SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO

ESTRUTURAS METÁLICAS LIGAÇÕES PARAFUSADAS (NBR 8800/2008) Maj Moniz de Aragão

ncia dos parafusos	pág 06
ıta e área efetiva à tração	09
ncia de cálculo à tração	09
ncia de cálculo à força cortante	17
o de tração com cisalhamento	18
ncia à pressão de contato em furos	19
nento entre furos e entre furo e borda	36
ncia de cálculo em ligações por atrito	40
por rasgamento	43
	ncia dos parafusos uta e área efetiva à tração ncia de cálculo à tração ncia de cálculo à força cortante o de tração com cisalhamento ncia à pressão de contato em furos mento entre furos e entre furo e borda ncia de cálculo em ligações por atrito por rasgamento

Permitem montagens mais rápidas e de inspeção fácil;

Permitem desmontagens para alteração e reparo;

Vantagens

Economia de energia;

Menor MDO (não qualificada);

Boa resposta à fadiga;

Desvantagens

Áreas líquidas → reforço

Necessidade de pré-montagem

Dificuldade para modificações

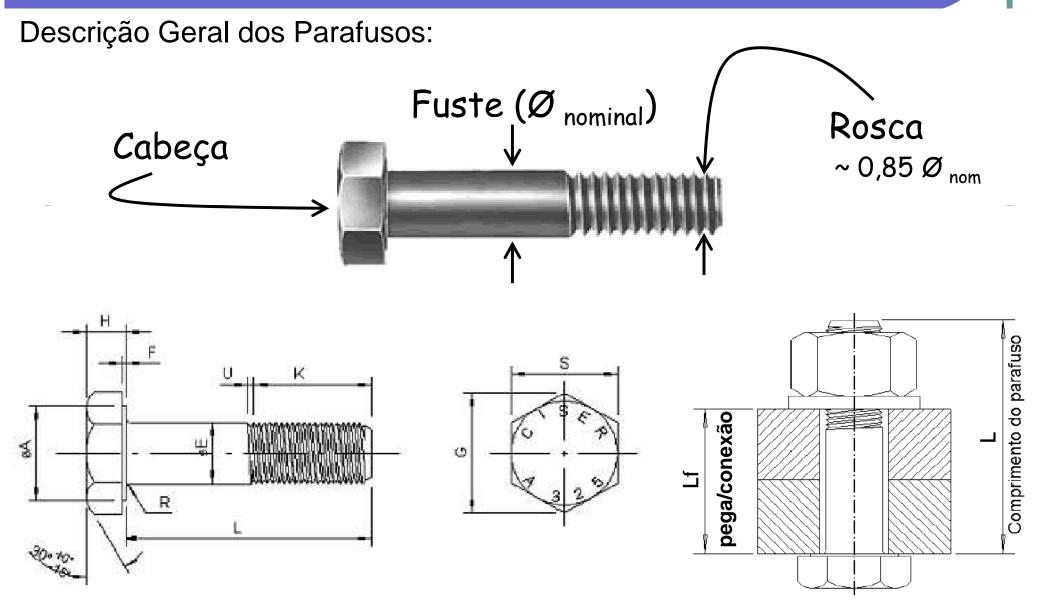
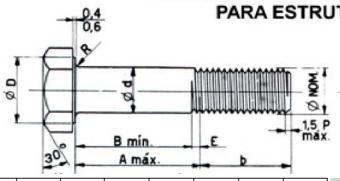
Descrição Geral dos Parafusos:

Parafuso Sextavado rosca parcial

Parafuso Sextavado rosca inteira

Arruela

Porca

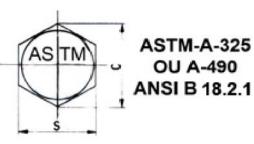

Fig. 4.1 Representação das dimensões.

Fig. 4.2 Representação do comprimento

PARAFUSOS ASTM A-325

PARAFUSOS DE ALTA RESISTÊNCIA PARA ESTRUTURAS

NOMIN	AL	1/2	5/8	3/4	7/8	1"	1.1/8	1.1/4	1.3/8	1.1/2
Fios/Pole	gadas	13	11	10	9	8	7	7	6	6
d	min.	12,24	15,37	18,52	21,64	24,79	27,89	31,06	34,16	37,34
	max.	13,08	16,30	19,51	22,73	25,96	29,18	32,43	35,66	38,89
S	min.	21,6	26,2	30,8	35,4	40,0	44,6	49,3	53,8	58,4
	max.	22,2	27,0	31,7	36,5	41,3	46,0	50,8	55,6	60,3
Н	min.	7,7	9,6	11,6	13,5	15,0	16,7	19,1	20,6	22,9
	max.	8,2	10,2	12,3	14,3	15,9	18,2	20,6	22,3	24,7
С	min.	24,6	29,8	35,1	40,4	45,6	50,9	56,1	61,4	66,6
	max.	25,6	31,2	36,6	42,2	47,6	53,2	58,6	64,2	69,6
D	min.	20,0	24,4	28,5	32,9	37,1	41,4	45,8	50,0	54,2
	max.	21,1	25,7	30,1	34,7	39,2	43,7	48,3	52,8	57,3
R	min.	0,3	0,6	0,6	0,8	1,6	1,6	1,6	1,6	1,6
	max.	0,8	1,6	1,6	1,6	2,3	2,3	2,3	2,3	2,3
b	básico	25,4	31,7	35,0	38,1	44,5	50,8	50,8	57,2	57,2
Е	max.	4,8	5,6	6,3	7,1	7,9	8,6	9,6	11,2	11,2
tolerância	menor 6"	+ 0 / -3 + 0 / - 4,7 + 0 / - 6,3								
para L	maior 6"	+ 0	- 4,7			+ 0 /	- 6,6			

