursos/material/01/processos.htm

Na área mecânica e metalúrgica, desempenar é a operação de endireitar chapas, tubos, arames, barras e perfis metálicos, de acordo com as necessidades relativas ao projeto de construção.

O modo de desempenar depende do material e do produto. Se, por exemplo, você precisa trabalhar com uma barra plana e só dispõe de uma barra empenada, basta desempená-la com uma prensa, se não for espessa, ou manualmente, com uma ferramenta de impacto.

desempenamento de uma barra

Desempenamento por chama de maçarico

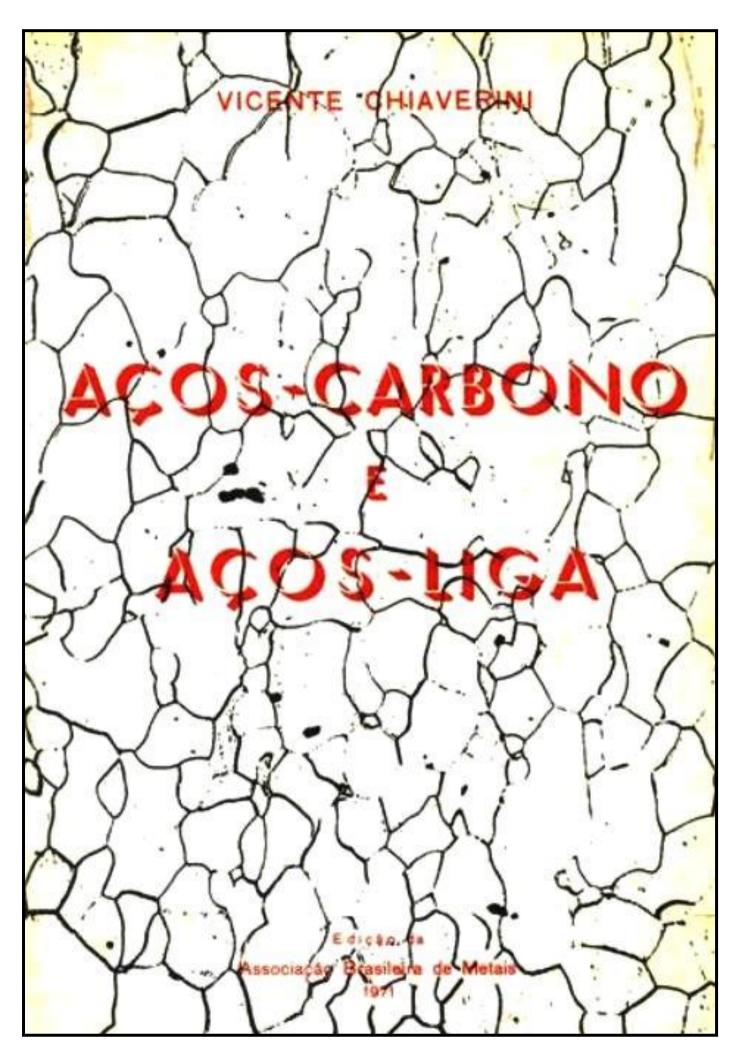
https://essel.com.br/cursos/material/01/ProcessosFabricacao/76proc.pdf

O desempenamento por chama é um método especialmente cômodo e não necessita, normalmente, de outros equipamentos além de um maçarico de aquecimento.

Ver adiante

O método baseia-se no princípio do emprego de uma chama, a mais quente possível, de oxigênio e acetileno, para se aquecer no menor tempo uma parte limitada da chapa a uma temperatura de, aproximadamente, 600°C, na qual se aumenta consideravelmente a plasticidade do aço. Pelo fato de o material circundante permanecer frio, as partes aquecidas ficam tensionadas, dilatandose. Essa dilatação é limitada pelas partes frias, não atingidas pela chama. Quando a barra resfria, o material se contrai.

8/35


MAÇARICO DE AQUECIMENTO

https://www.youtube.com/watch?v=A5PW9fom9CY

VICENTE CHIAVERINI

LIVRO: "AÇOS-CARBONO E AÇOS-LIGA"

Edição da Associação Brasileira de Metais - 1971

AÇOS PARA TRILHOS

Os aços para trilhos são aços-carbono com teor de carbono variando geralmente entre 0,50 % e o eutetoide. Essa composição é considerada a mais conveniente para resistir ao desgaste a que os trilhos estão sujeitos.

Na prática americana, a composição mais comum para trilhos

é α seguinte:

carbono — 0,69 α 0,82 % manganês — 0,70 α 1,00 %

AÇOS-CARBONO E AÇOS-LIGA

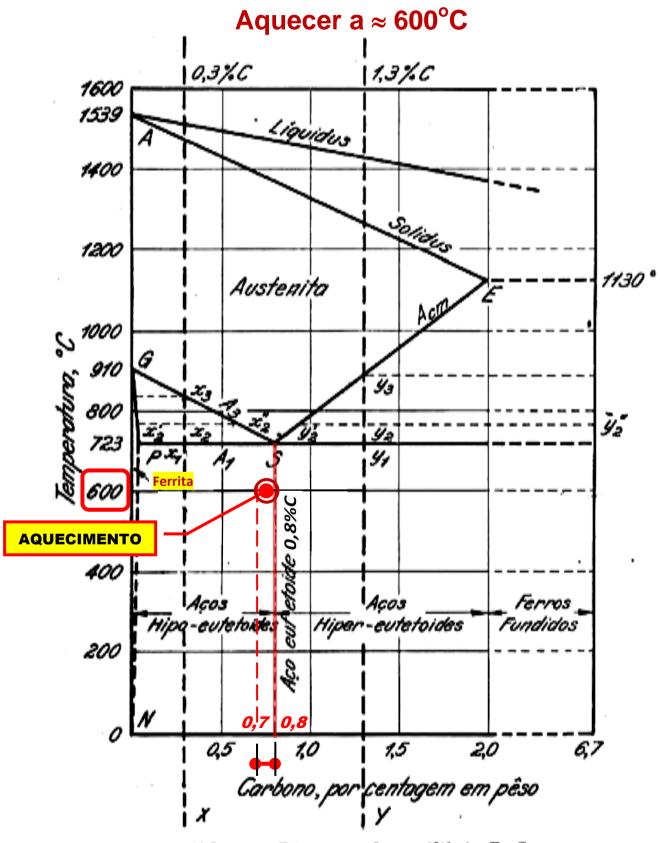


FIG. 2 — Diagrâma de equilíbrio Fe-C para teores de 0 a 2.02 de carbono.

