

Probabilidade de Ruína de Estruturas

Notas de aula Prof. Eduardo C. S. Thomaz

Probabilidade de Ruína

- 1 O Prof. Fernando Lobo Carneiro , em Simpósio I.N.T. de 1944, indicou que a norma NB1, de então, estava considerando no concreto uma tensão crítica fck = 2/3 fcm (nomes atuais), embora continuasse usando as formulações de "tensões admissíveis". (Ver paginas 12 e 13)
- 2 Para fck = 2/3 fcm , o desvio padrão na resistência do concreto vale 20 % fcm. Um coeficiente de variação de 20 %.
- 3 Com base na teoria da "Probabilidade de Ruína ", para cada par "Resistência do Concreto " x "Carregamento atuante", calcula-se a "Probabilidadede Ruína" da Estrutura (pilar). (Ver última página).

4 – Daí resultam:

Observação 1 : Para fck = 2/3 fcm (*Coeficiente de Variação = 20\%*) a Probabilidade Ruína é da ordem de 10^{-3} . Desde a NB1 em 1946.

Observação 2: Para um *Baixo Coeficiente de Variação na Resistência no Concreto* = **10%**, a Probabilidade de Ruína da Estrutura **cai** para **10** $^{-6}$ a $^{-8}$, dependendo da variabilidade do carregamento. (Ver última página).

Observação 3: O dito acima mostra a grande melhora na Segurança da Estrutura quando o Concreto tem um *Baixo Coeficiente de Variação* na sua Resistência.

Isso ocorre quando o Concreto é todo bem dosado, todo bem misturado, todo bem transportado, todo bem lançado, todo bem vibrado, todo bem acabado e todo bem curado.

<u>Todo Bom</u>, <u>Homogêneo</u>.

Observação 4: O dito acima é baseado em cálculos teóricos, mas corresponde à real expectativa de todo Engenheiro de Estruturas de Concreto.

Eduardo Thomaz, Rio – 03 / junho / 2023

Introdução à Fiabilidade Estrutural

Instituto Superior Técnico

Luís Guerreiro - Junho de 1999

http://www.civil.ist.utl.pt/~luisg/textos/fiabilidade new.pdf

Instituto Superior Técnico – Lisboa Instituto Superior Técnico | ULisboa

O Problema Fundamental

De uma forma geral, a análise da fiabilidade de um sistema estrutural é um problema complexo e que envolve um grande número de variáveis. Estas variáveis dividem-se essencialmente em dois grupos: aquelas que definem a acção e aquelas que definem a capacidade resistente da estrutura.

Nalguns casos simples este problema pode ser estudado recorrendo somente a duas variáveis, uma de cada um dos tipos atrás definidos.

Como o objectivo deste texto é fazer a apresentação do problema fundamental da análise de fiabilidade, será considerado um dos casos de análise mais simples, ou seja, um problema somente com duas variáveis aleatórias:

- Valor da acção (A);
- Valor da resistência (R).

Estas duas variáveis não serão, em princípio, directamente comparáveis.

Imagine-se, por exemplo, o caso em que a variável A representa a carga distribuída sobre uma viga e a variável R representa o momento resistente da secção de meio vão.

A comparação entre as duas grandezas não pode ser feita directamente.

Este problema pode ser resolvido se se definir uma nova variável Ea, que traduz o efeito da acção.

Assim, no exemplo atrás mencionado, a variável Ea poderia representar o momento a meio vão da viga ,provocado pela carga distribuída ao longo do vão. Esta grandeza já poderia ser comparada directamente com a variável R.

Esta passagem que levou a transformar a variável acção no seu efeito também poderia ter sido imaginada no sentido inverso, ou seja, considerar uma variável Ar, que representasse o valor da acção correspondente ao valor do momento resistente, e assim a comparação entre variáveis seria feita no domínio da acção.

Adoptando uma transformação do primeiro tipo, ou seja transformando a variável acção (A) na variável que traduz o seu efeito (Ea), o problema fundamental da fiabilidade consiste em quantificar qual é a probabilidade da variável aleatória R ser inferior à variável Ea.

Esta probabilidade traduz a probabilidade de ruína do sistema estrutural.

Se se admitir que fEa(a) e fR(r) são as funções de densidade de probabilidade das variáveis aleatórias Ea e R (Figura 1),

e que estas são independentes, então a <u>probabilidade de ruína pode ser calculada</u> através da seguinte expressão:

$$P_r = P (R \le E_a) = \int_{-1}^{+} f_{Ea}(x) F_R(x) dx$$

Ea = Carga Atuante R = Resistência

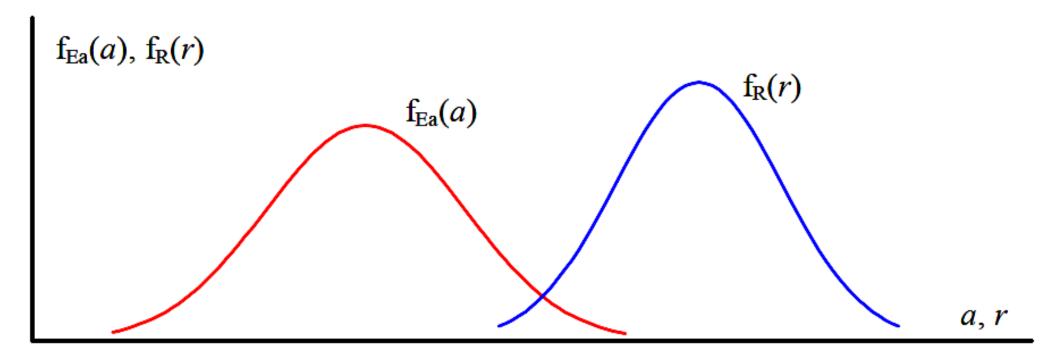


Figura 1- Funções de densidade de probabilidade.