Resistência dos Parafusos

Tabela A.3 — Materiais usados em parafusos

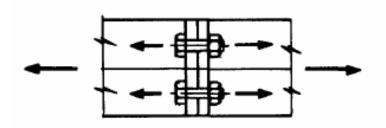
Especificação	Especificação f_{yb} f_{ub} MPa MPa	$f_{ m ub}$	Diâmetro $d_{ m b}$		
Lapcomoação		MPa	mm	pol	
ASTM A307	-	415	-	$1/2 \le d_{\rm b} \le 4$	
ISO 898-1 Classe 4.6	235	400	$12 \le d_{\rm b} \le 36$	-	
ASTM A325 ^a	635 560	825 725	$16 \le d_{b} \le 24 \\ 24 < d_{b} \le 36$	$1/2 \le d_b \le 1$ $1 < d_b \le 1\frac{1}{2}$	
ISO 4016 Classe 8.8	640	800	$12 \le d_{\rm b} \le 36$	-	
ASTM A490	895	1035	$16 \le d_{\rm b} \le 36$	$1/2 \le d_{\rm b} \le 1\frac{1}{2}$	
ISO 4016 Classe 10.9	900	1000	$12 \le d_{\rm b} \le 36$	-	

Disponíveis também com resistência à corrosão atmosférica comparável à dos aços AR 350 COR ou à dos aços ASTM A588.

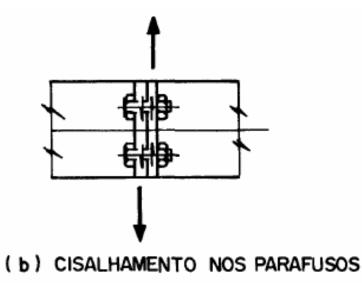
Cálculo do Parafuso Resistências de cálculo – NBR 8800:2008

Força resistente de cálculo de parafusos

$$f_d = \frac{f_k}{\gamma_m}$$


	Aço estrutural, pinos e parafusos (γ _a)			
Combinações	Escoamento e Instabilidade (γ _{a1})	Ruptura (γ _{a2})		
Normais	1,10	1,35		
Especiais ou de construção	1,10	1,35		
Excepcionais	1,00	1,15		

 f_d - resistência de cálculo ou projeto


 f_k - resistência característica

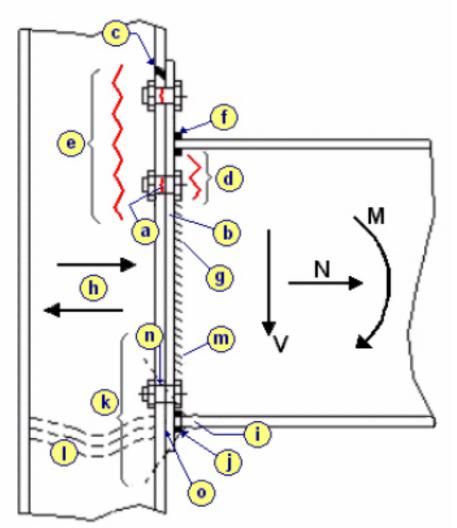
 γ_m - coeficiente de ponderação

Classificação quanto à solicitação:

(a) TRAÇÃO NOS PARAFUSOS

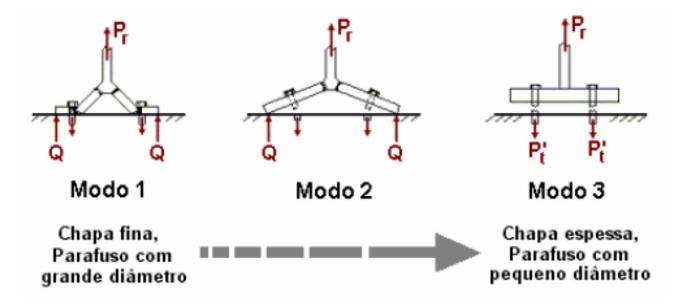
item 6.3 - NBR 8800:2008

Área bruta e efetiva para tração:

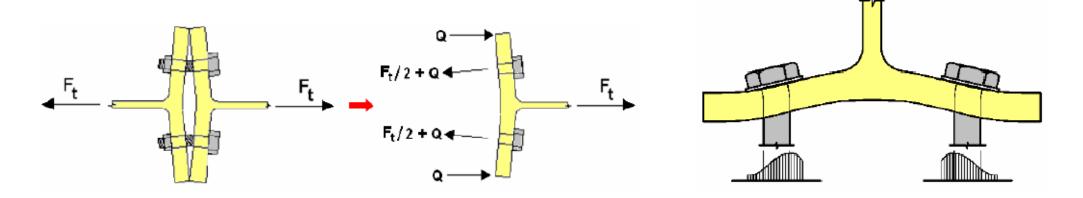

$$A_{be} = 0.75 \cdot A_b \qquad A_b = \frac{\pi d_b^2}{4}$$

 d_b – diâmetro nominal (externo) do parafuso

Força resistente de cálculo à tração:


$$F_{t,R_d} = R_d = \frac{A_{be} f_{ub}}{\gamma_{a2}}$$

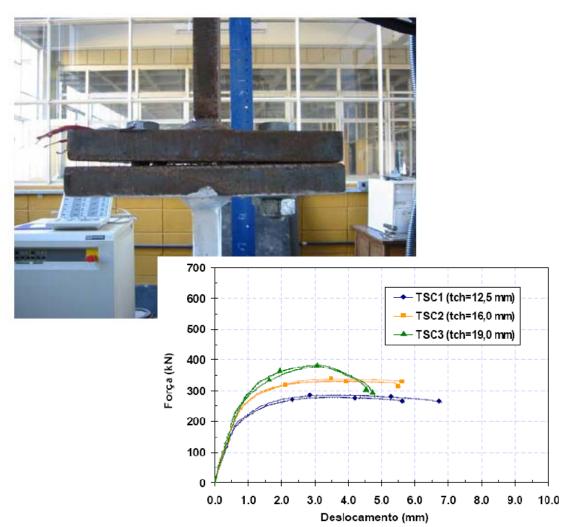
Exemplo de verificações: ligação rígida pilar-viga



Região	Ref. fig. 3.2	Verificação		
	а	Tração nos parafusos		
	b	Flexão da chapa de topo		
	С	Flexão da mesa do pilar		
Tracionada	d	Tração na alma da viga		
	e	Tração na alma do pilar		
	f	Solda mesa/chapa de topo		
	g	Solda alma/chapa de topo		
Cisalhamento	h	Cisalhamento no painel		
Horizontal		de alma do pilar		
	i	Mesa da viga		
Comprimida	j	Solda mesa/chapa de topo		
Compilina	k	Enrugamento da alma do pilar		
	1	Flambagem da alma do pilar		
Cisalhamento	m	Solda alma/chapa de topo		
Vertical	n	Cisalhamento nos parafusos		
Vertical	0	Pressão de contato (mesa ou chapa)		