Assinalada a faixa dos Aços de Trilhos = 0,7%C a 0,8%C

11/35

VICENTE CHIAVERINI

LIVRO: "AÇOS-CARBONO E AÇOS-LIGA"

Resistência à tração Dureza Brinell Alongamento de Ruptura

Assinalada a faixa dos Aços de Trilhos = 0,7%C 0,8%C

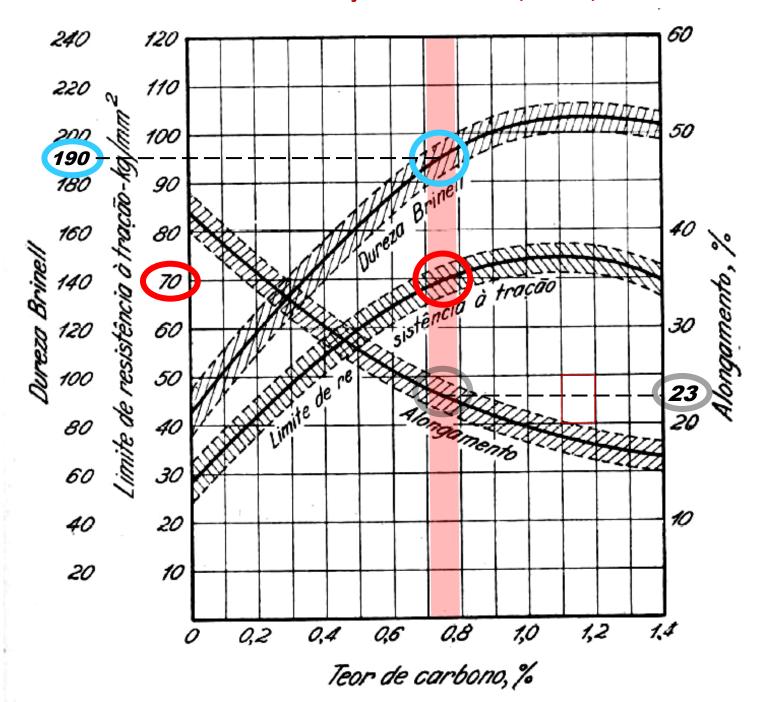


FIG. 6 — Influência do teor de carbono sôbre propriedades mecânicas do aço esfriado lentamente.

12/35

2020 - Aço Perlítico em Trilhos Ferroviários: uma breve abordagem - Janaina Silva - UFPA

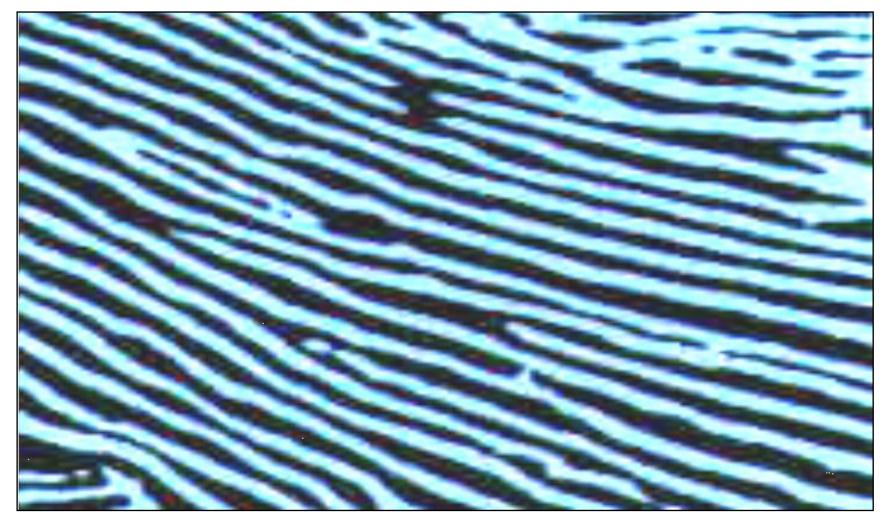
https://pt.linkedin.com/pulse/a%C3%A7o-perl%C3%ADtico-em-trilhos-ferrovi%C3%A1rios-uma-breve-abordagem-silva

http://tecnologiadosmateriais.com/introducao-ao-diagrama-fe-c/desenvolvimento-da-microestrutura/

Perlita

A perlita é constituída de duas fases: **Ferrita** (representada por α) e **Cementita** (representada por Fe3C) e essas fases são formadas no que se chama equilíbrio eutetóide (ponto no qual se tem a presença de 0.77% de carbono), como será mostrado na imagem a seguir. A ferrita é o constituinte mais mole do aço, entretanto, também é o mais tenaz e maleável, enquanto que a cementita é mais frágil, resistente ao cisalhamento e com elevada dureza. Vale ressaltar que existe uma fase anterior a esse processo, a qual chamamos de **Austenita** (representada por γ), e quanto menor for o seu tamanho de grão, maiores serão as colônias de perlita a serem formadas (ASKELAND; PHULÉ, 2008).

https://pt.wikipedia.org/wiki/Ferrita

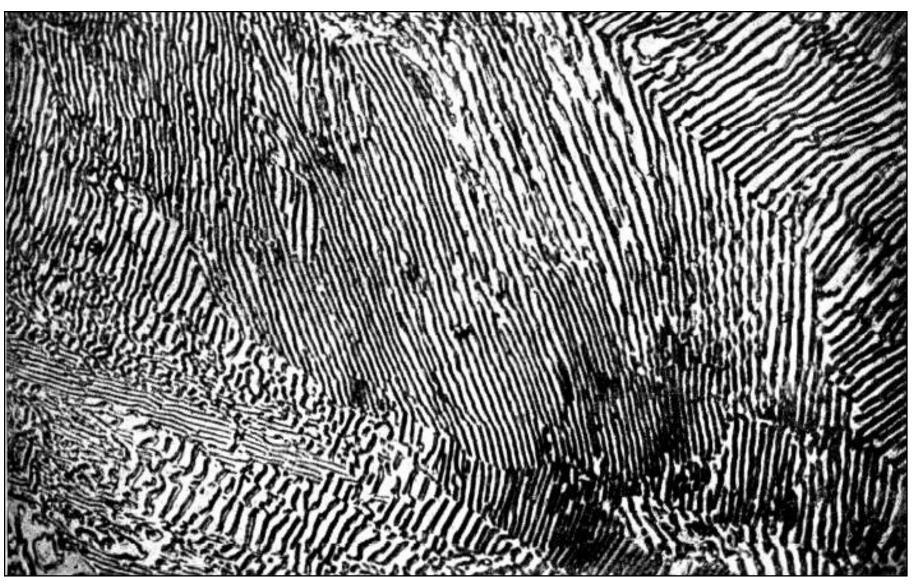

A **ferrita** ou **ferrite**, ou ferro alfa (α-**Fe**), é o ferro puro com estrutura cristalina cúbica de corpo centrado. É esta estrutura cristalina que dá ao aço e ao ferro fundido as suas propriedades magnéticas, sendo o exemplo clássico de um material ferromagnético.