$$f(x) = rac{1}{\sigma\sqrt{2\pi}} \;\; \mathrm{e}^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

 $x=tens\tilde{a}o$; $\mu=tens\tilde{a}o\ m\acute{e}dia$; $\sigma=desvio\ padr\tilde{a}o$

Ver figura 1 e as fórmulas 1 e 2 no link http://www.civil.ist.utl.pt/~luisg/textos/fiabilidade_new.pdf

Observações:

- 1 A comparação entre as curvas Ação e Resistência vale em um determinado momento da existência da Estrutura
- 2 Se a resistência do concreto cresce com a idade da obra, a curva das resistências se desloca para a direita, se afastando da curva das ações atuantes.

A probabilidade de ruína diminui.

Obs. Em certa obra, construída em 1930, a resistência do concreto medida em corpos de prova extraídos recentemente da estrutura atingiu **80 MPa.**

3 - Se a resistência do concreto diminui com a idade da obra a curva das resistências se desloca para a esquerda, se aproximando da curva das ações atuantes.

A probabilidade de ruína aumenta.

Obs. Em certa obra, construída em 1937, a resistência do concreto medida em corpos de prova extraídos recentemente das lajes da estrutura atingiu apenas **12 MPa** (diminuiu ou não cresceu).

4 – Se a intensidade da carga atuante na estrutura aumenta, a curva das ações se desloca para a direita se aproximando da curva da resistência do concreto.

A probabilidade de ruína aumenta.

Obs. Em uma ponte construída em 1940 a carga no projeto era de **24 toneladas**.

Atualmente passa pela ponte grande quantidade de tráfego, sem limitações de carga, i.e.. 45 toneladas, e até mais (chi lo sa?) Mas...

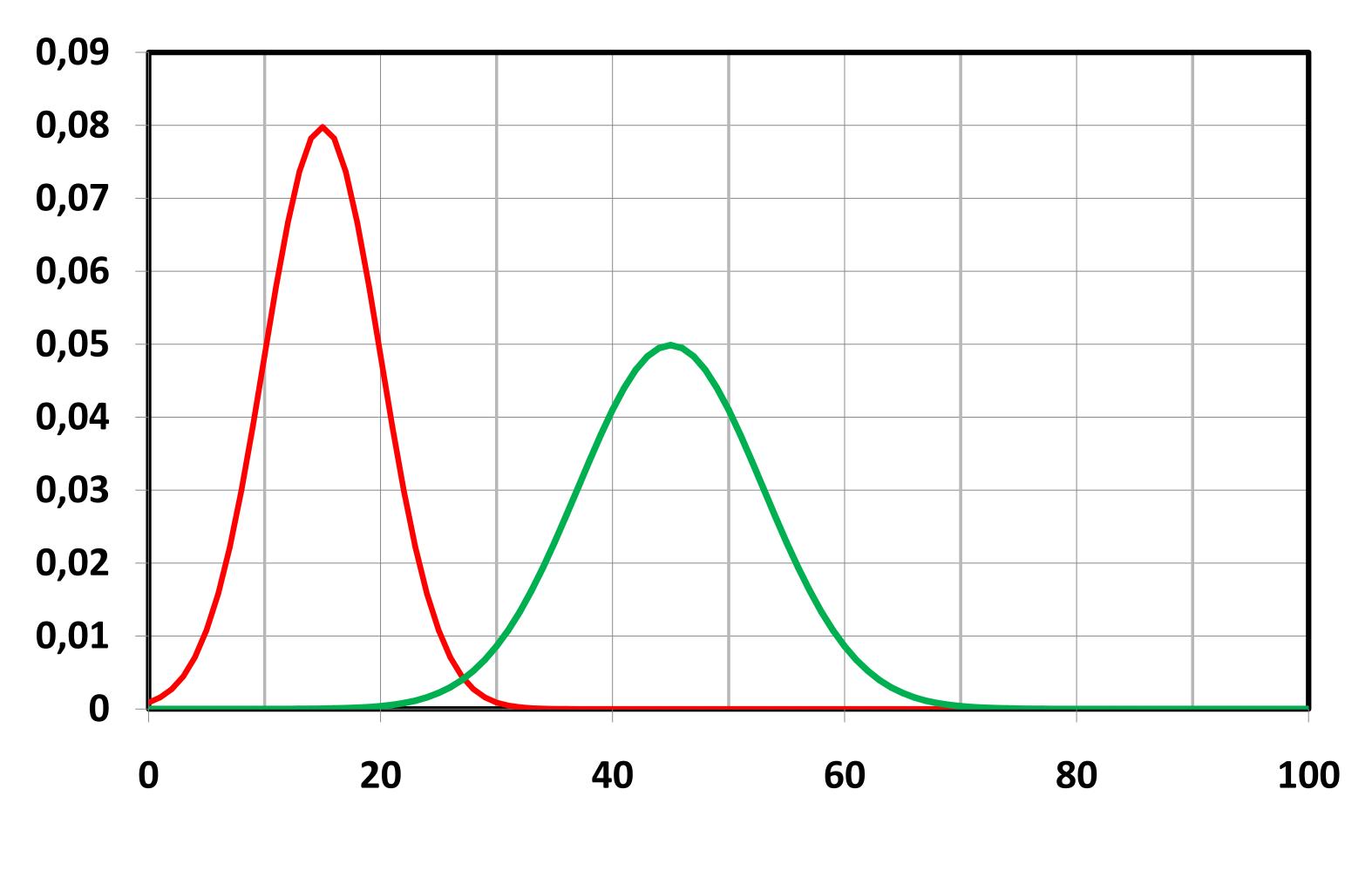
A ponte, sendo um arco, está em perfeito estado. A resistência do concreto certamente aumentou com a idade da obra.