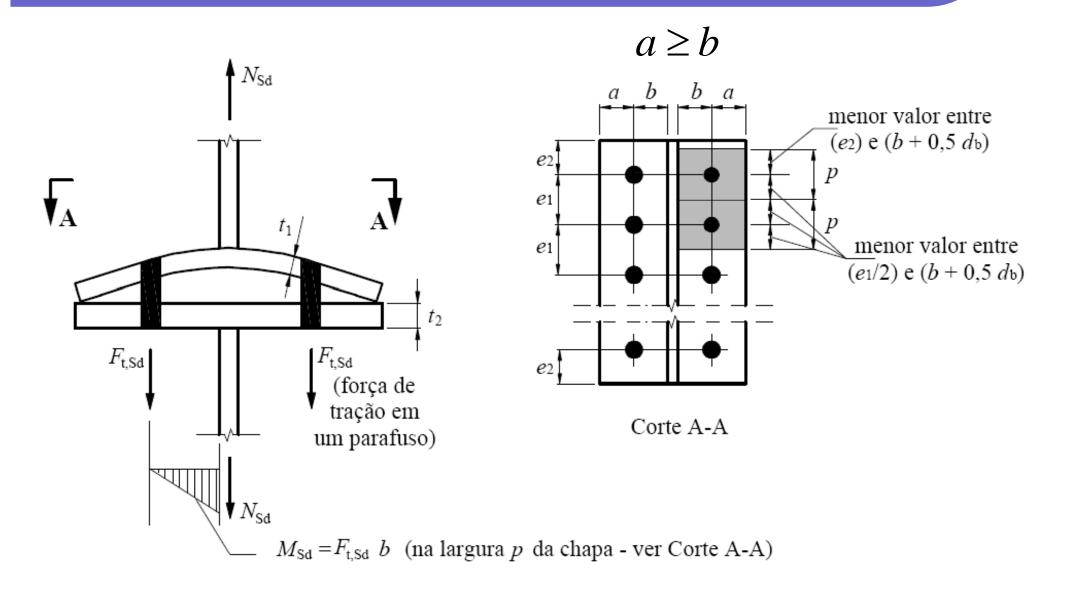
Colapso por tração:

"efeito alavanca":



Colapso por tração nos parafusos:

ruptura do parafuso x espessura da mesa



"efeito alavanca"

EFEITO ALAVANCA

NBR 8800:2008 item 6.3.5

EFEITO ALAVANCA

NBR 8800:2008 item 6.3.5

Na determinação das espessuras t₁ e t₂ das partes ligadas:

Na determinação dos parafusos:

Momento resistente plástico

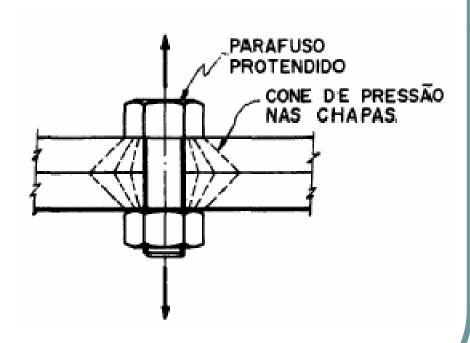
$$\mathbf{Z}f_{\mathbf{y}}$$

$$F_{t,R_d} \leftarrow 0.67 \cdot F_{t,R_d}$$

ou...

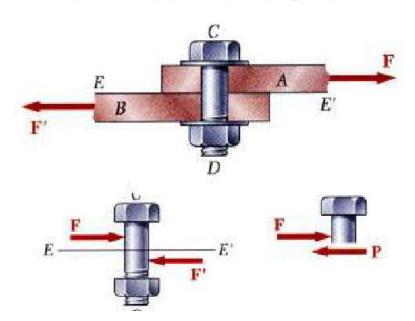
Momento resistente elástico


$$Wf_{y}$$

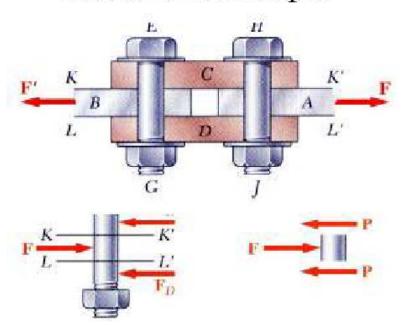

$$F_{t,R_d} \leftarrow 0.75 \cdot F_{t,R_d}$$

Ligações de cisalhamento

Ligações por contato:



Ligações por atrito:



Ligações por contato:

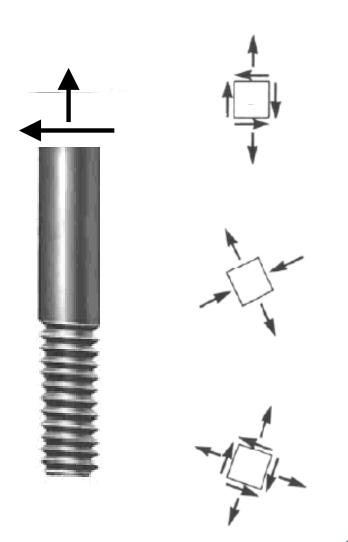
Cisalhamento Simples

Cisalhamento Duplo

Resistência de Cálculo devido ao corte do parafuso

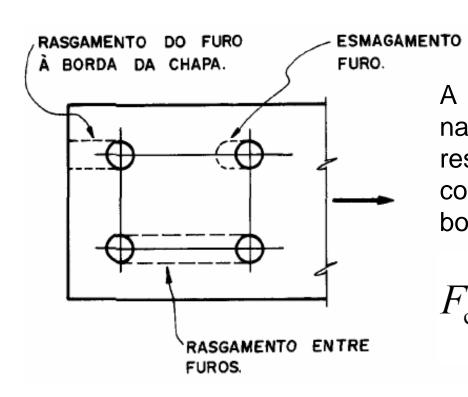
Item 6.3.3.2 – NBR 8800

$$0.4 \frac{A_b f_{ub}}{\gamma_{a2}}$$
 parafusos A307, barras rosqueadas e parafusos A325N (corte na rosca)


$$0.5 \frac{A_b f_{ub}}{\gamma_{a2}}$$
 A325X (corte no fuste)