https://pt.wikipedia.org/wiki/Cementita

A **cementite** ou carboneto de ferro é um composto de ferro e carbono, muito duro e frágil, de fórmula **Fe₃C**, que se deposita sob uma forma granular ou laminar na rede estrutural do aço e do ferro fundido branco, entre os cristais dúcteis de ferro (ferrite).

13/35
2001 - Jornadas SAM CONAMET AAS - "Avaliação mecânica e metalúrgica em trilho ferroviário utilizado em via contínua".

Autores: Macedo, M.L.K.; Silva, A. A. M.; Barlavento, M. A. e Reguly, A. http://www.phase-trans.msm.cam.ac.uk/parliament.html



"British steel – Innovation in Rail Steel " - Science in Parliament - July-August - 1996

Microestrutura de aço perlítico de trilho. O espaçamento inter-lamelar é de 0,30 micrometros.

A imagem colorida mostra a cementita em azul claro e a ferrita em preto

14/35
1971 - VICENTE CHIAVERINI - Aços eutetóides (0,8% de Carbono) = PERLITA

1971 - Aspecto de um aço eutetóide esfriado lentamente.- *PERLITA = Cementita em preto e a Ferrita em branco - O espaçamento inter-lamelar é de 0,30 micrometros.*

2015 - ESTUDO DE TENACIDADE À FRATURA DE CINCO AÇOS PARA APLICAÇÃO EM TRILHO FERROVIÁRIO

Luiza Pessoa Moreira 1 Thiago Gomes Viana 1 Leonardo Barbosa Godefroid 2 Geraldo Lúcio Faria 3 Luiz Cláudio Cândido 2

Contribuição técnica ao 70º Congresso Anual da ABM – Internacional realizada de **17 a 21 de agosto de 2015**, Rio de Janeiro, RJ, Brasil.

Associação Brasileira de Metalurgia

Tabela 1 – Composição química dos trilhos (% em massa).

			_			_			
Trilho	С	Mn	Si	Р	S	Cr	Ni	Мо	٧
S	0,722	1,24	0,539	0,01510	0,0047	0,218	0,0259	0,0166	0,0032
P1	0,792	0,88	0,304	0,01730	0,0043	0,209	0,0227	0,0166	0,0016
P2	0,863	0,91	0,261	0,01900	0,0091	0,218	0,0130	-	0,0010
P3	0,763	1,02	0,223	0,01600	0,0098	0,211	0,018	-	0,001
P4	0,754	0,807	0,687	0,01600	0,0068	0,319	0,038	0,0010	0,087

Os materiais avaliados nesse trabalho são segmentos de trilhos produzidos por dois diferentes fabricantes de procedência chinesa e japonesa.

Os trilhos foram identificados como S, P1, P2, P3 e P4.

De acordo com os fabricantes, o trilho S se enquadra na especificação de trilho do tipo Standard e os trilhos P1, P2, P3 e P4 são classificados como trilhos do tipo Premium.

2015 - Efeito de Características Microestruturais na Tenacidade à Fratura e no Crescimento de Trinca por Fadiga de Aços Perlíticos de Aplicação

<u>Ferroviária</u> - *Luiza Pessoa Moreira* - UFOP - CETEC - UEMG https://www.repositorio.ufop.br/handle/123456789/5728