Ponte em arco não tem flexão significante, praticamente prescindindo de armadura.

A segurança depende, pois, só do concreto.

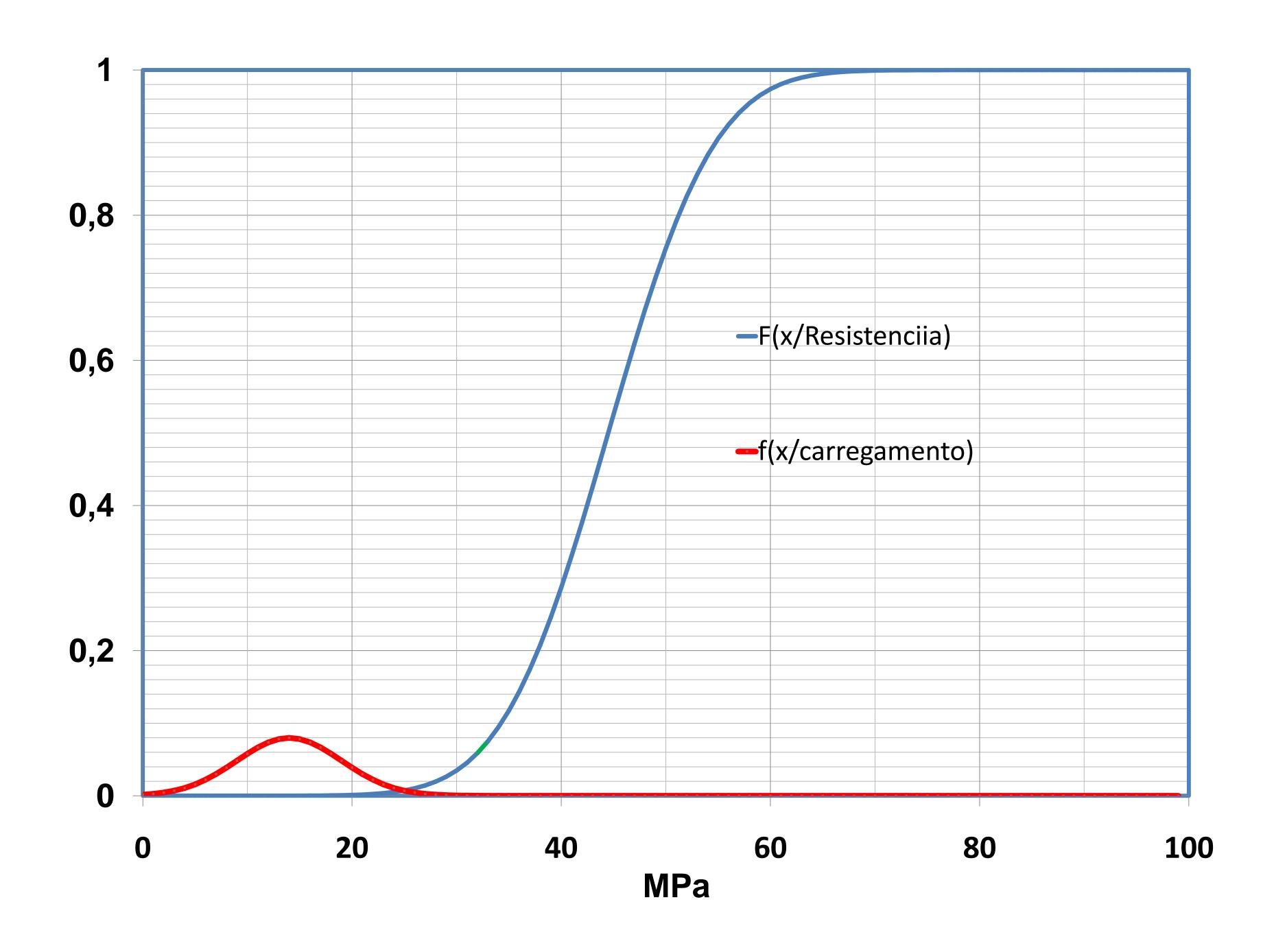
Uma Aplicação das Fórmulas (por Eduardo Thomaz)

Exemplo Teórico = Pilar (sem flambagem)