Interação de Tração com Cisalhamento

Item 6.3.3.4 - NBR 8800


Tração com Cisalhamento:

$$\left(\frac{F_{\text{t,Sd}}}{F_{\text{t,Rd}}}\right)^2 + \left(\frac{F_{\text{v,Sd}}}{F_{\text{v,Rd}}}\right)^2 \le 1,0$$

Resistência à pressão de contato em furos (item 6.3.3.3)

Pressão de contato na parede de um furo (longitudinal ao carregamento):

A resistência de cálculo à pressão de contato na parede de um furo, já levando em conta a resistência ao rasgamento entre dois furos consecutivos ou entre um furo extremo e a borda, é dada por:

$$F_{\rm c,Rd} = \frac{1.2\,\ell_{\rm f}\,t\,f_{\rm u}}{\gamma_{\rm a2}} \leq 2.4\,d_{\rm b}\,t\,f_{\rm u}\,/\gamma_{\rm a2}$$
 esmagamento

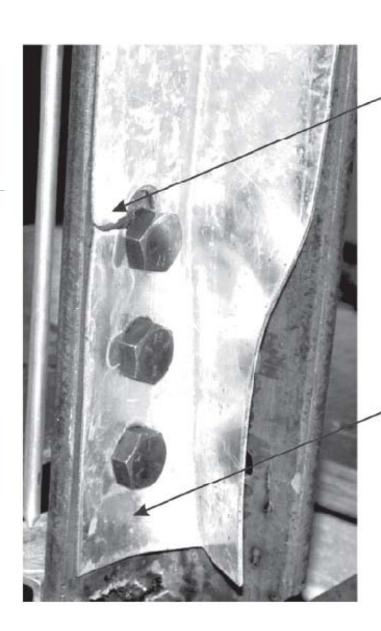
 $\ell_{\rm f}$ é a distância livre, na direção da força, entre a borda do furo e a borda do furo adjacente ou a borda da parte ligada;

 $d_{
m b}$ é o diâmetro do parafuso;

t é a espessura da parte ligada.

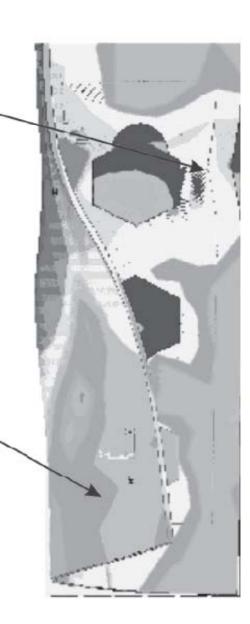
Furação para parafusos

	Diâmetro do parafuso ou barra redonda rosqueada d_b	Diâmetro do furo padrão	Diâmetro do furo alargado	Dimensões de um furo pouco alongado	Dimensões um furo muito alongado
ses etro	≤ 24	$d_{\rm b}$ + 1,5	$d_{b} + 5$	$(d_{b}+1,5)\times(d_{b}+6)$	$(d_{\mathbf{b}} + 1.5) \times 2.5 d_{\mathbf{b}}$
Dimensões em milímetro	27	28,5	33	28,5×35	28,5×67,5
Dir em r	≥ 30	d _b + 1,5	$d_b + 8$	$(d_b + 1,5) \times (d_b + 9,5)$	$(d_{b} + 1,5) \times 2,5 d_{b}$
Ses	≤ 7 / 8	$d_{\rm b}$ +1/16	$d_{\mathbf{b}} + 3/16$	$(d_b + 1/16) \times (d_b + 1/4)$	$(d_{\mathbf{b}} + 1/16) \times 2,5 d_{\mathbf{b}}$
Dimensões em polegada	1	1 1/16	11/4	11/16×15/16	1 1/16×2 1/2
Dir	≥11/8	$d_{b} + 1/16$	$d_{b} + 5/16$	$(d_b + 1/16) \times (d_b + 3/8)$	$(d_{\mathbf{b}} + 1/16) \times 2,5 d_{\mathbf{b}}$
				1	