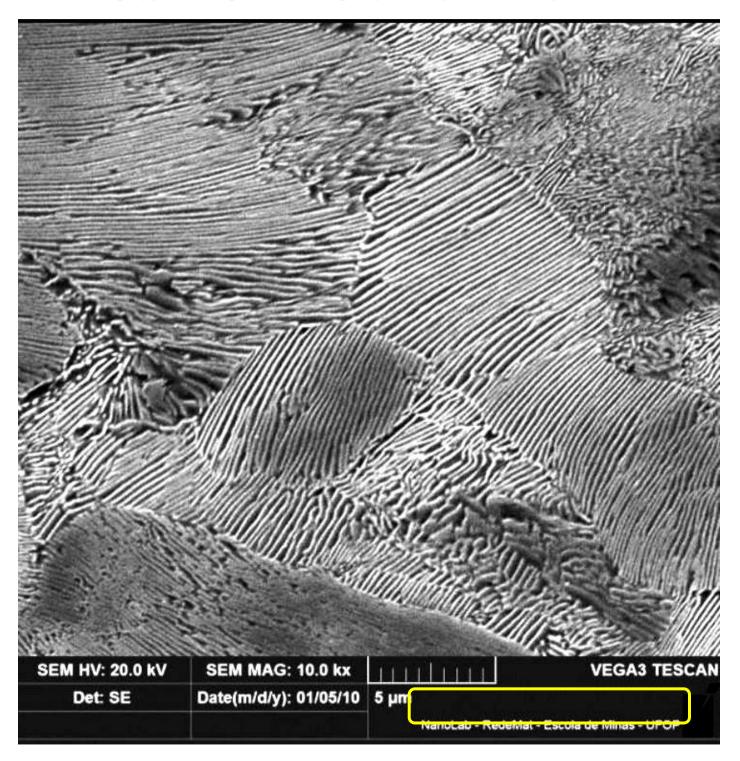


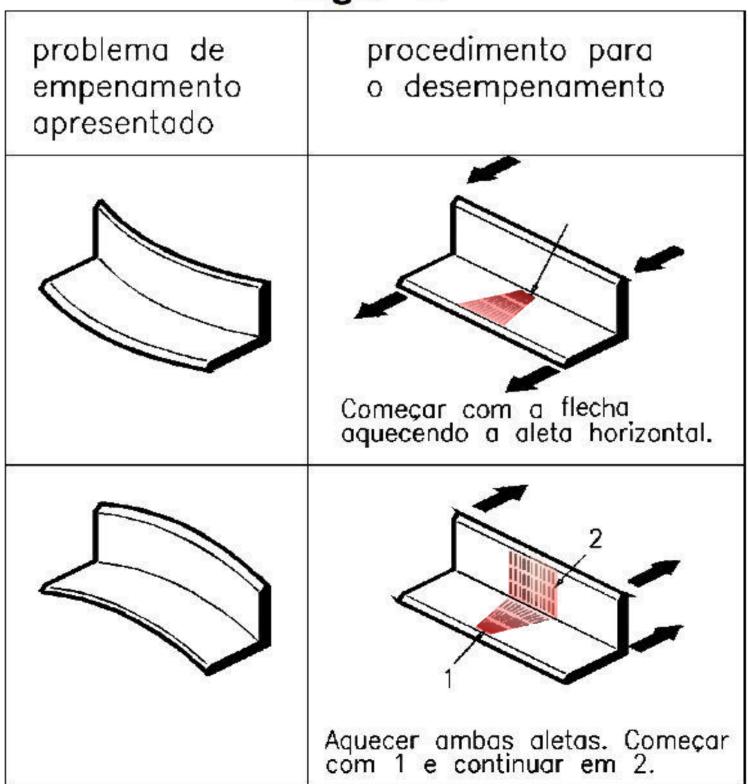
Figura 5. 6 – Micrografia do aço TFP, ataque Nital 2%, a) aumento de 4000X; b) aumento de

10000X - MEV.

17/35

Se necessário!

Desempenamento de trilhos usados



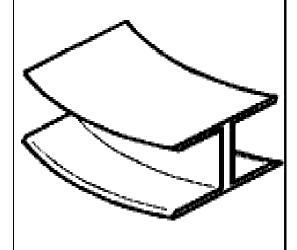
https://essel.com.br/cursos/material/01/processos.htm

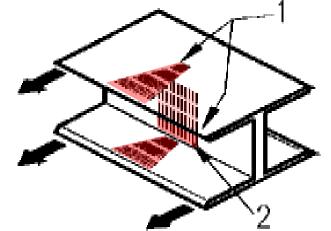
Procedimentos para o desempenamento por chama

Veja, a seguir, os procedimentos para o desempenamento de estruturas diversas, conforme o problema apresentado em cada caso.

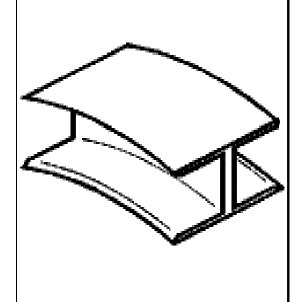
Viga "L"

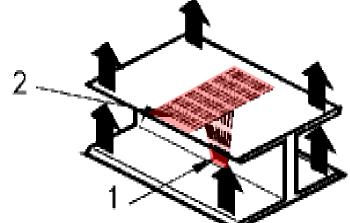
Viga "U"


viga o						
problema de empenamento apresentado	procedimento para o desempenamento					
	Aquecer ambas aletas ao mesmo tempo e começar nos locais marcados com a flecha.					
	Aquecer primeiro a alma começando em 1 , e logo em seguida continuar em 2.					
	Aquecer ambas aletas , começando em 1 e continuar a alma 2.					


Viga "T"

	iga i
problema de empenamento apresentado	procedimento para o desempenamento
	Aquecer somente a aleta horizontal e começar conforme indicado.
T	Aquecer ambas aletas. Começar com a aleta hori— zontal em 1 e continuar em 2.
	Aquecer ambas aletas. Começar com a aleta vertical em 1 e continuar com a horizontal em 2.


Viga "I"


problema de empenamento apresentado procedimento para o desempenamento

Aquecer ambas aletas simultaneamente , começando com os locais marcados em (1), e logo em seguida com a alma (2).

Começar aquecendo a alma (1) e continuar com as aletas (2)

TRILHOS USADOS

Tensão admissível em Serviço - E.L.S. = 800kgf/cm2 Comentários

- 1 Os ensaios de Fadiga de Trilhos em laboratórios conduzem a tensões limites de fadiga de 1500 kgf/cm2 (E.L.S. = Estado Limite de Serviço) Ver http://aquarius.ime.eb.br/~webde2/prof/ethomaz/analise_estrutural/Trilhos.pdf
- 2 Costuma-se usar para estacas de fundação, feitas com trilhos usados, uma tensão limite, em serviço E.L.S., de 800 khf/cm2
- 3 Lembrando que o trilho usado já está "fadigado" e que , além disso, não se sabe que <u>tensões residuais</u> o trilho traz consigo , usa-se a tensão admissível de 800 kgf/cm2 nas estacas de trilhos usados.
- 4 <u>Tensões residuais</u> surgem em virtude das altas tensões atuantes em alguns pontos dos trilhos que estejam com os dormentes mal apoiados ou onde o lastro tenha sido degradado ("moído") pelo tráfego.
- 5 Veja a correção de linha feita pela **Máquina Socadora-Niveladora- Alinhadora** da MRS.

https://www.youtube.com/watch?v=rPoMZUHcSP8

- 6 <u>Tensões residuais</u> também surgem no preparo dos trilhos usados, para a utilização como estaca.
- Isso envolve a "<u>retificação</u>" (desempenamento) de trilhos encurvados pelo uso na linha férrea.
- 7 Essa "<u>retificação</u>" (desempenamento) eu assisti ser feita, quando ia escolher trilhos usados nas oficinas da E. F. Central do Brasil no Rio de Janeiro, na Estação de Engenho de Dentro, para uso como estacas de escoramentos em obras da firma onde eu trabalhava.
- 8 Essa "retificação" era feita com uso da chama de maçaricos.

Os maçariqueiros esquentavam o trilho levemente e rapidamente, em apenas alguns pontos, de um lado ou de outro do trilho, que se deformava com o calor.

Após o resfriamento, em poucos minutos, o trilho ficava reto.