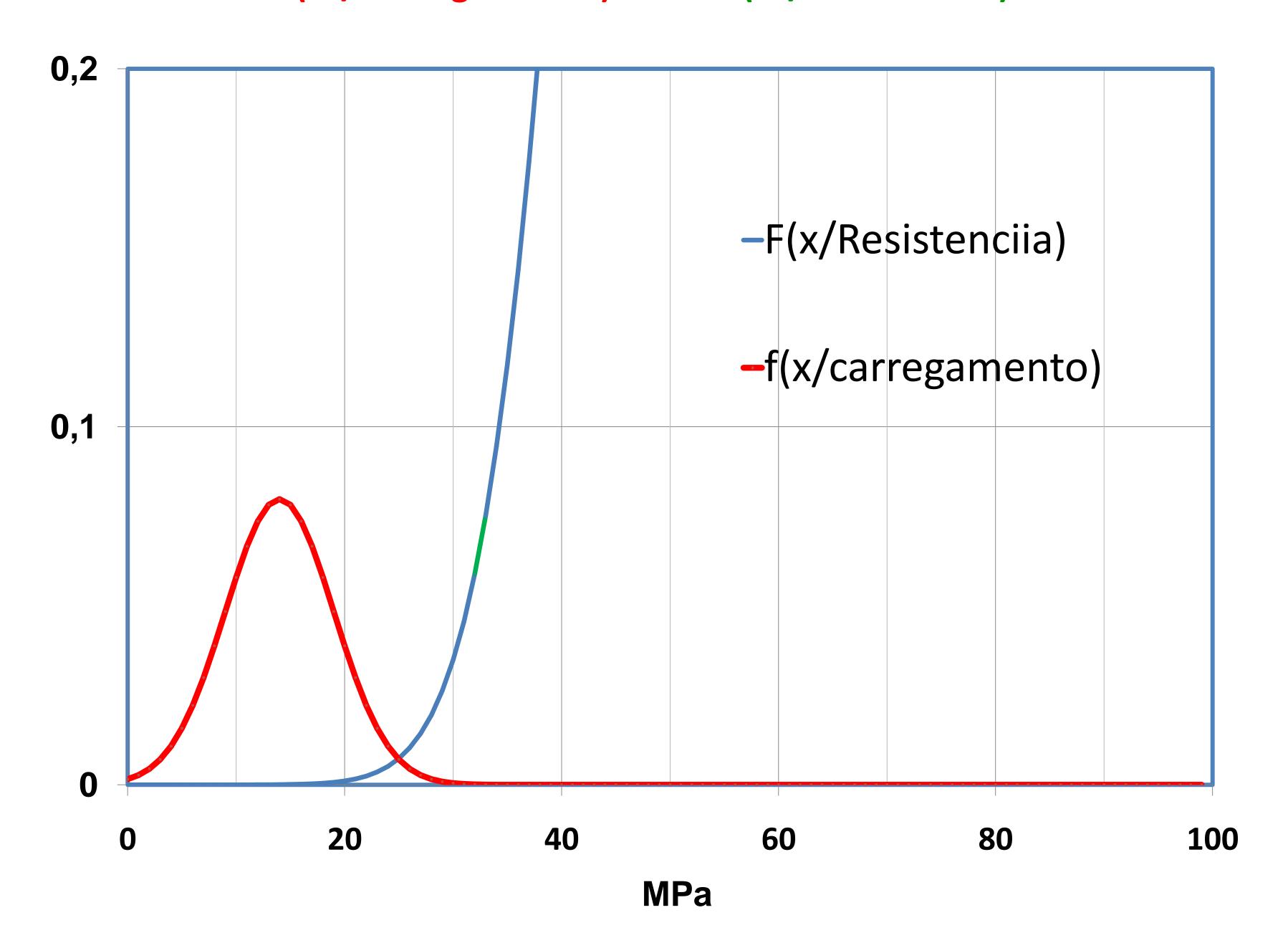

CARREGAMENTO AXIAL em um Pilar = >> Tensão média = 15 MPa ; Desvio Padrão =5 MPa ;

Coeficiente de variação = C.V. = 5MPa / 15 MPa = 33 %

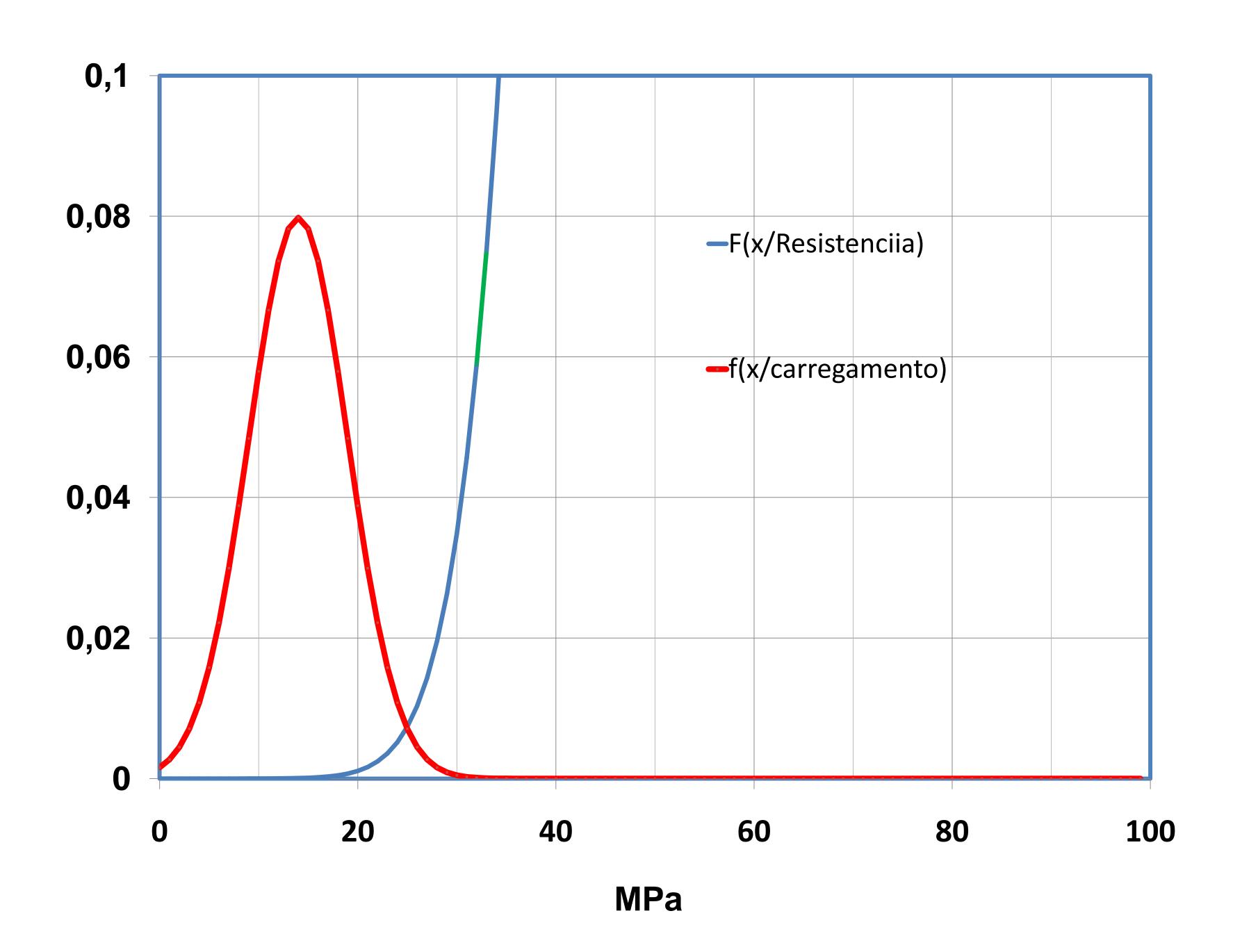
CONCRETO do pilar = > > fcm = 45 MPa ; Desvio Padrão = 8 MPa ;