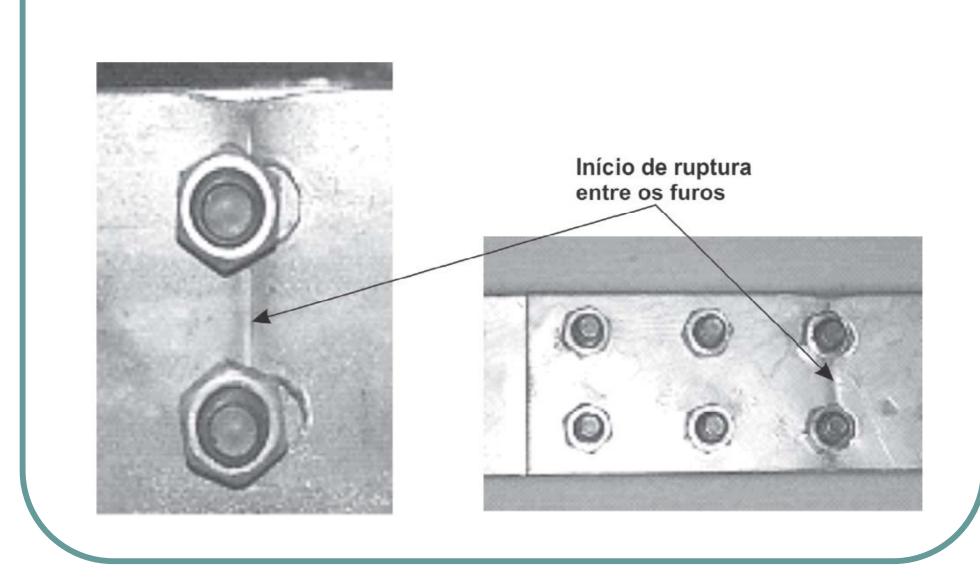

20

Tab. 12 – NBR 8800

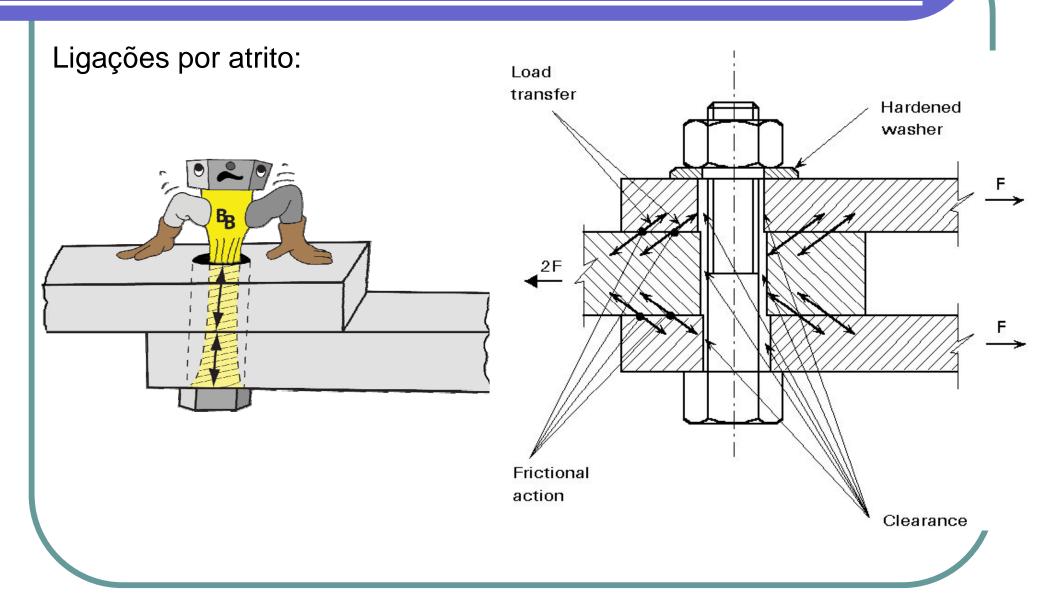
Limitações relativas ao emprego de furos alargados ou alongados

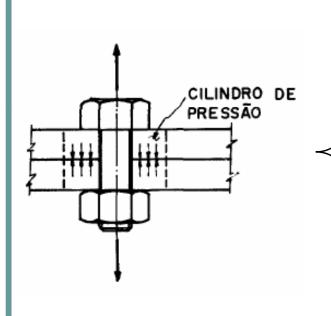

Tipo de	Tipo de	Limitações				
furo	ligação permitido	Posição do furo	Arruelas 1)			
Alargado	Por atrito	Em qualquer uma ou em todas as chapas da ligação	Endurecidas, sobre furos alargados em chapas externas da ligação			
Pouco	Por atrito Pouco	Em qualquer uma ou em todas as chapas de ligação. Qualquer posição, independentemente da direção da solicitação	Sobre furos pouco alongados en chapas externas da ligação deven ser usadas arruelas; tais arruelas devem ser endurecidas quando os parafusos forem de alta resistência.			
alongado	Por contato	Em qualquer uma ou em todas as chapas da ligação. Maior dimensão normal à direção da solicitação				
Muito alongado	Por atrito	Em somente uma das partes da ligação, para a mesma superficie de contato. Qualquer posição, independentemente da direção da solicitação	Arruelas de chapa ou barras chatas contínuas, de aço estrutural, com espessura mínima de 8mm e com furos padrão, devem ser usadas sobre furos muito alongados em chapas externas. Tais arruelas ou barras devem ter dimensões suficientes para cobrir totalmente			
	Por contato	Em somente uma das partes da ligação, para a mesma superfície de contato. Maior dimensão normal à direção da solicitação	os furos alongados após a instalação dos parafusos. Quando for necessário usar arruelas endurecidas (ver 6.7.4.2 e 1), estas serão colocadas sobre aquelas arruelas de chapas ou barras contínuas			

Verificação na chapa devido à presença de furos



Ruptura da ligação entre furo e borda e, estricção da aba


Deformação da aba, não conectada, da cantoneira


Verificação na chapa devido à presença de furos

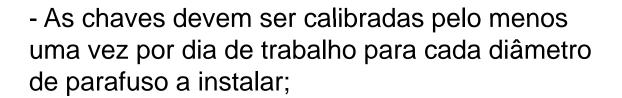
Ref: "Análise numérica de ligações parafusadas em chapas finas e em perfis formados a frio", Rezende, P. G.; Neto, J. M.; Malite M., Semina: Ciências Exatas e Tecnológicas, Londrina, v. 27, n. 1, p. 23-37, jan./jun. 2006

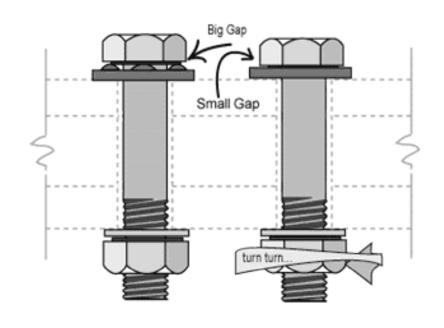
LIGAÇÕES PARAFUSADAS POR ATRITO Aperto do parafuso (item 6.7.4)

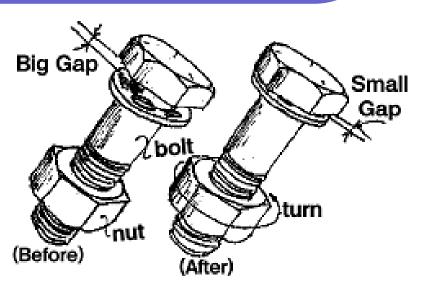
- método da rotação da porca;
- chave calibrada
- indicador direto de tração
- parafusos com controle de tração

LIGAÇÕES PARAFUSADAS POR ATRITO Aperto do parafuso (item 6.7.4)