- 9 Isso cria tensões residuais desconhecidas, que vão se somar às tensões devidas às cargas da estrutura que nas estacas se apóiam.
- 10 Considerando o citado acima, nas estacas de <u>trilhos usados</u>, usa-se (no E.L.S.) a tensão admissível de 800 kgf/cm2,
- 11 Comentário: Após várias idas à oficina da E. F. Central do Brasil, e de muito observar como era feita a "retificação" dos trilhos usados, ousei e tentei retificar um pequeno pedaço torto de trilho lá abandonado. O pedaço de trilho ficou pior do que estava.

O maçariqueiro, logo a seguir, em poucos minutos, deixou tal pedaço de trilho usado perfeitamente reto.

Eduardo Thomaz: Rio de Janeiro - 04/02/2022

DIÁRIO DE NOTÍCIAS / RJ - 06 / MAIO / 1965

Rêde Ferrovária Federal S. A. (ESTRADA DE FERRO CENTRAL DO BRASIL)

COLETA DE PREÇOS N.º 7 - SVM/ 65 -

O Departamento do Material, receberá propostas em 3 (três) vias, devidamente datilografadas, às 16,00 (dezesseis) horas do dia 24 (vinte e quatro) de maio de 1965, para a venda de sucata de trilhos tipos 42 e 50/ Kgs/ metro. Maiores detalhes e informações no Serviço de Vendas — Edificio da Estação D. Pedro II — 7.º andar — sala 715, Encontramse afixados nas Estações de Roosevelt — Eng.º. São Paulo — Belo Horizonte e Hôrto Florestal edital da coleta para conhecimento dos interessados. Há depósito de caução de Cr\$ 500.0000 (quinhentos mil cruzeiros) para garantia da proposta.

Rio de Janeiro, GB, 6 de maio de 1965.

23/35 2021 - TRILHO TR 57 (57 kg/m)


https://osucateiro.com/produto/trilho-de-trem-tr57

24/35

TRILHOS @ TRILHOS.COM.BR

https://www.trilhos.com.br/trilhos-ferroviarios-trilho-em-aco-usados-e-semi-novos-trilhos.html

TRILHO'S tem o maior estoque de <u>trilhos semi-novos e usados</u> (TR22, TR25, TR26, TR30, TR32, TR37, TR40, TR45, TR50, TR52/TR57, UIC60, TR68) – para <u>Fundação</u>, Ponte Rolante e Caminho de Rolamento.

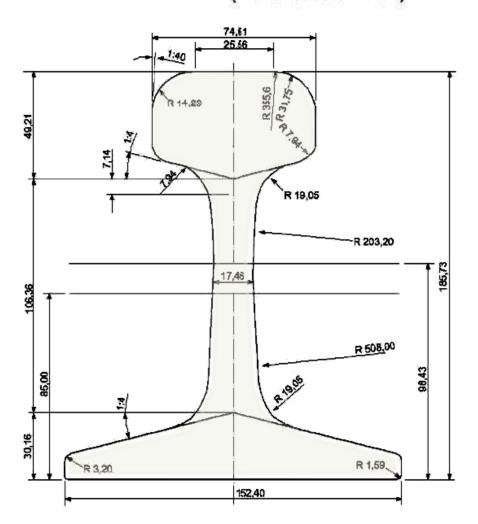
Estoque permanente de <u>Trilhos Retificados</u>, pintados e jateados para ponte rolante ou caminho de rolamento.

Trilhos para fundação de todos os tipos: simples, duplos e triplos.

Conforme tabela abaixo:

Símbolos	TR	Dimensão X1 / x2 (mm)	Área 1 (cm²)	Massa 1 (kg/m)	Espaçamento ² (cm)	Carga Admissivel ^a min./max. (T)
1000	32	112,7 / 225,4	81,8	64,2	65	50 a 60
	37	122,2 / 224,6	94,6	74,2	70	60 a 75
	45	142,9 / 246,9	113,6	93,4	75	75 a 85
- estillitus didili	50	152,4 / 262,7	128,4	100,6	85	85 a 95
X2	57	168,3 / 287,0	145,2	113,8	100	95 a 110

TR57 => TENSÃO = 110.000 kgf / 145,2 cm2 = 757, 6 kgf/cm2 < 800 kgf/cm2


25/35 TRILHOS @ TRILHOS.COM.BR

TR68 (68 kg/m)

DNIT

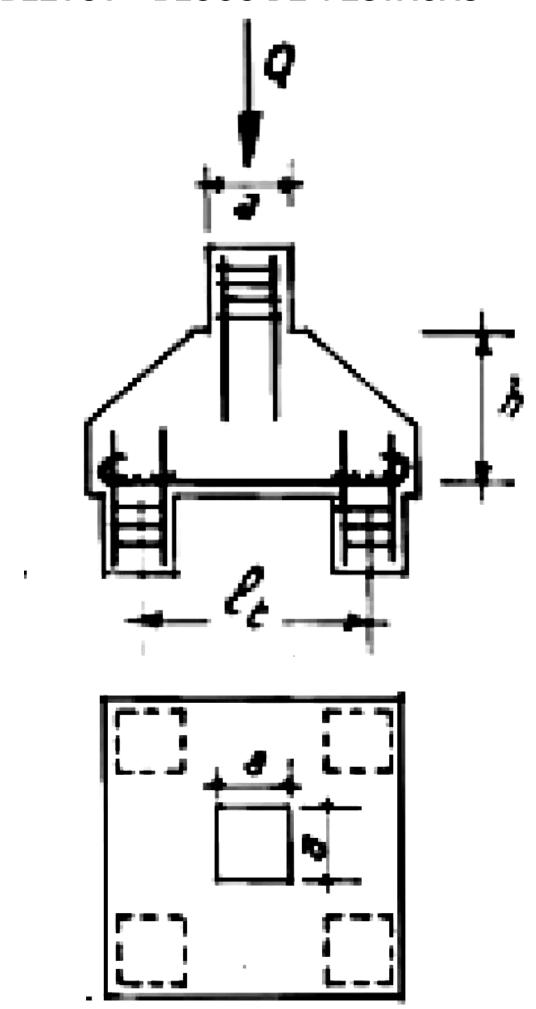
Figura 7 – Trilho tipo TR68 (Dimensões em mm)