Coeficiente de variação = C.V. = 8MPa / 45 MPa = 18 %

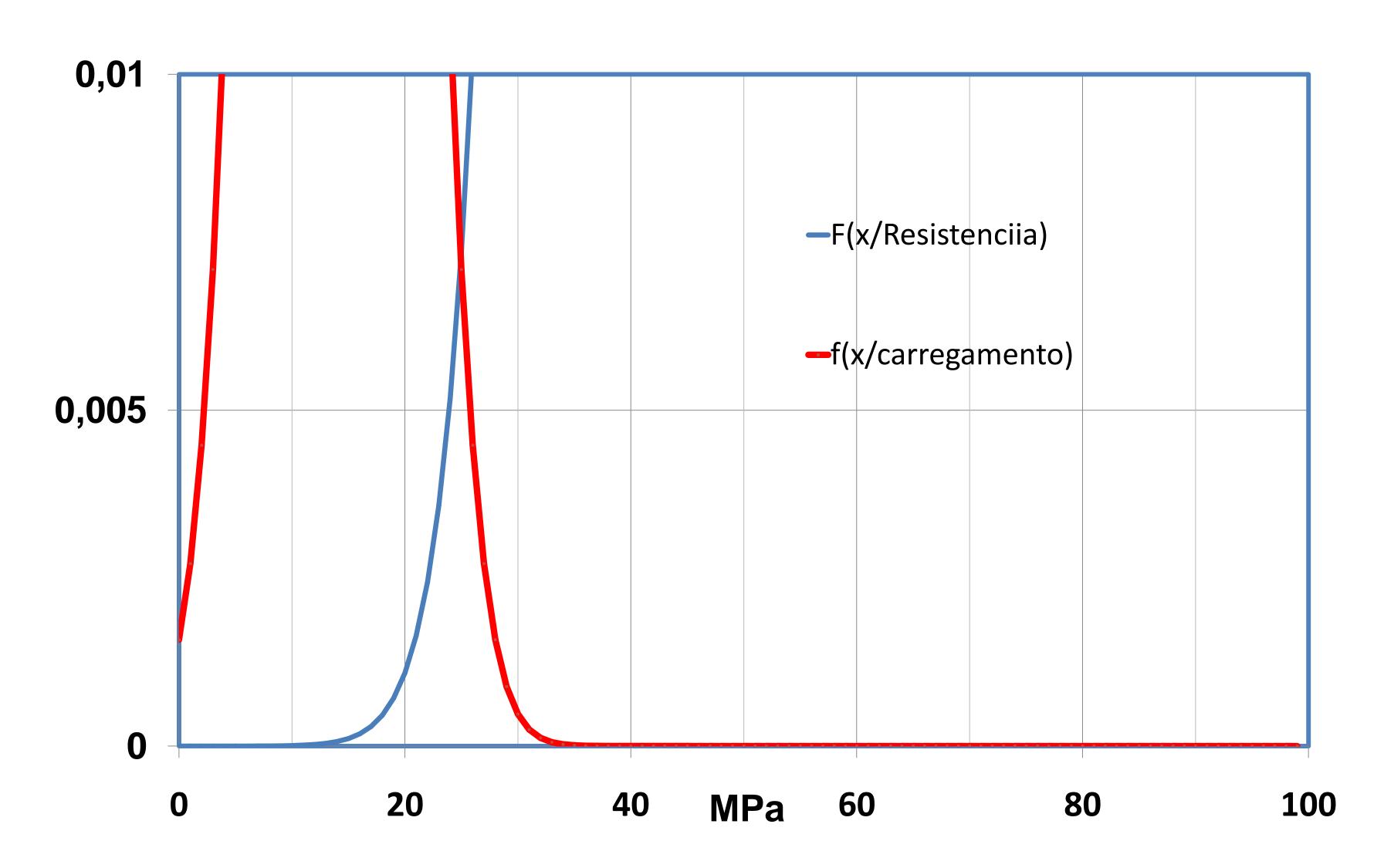
f(x / Carregamento) e f(x / Resistencia)


F(x) – Freqüência acumulada

f(x / Carregamento) e F(x / Resistencia)