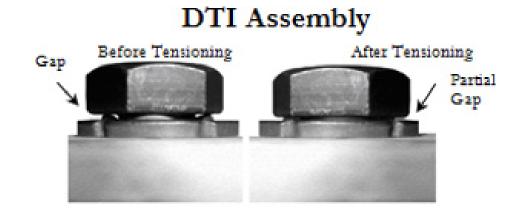
6.7.4.3 Aperto pelo método da rotação da porca


Quando for usado o método de aperto pela rotação da porca para aplicar a força de protensão mínima especificada na Tabela 15, deve haver número suficiente de parafusos na condição de pré-torque, de forma a garantir que as partes estejam em pleno contato. A condição de pré-torque é definida como o aperto obtido após poucos impactos aplicados por uma chave de impacto, ou pelo esforço máximo aplicado por um operário usando uma chave normal. Após essa operação inicial, devem ser colocados parafusos nos furos restantes e tais parafusos também levados à condição de pré-torque. Todos os parafusos da ligação devem então receber um aperto adicional, através da rotação aplicável da porca, como indicado na Tabela 16, devendo essa operação começar na parte mais rígida da ligação e prosseguir em direção às bordas livres. Durante essa operação, a parte oposta àquela em que se aplica a rotação não pode girar.



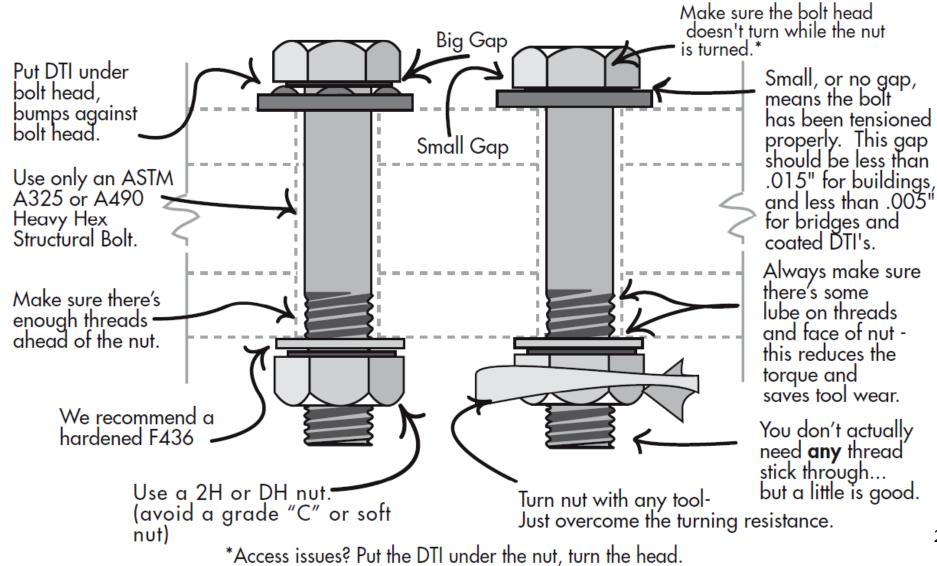

LIGAÇÕES PARAFUSADAS POR ATRITO Técnicas de aparafusamento

Chave de torque calibradora (Torquímetro - estalo/sinal/relógio)



LIGAÇÕES PARAFUSADAS Arruela com indicador de carga (DTI)

Direct Tension Indicators



Ref: http://www.appliedbolting.com/

LIGAÇÕES PARAFUSADAS

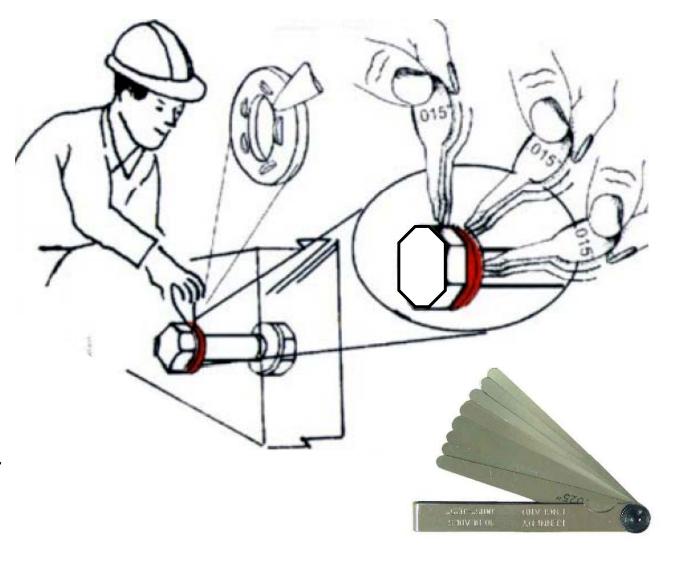
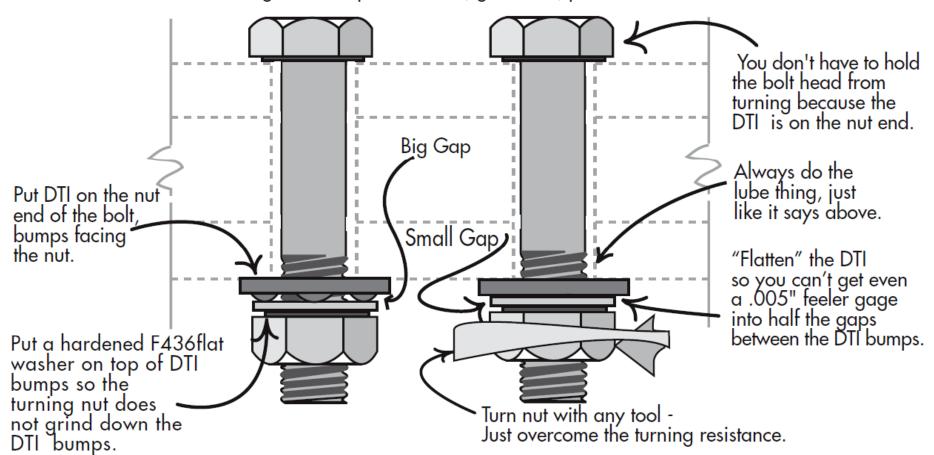

Arruela com indicador de carga

Fig. (A) This is one way to use a DTI:

Arruela com indicador de carga

Para parafusos não revestidos e quando o DTI está instalado sob a cabeça do parafuso e a porca é girada para apertar, certifique-se que o gabarito de 0,015" não vai entrar pelo menos em metade das lacunas da arruela. Isso significa que a diferença DTI residual é menor que uma folga de 0,015".