26/35

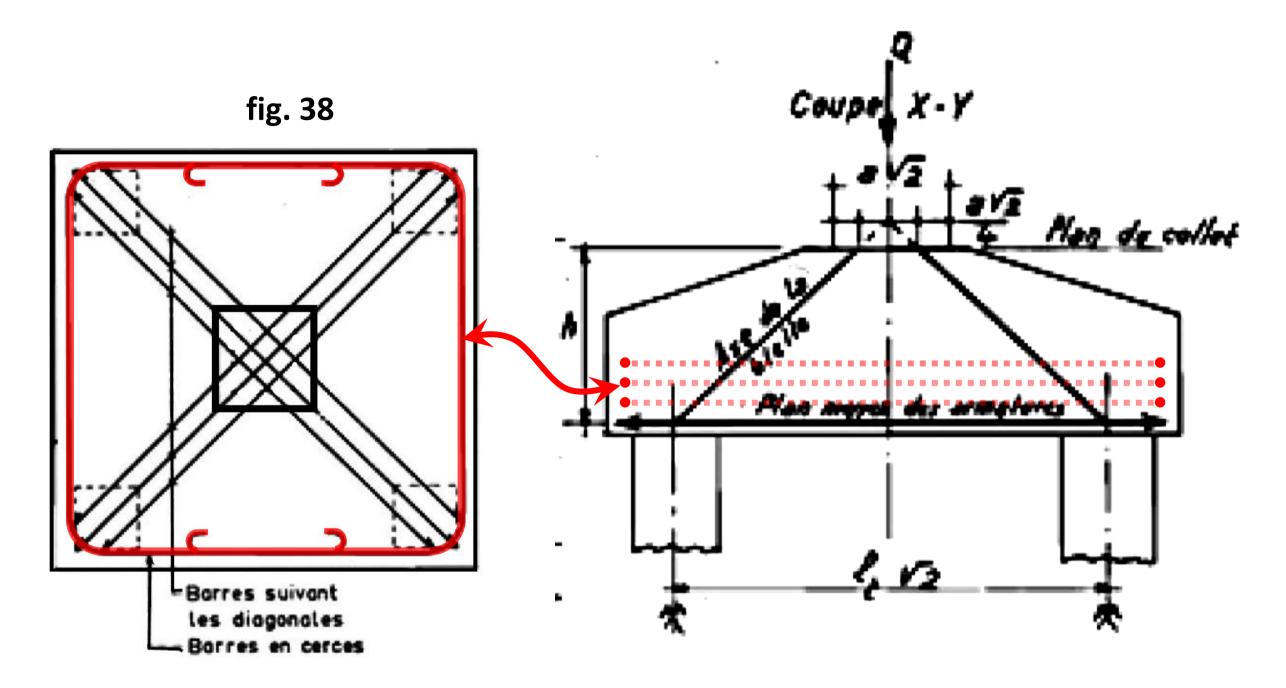
Armadura de Bloco com Quatro Estacas de Trilho

Fotos cedidas por Eng. Renato Costa - BH - MG Calculistas-Bahia

Detalhe da Ligação das Estacas com o Bloco de Fundação


27/35 **ZOOM**

Para cálculo das armaduras do bloco ver os links :


http://aquarius.ime.eb.br/~webde2/prof/ethomaz/bloco sobre estacas/bloco sobre estacas 02.pdf (página 15 e seguintes) http://aquarius.ime.eb.br/~webde2/prof/ethomaz/bloco sobre estacas/blevot.pdf (figura 38)

28/35 BLÉVOT - BLOCO DE 4 ESTACAS

http://aquarius.ime.eb.br/~webde2/prof/ethomaz/bloco sobre estacas/bloco sobre estacas 02.pdf (página 15 e seguintes) http://aquarius.ime.eb.br/~webde2/prof/ethomaz/bloco sobre estacas/blevot.pdf (figura 38)

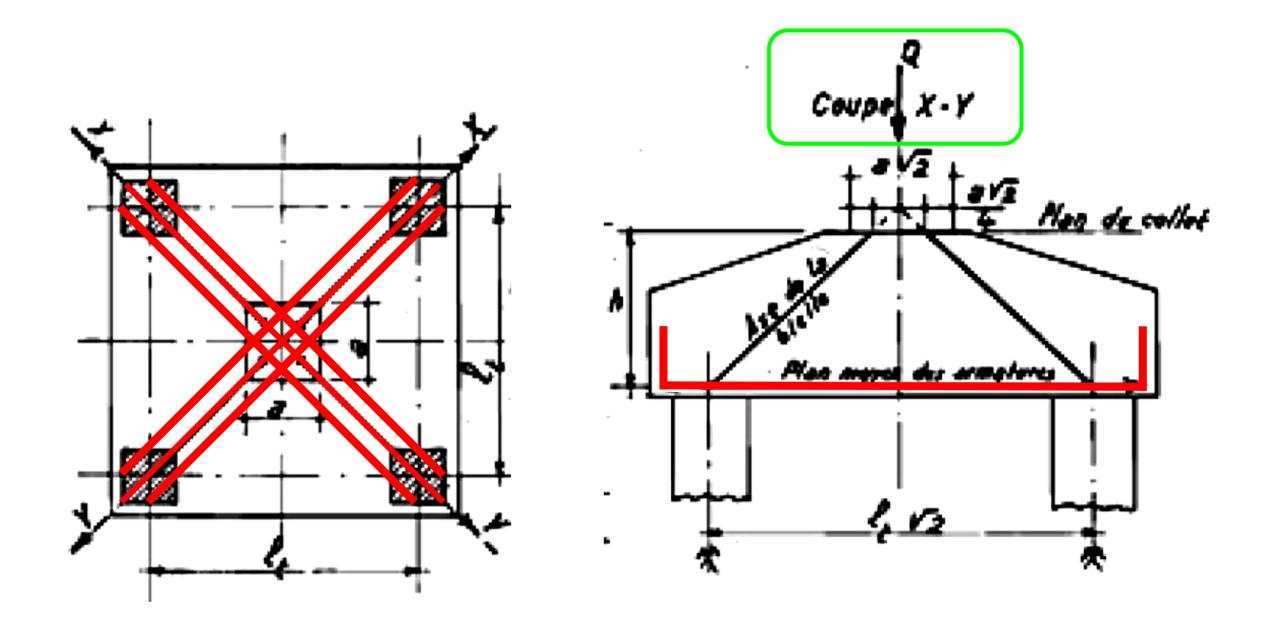
BLÉVOT - ARMADURA NAS DIAGONAIS E NOS 4 LADOS