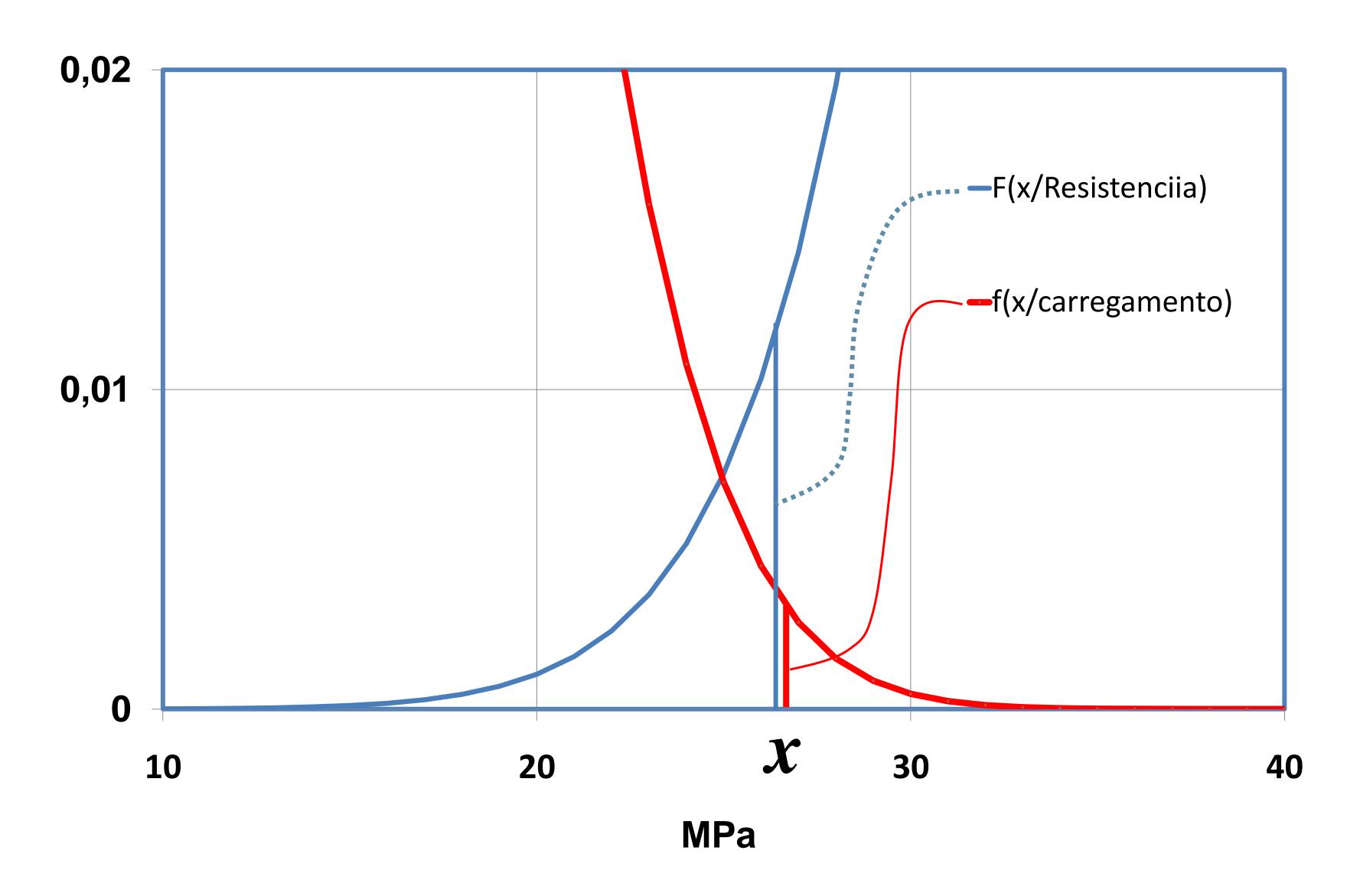

ZOOM

f(x / Carregamento) e F(x / Resistencia)