Ref: http://www.appliedbolting.com/pdf/chin_instruction.pdf

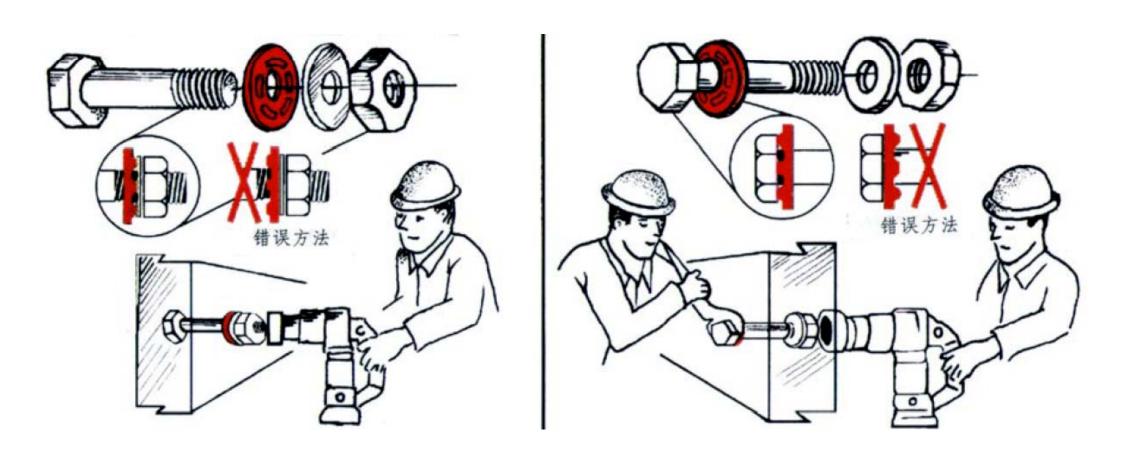

Arruela com indicador de carga

Fig. (B) This way is often preferred by steel erectors:

(In the past, this used the be the last resort. Not any more. Our DTI's are designed to be put here. So, go ahead, put it on the nut side!)

Arruela com indicador de carga

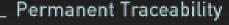
32

Arruela com indicador de carga

The TurnaSure DTI

ASTM Grade Marking

Indicates proper grade of bolt the DTI must be paired with.

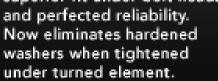

Patented Protrusion **Pockets**

Patented protrusion pockets assure consistency regardless of surface condition.

Friction Free Push Back™

TurnaSure Trademark

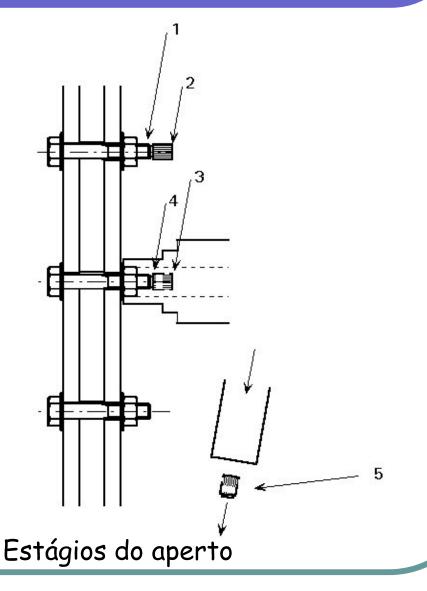
The TurnaSure trademark is the symbol of the most accurate system on the market (±1% accuracy).


Lot number for lot sizes up to 250,000 pieces allow for permanent traceability of installed parts to all original manufacturing and test data.

Indentations

Indents assist in fast & easy inspection.

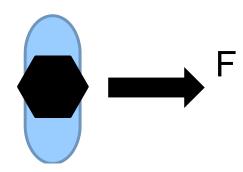
Curved Protrusions


New curved protrusions for superior fit under bolt heads and perfected reliability. Now eliminates hardened washers when tightened under turned element.

Parafuso com controle de tensão

Conjunto ASTM A 325 TC com Controlador de Tensão

Ref: Apresentação Comercial do Fabricante "Parafusos Ciser", Valdecir Furtado, 2007.


Ligações por atrito:

⇒ Parafusos de alta resistência

- ⇒ Coeficiente de atrito em função da superfície de contato
- ⇒ As exigências de ligação por contato tem que satisfeitas
- ⇒ Verificação da "Resistência ao Deslizamento"

Resistência ao Deslizamento - item 6.3.4

Nas ligações com furos padrão e furos com alongamentos transversais à direção da força aplicada:

O deslizamento constitui Estado Limite de Serviço (E.L.S.)

$$F_{\rm f,Rk} = 0.80~\mu~C_{\rm h}~F_{\rm Tb}~n_{\rm s}~\left(1 - \frac{F_{\rm t,Sk}}{0.80F_{\rm Tb}}\right)$$
 Coef. de atrito fator de furo Redução da força de la

Força de protensão mínima do parafuso

$$\left(1 - \frac{1}{0.80F_{\text{Tb}}}\right)$$

Redução da força de protensão pela força de tração solicitante característica no parafuso

Resistência ao Deslizamento - item 6.3.4

μ é o coeficiente médio de atrito, definido a seguir:

- a) 0,35 para superfícies classe A, isto é, superfícies laminadas, limpas, isentas de óleos ou graxas, sem pintura, e para superfícies classe C, isto é, superfícies galvanizadas a quente com rugosidade aumentada manualmente por meio de escova de aço (não é permitido o uso de máquinas);
- b) 0,50 para superfícies classe B, isto é, superfícies jateadas sem pintura;
- c) 0,20 para superfícies galvanizadas a quente;

 $C_{\rm h}$ é um fator de furo, igual a:

- a) 1,00 para furos-padrão;
- b) 0,85 para furos alargados ou pouco alongados;
- c) 0,70 para furos muito alongados.