Les systèmes d'armatures à recommander sont les suivants :

- 1 : armatures suivant les côtés + armatures suivant les diagonales (fig. 37);
- 1 bis: armatures en cerces + armatures suivant les diagonales (fig. 38);

 Dans les systèmes 1 et 1 bis, les armatures suivant les côtés ou les cerces doivent équilibrer un effort

$$N'_{\bullet \bullet} = \frac{Q'}{8h} l_t \left(1 - \frac{a}{2l_t}\right).$$

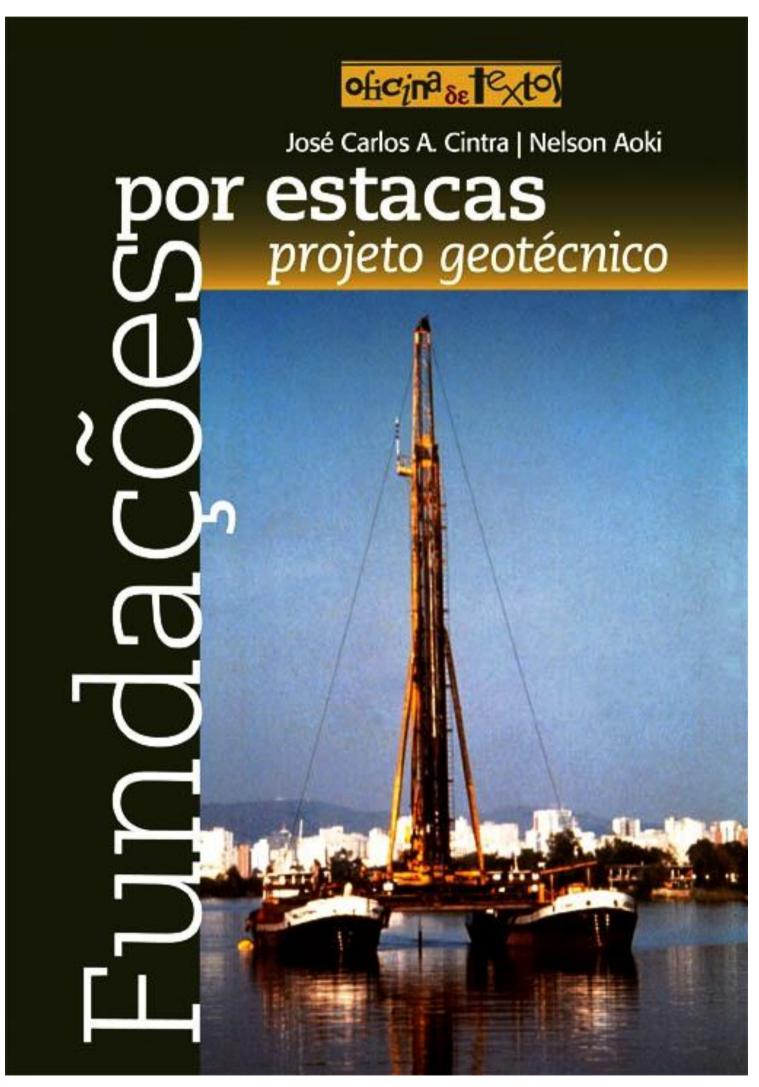

les armatures suivant les diagonales un effort

$$N'_{-} = \frac{(Q - Q')\sqrt{2}}{8h} l_t \left(1 - \frac{a}{2l_t}\right)$$

Q' et Q'' = Q - Q' peuvent être du même ordre; on peut prendre, par exemple 0,5 Q < Q' < 0,65 Q

+++

BLÉVOT - BLOCO DE 4 ESTACAS - ARMADURA SÓ NAS DIAGONAIS


Inclinaison des bielles
$$\{proj.\ horizontalc\ \frac{\ell_F V_2^2}{2} - \frac{aV_2^2}{4}\}$$

Effort de traction dans un plan diagonal :

$$N'_{3l} = \frac{QV^2}{8h} \left(\ell_{l-\frac{3}{2}} \right)$$

CAPACIDADE DE CARGA DE UMA ESTACA DE TRILHO

LIVRO : Fundações por estacas - projeto geotécnico José Carlos A. Cintra / Nelson Aoki

CAPACIDADE DE CARGA DE UMA ESTACA DE TRILHO

MÉTODO AOKI - VELLOSO

NELSON - DIRCEU VELLOSO

Capacidade de Carga da estaca = $R = R_L + R_P$

R_L = Resistência do atrito lateral

R_P = Resistência de ponta

$$R_P = r_P \times A_P$$
 ; $R_L = U \times \Sigma (r_L \times \Delta_L)$

U = Perímetro da Estaca

 A_P = Área da ponta da estaca

$$r_P = \frac{K \times N_P}{F_1}$$
 ; $r_L = \frac{\alpha \times K \times N_L}{F_2}$

 $R = R_P + R_L$ (ver tabelas ao final)

$$R = \left(\frac{A_{P}}{F_{1}}\right) \times K \times N_{P} + \left(\frac{U}{F_{2}}\right) \times \sum \left(\alpha \times K \times N_{L} \times \Delta_{L}\right) .$$

R admissível= coeficiente de segurança= 2,0

EXEMPLO = ESTACA DE TRILHO TR57

Ap = Área da seção = 72,6 cm2 ; U = Perímetro da seção = 54,53cm , (Ver Tabelas ao Final)

Tipo de Estaca	F1	F2	
Aço	1,75	3,50	(VER TABELAS AO FINAL)

$$R = \left(\frac{A_{P}}{F_{1}}\right) \times K \times N_{P} + \left(\frac{U}{F_{2}}\right) \times \sum \left(\alpha \times K \times N_{L} \times \Delta_{L}\right)$$