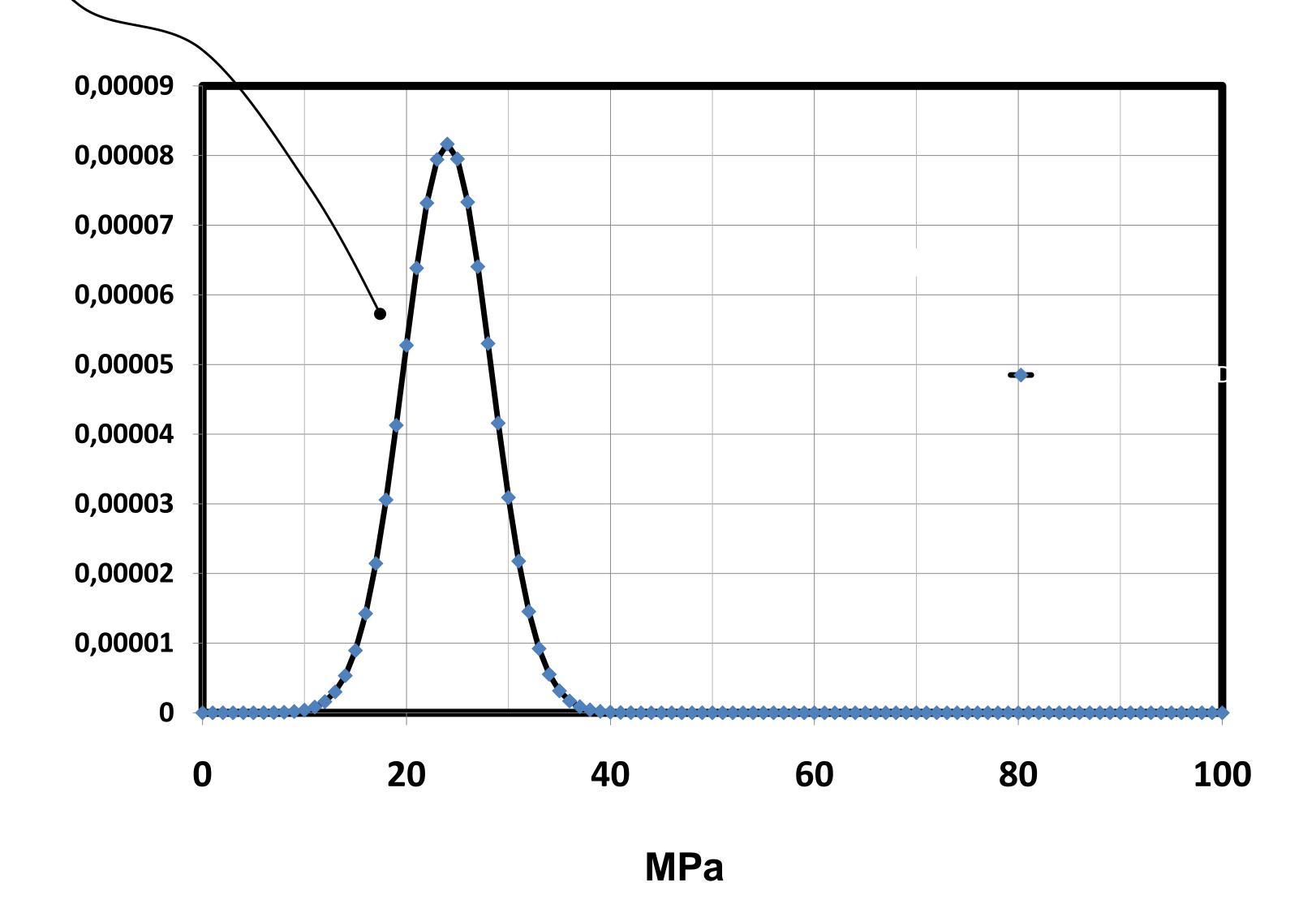

ZOOM ZOOM

f(x / Carregamento) e F(x / Resistencia)

ZOOM ZOOM ZOOM


f(x/Carregamento) e F(x/Resistencia)

$$P_r = P (R \le E_a) = \int_{-1}^{+} f_{Ea}(x) F_R(x) dx$$


ZOOM ZOOM ZOOM

f(x / Carregamento) e F(x / Resistencia)

Produto = f(x/Carregamento)xF(x/Resistencia)

AREA SOB A CURVA = PROBABILIDADE DE RUINA = 0,0008 = 8/10.000

PROBABILIDADE DE RUÍNA = 1/1250

1 - Verificação segundo a NBR 6118

Concreto

fck =45 MPa -1,645 x 8MPa = 31,84 MPa

fcd = 31.8 MPa / 1.4 = 22.7 MPa

Carregamento

Sigma d = 15 MPa (média ?) x 1,4 = 21 MPa OK

ou ???

Sigma d = { 15 MPa (média) + [1,645 x 5MPa =8,2] } x 1,4 =32 MPa NÃO OK

2 - Verificação (apenas para comparação e comentários) segundo

1929 - CÓDIGO DE OBRAS ARTHUR SABOIA - SÃO PAULO

http://aquarius.ime.eb.br/~webde2/prof/ethomaz/lobocarneiro/nb1_sp_rj.pdf

1 - CORPOS DE PROVA CÚBICOS 20X20X20 CM,

OBTER A RESISTÊNCIA MÉDIA Rc28 médio cúbico =

- 2 CÁLCULO DE TENSÕES ATUANTES NO ESTÁDIO 2, REGIME ELÁSTICO.
- 3 TENSÃO ADMISSÍVEL DE COMPRESSÃO EM SERVIÇO,

EM PILARES E VIGAS = Rc28 médio cúbico / 4 =

Tensão Atuante média = 15 MPa

Tensão admissível (cubos) = [45MPa (cilindros)/0,85 (cubos)]/4 = 13,23 MPa < 15 MPa NÃO OK ou ≈ OK

2 - Verificação (apenas para comparação e comentários) segundo

1931 - REGULAMENTO PARA CONSTRUÇÕES EM CONCRETO ARMADO - RIO DE JANEIRO

http://aquarius.ime.eb.br/~webde2/prof/ethomaz/lobocarneiro/nb1 sp rj.pdf

OBTER A RESISTÊNCIA MÉDIA

- 1 CÁLCULO DE TENSÕES ATUANTES NO ESTÁDIO 2, REGIME ELÁSTICO.
- 2 CORPO DE PROVA CÚBICO 20X20X20 CM CONCRETO,

TENSÕES ADM9SSÍVEIS EM SERVIÇO, EM PILARES = Rc cúbico médio / 4 < 60 kgf/cm2= 6 MPa !!!!!!

Obs: A resistência dos concretos atuais é muito maior !!!

Tensão Atuante média = 15 MPa

Tensão admissível (cubos) = [45MPa (cilindros) / 0,85 (cubos)] / 4 = 13,23 MPa <15 MPa NÃO OK ou ≈ OK

1944 - PROFESSOR FERNANDO LOBO CARNEIRO

http://aquarius.ime.eb.br/~webde2/prof/ethomaz/lobocarneiro/coef_seg.pdf

Tensões admissíveis no Concreto Armado Prof. Fernando Luiz Lobo B. Carneiro - 1944

Prof. Eduardo C. S. Thomaz Notas de aula

O Eng. Fernando Luiz Lobo B. Carneiro, no Simpósio de Estruturas de 1944, apresentou um método semi-probabilístico de dimensionamento do concreto armado. Introduziu o conceito de fck (acr = resistência minima) em contraposição ao de fcm (ac28 = resistência média), então vigente.

2.º VOLUME

A Construção da Ponte de Barra de São João — Pelo eng.º Glebe Saharov	5
Crítica aos Processos de Cálculo das Estruturas de Concreto Armado dos Edi- tícios — Pelo eng.º Aderson Moreira da Rocha	25
Concreto Protendido — Pelo eng.º Antônio Alves de Noronha	47
Os Coeficientes de Segurança e as Tensões Admissíveis em Peças de Concreto Simples e de Concreto Armado — Pelo eng.º Fernando Luiz Lobo B. Carneiro	8 3
Distribuição da Carga Sôbre um Bioco de Estacas → Pelo eng.º A. J. da Cos	127

- Ele usou como base para as suas considerações a imensa quantidade de resultados de ensaios de concretos e de barras de aço acumulada em pesquisas no INT / RJ.
- A revisão da NB1 de 1946 foi formulada com base nesses conceitos, embora mantendo a expressão "tensão admissível". Ver anexo ao final.

o êrro de 3 %, admitido para a medida da água na obra, que importa em uma variação de cêrca de 5 % na resistência à compressão; e mais o êrro na determinação da umidade dos agregados. E' extremamente pouco provável que essas causas se somem; mas como falamos em resistência mínima, não será impossível encontrar, mesmo em obras rigorosamente controladas, corpos de prova excepcionais inferiores de 25 a 35% em relação à média, devendo ser consideradas absolutamente normais oscilações de 15% acima ou abaixo desta última.

Mostraremos mais adiante que os dispositivos das normas brasileiras NB-1 e NB-2, relativos a tensões admissíveis, podem ser interpretados como baseados na hipótese de que a resistência mínima à compressão do concreto seja igual a 2/3 da resistência exigida, que é aquela na qual se baseia a fixação da dosagem. Isso equivale a admitir que, em obras controladas com rigor, podem apresentar-se corpos de prova excepcionais, inferiores de 33 % em relação à média.

E' êsse o valor que adotaremos. Chamando de $\sigma_{\rm cr}$ a resistência mínima provável à compressão do concreto, e de $\sigma_{\rm c28}$ a resistência para a qual êle é dosado na hipótese de uma obra controlada com o rigor exigido nas normas, teremos

 $\sigma_{\rm cr} = 2/3 \, \sigma_{\rm c28}$ Atual: fck = 2/3 × fcm28

Segundo Professor Fernando Lobo Carneiro:

NB1 / 1946 >>> σ **cr = 2/3 x** σ **c28** >>> Atual fck = 2/3 fcm

NBR 6118 atual >>> fck = (fcm -1,645 x desvio padrão)=2/3fcm

>>> desvio padrão = dp = $(1/3 \text{fcm}) / 1,645 = 0,2026 \text{ fcm} \approx 0,20 \text{ fcm}$

A NB1 / 1946 usava, pois, um desvio padrão de 20% fcm

Usaremos esse desvio padrão para calcular a probabilidade de ruína.

Com o desvio padrão d.p. = 20 % fcm na resistência do concreto, a probabilidade de ruína é da ordem de de 10⁻³. *Ver adiante..*

PROBABILIDADE DE RUÍNA

RESISTENCIA fcm MPa		fcm = 25 MPa			fcm = 35 MPa			fcm = 45 MPa		
CARREGAMENTO										
O m MPa	Coef. Variação = Desvio Padrão / fcm =	20%	15%	10%	20%	15%	10%	20%	15%	10%
	d.p. MPa	5,0 MPa	3,8 MPa	2,5 MPa	7,0 MPa	5,3 MPa	3,5 MPa	9,0 MPa	6,8 MPa	4,5 MPa
	fck MPa	16,67 Mpa	18,7MPa	20,9 MPa	23,5 MPa	26,3 MPa	29,2 MPa	30,2 MPa	33,8 MPa	37,6 MPa
Om MPa		↓	↓	↓	↓	↓	↓	\	↓	↓
О m = 8 мРа	30% = 2,4 MPa	1,4x10 ⁻³	1,0x10 ⁻⁴	8,9x10 ⁻⁷						
	20% = 1,6 MPa	0,9x10 ⁻³	2.5x10 ^{- 5}	1.2x10 - 8						
	10% = 0,8 MPa	0,5x10 ⁻³	8,0x10 ⁻⁶	1,3x10 ⁻¹⁰						
						_				
<i>O</i> m =10 MPa	30% = 3,0 MPa						5,0 × 10 ⁻⁸			
	20% = 2,0 MPa					L				
	10% = 1,0 MPa				0.3×10^{-3}	2,2 × 10 ⁻⁶	7,3 x 10 ⁻¹²			
								_3	4	6
От =15 мРа	30% = 4,5 MPa								1,5 × 10 ⁻⁴	
	20% = 3,0 MPa							0.9×10^{-3}	3,6 × 10 ⁻⁵	2,3 × 10 ⁻⁸ 2,3 × 10 ⁻¹⁰
	10% = 1,5 MPa							0,6 x 10 ⁻³	1,1 ×10 ⁻³	2,3 × 10 ⁻¹⁰

Em obra com desvio padrão = 20 % fcm na resistência do concreto, a probabilidade de ruína é da ordem de 10^{-3} .