ESTACA DE TRILHO TR57

0		,		{ U=54,53cm / F2=3,5 } x { 0,03 x 6kgf/cm2 x5x100cm} = 1402,2 kgf		
	5			$\{ U=54,53cm / F2=3,5 \} x \{ 0,03 x 6kgf/cm2 x2x100cm \} = 560,9 kgf$	ATRITO I ATERAL	
	3	Areia fina a média argilosa	K = 6 kgf/cm2	{ U=54,53cm / F2=3,5 } x { 0,03 x 6kgf/cm2 x3x100cm} = 841,3 kgf	ATRITO LATERAL = = 4487,1 kgf	
	2	argnosa	α = 3%	$\{ U=54,53cm / F2=3,5 \} x \{ 0,03 x 6kgf/cm2 x2x100cm \} = 560,9 kgf$		
5	4			{ U=54,53cm / F2=3,5 } x { 0,03 x 6kgf/cm2 x4x100cm} = 1121,8 kgf		
	8		K = 3,5 kgf/cm2	{ U=54,53cm / F2=3,5 } x { 0,024 x 3,5kgf/cm2 x8x100cm} = 1047,0 kgf		
	9	Argila arenosa	$\alpha = 2.4\%$	{ U=54,53cm / F2=3,5 } x { 0,024 x 3,5kgf/cm2 x9x100cm } = 1177,8 kgf	ATRITO LATERAL = = 3402,6 kgf	
8	9			{ U=54,53cm / F2=3,5 } x { 0,024 x 3,5kgf/cm2 x 9x100cm} = 1177,8 kgf		
	14			{ U=54,53cm / F2=3,5 } x { 0,03 x 6kgf/cm2 x14x100cm} = 3926,1 kgf		
	16		K = 6 kgf/cm2 α = 3%	{ U=54,53cm / F2=3,5 } x { 0,03 x 6kgf/cm2 x16x100cm } = 4487,0 kgf		
	21			{ U=54,53cm / F2=3,5 } x { 0,03 x 6kgf/cm2 x 21x100cm} = 5889,2 kgf	280,44	
12	20	Areia argilosa		{ U=54,53cm / F2=3,5 } x { 0,03 x 6kgf/cm2 x 20x100cm} = 5608,8 kgf	ATRITO LATERAL =	
	25			{ U=54,53cm / F2=3,5 } x { 0,03 x 6kgf/cm2 x 25x100cm} = 7011,0 kgf	= 45711,6 kgf	
14	30		{ U=54,53cm / F2=3,5 } x { 0,03 x 6kgf/cm2 x 30x100cm} = 8413,2 kgf			
	37			{ U=54,53cm / F2=3,5 } x { 0,03 x 6kgf/cm2 x 37 x100cm} = 10376,28 kgf		
	37	Ciles suciles	K = 2,3 kgf/cm2	{ U=54,53cm / F2=3,5 } x { 0,034 x 2,3kgf/cm2 x 37 x100cm} = 4507,9 kgf	ATRITO LATERAL = = 10599 7 kgf	
	50	Silte argiloso	$\alpha = 3.4\%$	{ U=54,53cm / F2=3,5 } x { 0,034 x 2,3kgf/cm2 x 50 x100cm} = 6091,7 kgf	= 10599,7 kgf	
18	51					

RESISTÊNCIA DE ATRITO LATERAL = TOTAL = 64201 kgf

RESISTÊNCIA DE PONTA = $R_P = r_P \times A_P = \begin{cases} r_P = \frac{K \times N_P}{F_1} \\ \end{cases} \times A_P = R_P = \frac{2.3 \text{ kgf/cm} 2 \times 51}{1.75} \times 72.6 \text{cm} 2 = 4866 \text{ kgf}$

CAPACIDADE DE CARGA = ATRITO LATERAL + PONTA = 64201kgf + 4866 kgf = 69067 kgf = 69,1 ton CARGA ADMISSÍVEL - SOLO = 69,1ton / (coef. seg.= 2,0) = 34,5 ton = SOLO

Tensão no aço para a Carga Admissível do Solo = 34.5 ton / 72,6cm2 = 475.6 kgf /cm2 < 800 kgf/cm2

Tensão Admissível no Aço (para um Trilho usado) = 800 kgf/cm2, ver também o link:

http://aquarius.ime.eb.br/~webde2/prof/ethomaz/analise_estrutural/Trilhos.pdf

TABELAS DE DADOS DO MÉTODO AOKI - VELLOSO

Cód	Tipo de Solo	K (kgf/cm²)	α (%)
0	Agua	0	0
1	Aterro	0	0
100	Areia	8,00	1,40
120	Areia siltosa	8,00	2,00
123	Areia silto-argilosa	7,00	2,40
130	Areia argilosa	6,00	3,00
132	Areia argilo-siltosa	5,00	2,80
200	Silte	4,00	3,00
210	Silte arenoso	5,50	2,20
213	Silte areno-argiloso	4,50	2,80
230	Silte argiloso	2,30	3,40
231	Silte argilo-arenoso	2,50	3,00
300	Argila	2,00	6,00
310	Argila arenosa	3,50	2,40
312	Argila areno-siltosa	3,00	2,80
320	Argila siltosa	2,20	4,00
321	Argila silto-arenosa	3,30	3,00

Tipo de Estaca	F1	F2
Bored	3,50	7,00
Franki	2,50	5,00
Continuous Auger Pile	2,25	4,50
Steel	1,75	3,50
Precast	1,75	3,50
Root Pile	3,00	3,00

Tipo estaca	A (cm2)	U (cm)				
CONCRETO						
Conc • 20x20	400,0	80,0				
Conc • 30x30	900,0	120,0				
Conc • 35x35	1225,0	140,0				
Conc • 40x40	1600,0	160,0				
	CONCRETO					
Conc	314,2	62,8				
Conc	706,9	94,2				
Conc	1385,4	131,9				
Conc ϕ 50cm	1963,5	157,1				
Conc	7854,0	314,2				
Conc	11309,7	377,0				
Conc	17671,5	471,2				
Conc	20106,2	502,7				
Conc	31415,9	628,3				
	PERFIL I	•				
I - 10" x 37,7kg/m	48,1	74,48				
I - 12" x 60,6kg/m	77,3	87,64				
,	ESTACA RAIZ	·				
Raiz	78,5	31,4				
Raiz	113,1	37,7				
Raiz	176,7	47,1				
Raiz	314,2	62,8				
Raiz	490,9	78,5				
Raiz	706,9	94,2				
Raiz	1256,6	125,7				
	TRILHO					
TR 25 simples	31,5	34,9				
TR 32 simples	40,8	39,9				
TR 37 simples	47,3	43,0				
TR 40 simples	50,7	45,0				
TR 45 simples	56,9	48,0				
TR 50 simples	64,2	51,0				
TR 55 simples	69,8	52,8				
TR 57 simples	72,6	54,53				
TR 68 simples	86,1	59,84				