Resistência ao Deslizamento - item 6.3.4

Nas ligações com furos com alongamentos <u>paralelos</u> à direção da força aplicada:

o deslizamento constitui Estado Limite Último (E.L.U.)

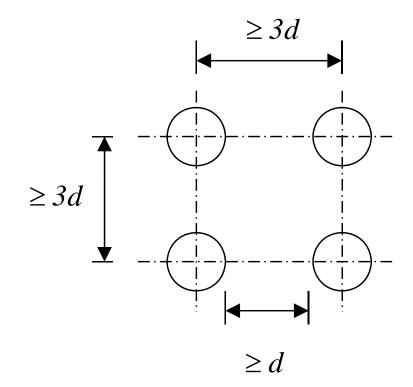
$$F_{f,Rd} = \frac{1,13 \,\mu \, C_{h} \, F_{Tb} \, n_{s}}{\gamma_{e}} \left(1 - \frac{F_{t,Sd}}{1,13 \, F_{Tb}} \right)$$

Coeficiente de ponderação da resistência:

- = 1,2 (comb. normais, especiais ou de construção)
- =1,0 (comb. excepcionais)

Redução da força de protensão pela força de tração solicitante de cálculo no parafuso

LIGAÇÕES PARAFUSADAS Força de Protenção Mínima em parafusos ASTM


Tabela 15 – NBR 8800 - F_{Tb}

 $(\cong 0,70A_{be}f_u)$

Diâmetro d_{b}		F_{Tb} kN	
pol	mm	ASTM A325	ASTM A490
1/2		53	66
5/8		85	106
	16	91	114
3/4		125	156
	20	142	179
	22	176	221
7/8		173	216
	24	205	257
1		227	283
	27	267	334
1 1/8		250	357
	30	326	408
1 1/4		317	453
	36	475	595
1 1/2		460	659

Espaçamento entre furos (itens 6.3.9 e 6.3.10)

Espaçamento **mínimo** entre furos:

Espaçamento **máximo** entre parafusos:

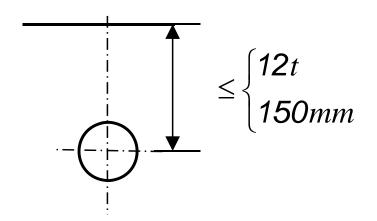
- a) em elementos pintados ou não sujeitos à corrosão, o espaçamento não pode exceder 24 vezes a espessura da parte ligada menos espessa, nem 300 mm;
- b) para elementos sujeitos à corrosão atmosférica, executados com aços resistentes à corrosão, não pintados, o espaçamento não pode exceder 14 vezes a espessura da parte ligada menos espessa, nem 180 mm.

Espaçamento mínimo furo-borda (item 6.3.11)

Tabela 14 — Distância mínima do centro de um furo-padrão à borda a)

Diâmetro $d_{ m b}$		Borda cortada com serra ou tesoura	Borda laminada ou cortada a maçarico ^b
pol	mm	mm	mm
1/2		22	19
5/8	16	29	22
3/4		32	26
	20	35	27
7/8	22	38 °	29
	24	42 °	31
1		44	32
1 1/8	27	50	38
	30	53	39
1 1/4		57	42
	36	64	46
> 1 1/4	> 36	$1,75 d_{\mathfrak{b}}$	$1,25 d_{\mathfrak{b}}$

^a São permitidas distâncias inferiores às desta Tabela, desde que a equação aplicável de 6.3.3.3 seja satisfeita.


b Nesta coluna, as distâncias podem ser reduzidas de 3 mm, quando o furo está em um ponto onde a força solicitante de cálculo não exceda 25 % da força resistente de cálculo.

Nas extremidades de cantoneiras de ligação de vigas e de chapas de extremidade para ligações flexíveis, esta distância pode ser igual a 32 mm.

Espaçamento máximo furo-borda (item 6.3.12)

6.3.12 Distância máxima de um parafuso ou barra rosqueada às bordas

A distância do centro do parafuso mais próximo até essa borda não pode exceder 12 vezes a espessura da parte ligada considerada, nem 150 mm.

Estado Limite de Colapso por Rasgamento:

cisalhamento de uma ou mais linhas de falha

tração de um segmento perpendicular

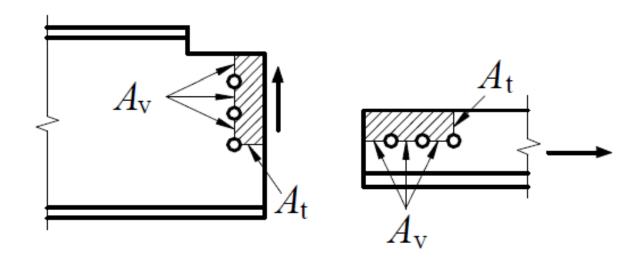


Fig. 18-a NBR 8800 – Situações típicas nas quais deve ser verificado o estado-limite de colapso por rasgamento em ligações parafusadas

Estado Limite de Colapso por Rasgamento:

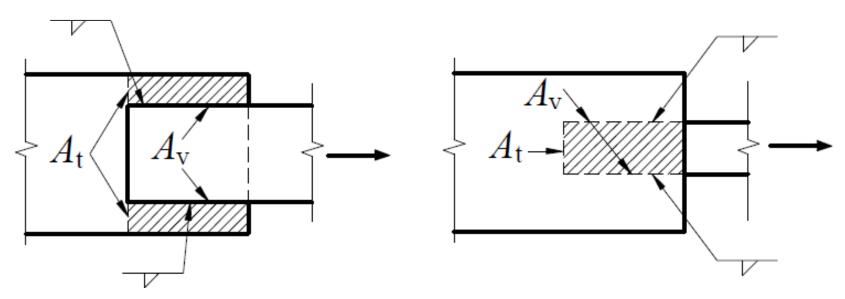


Fig. 18 NBR 8800 – Situações típicas nas quais deve ser verificado o estado-limite de colapso por rasgamento em **ligações soldadas**

Força resistente de cálculo ao colapso por rasgamento:

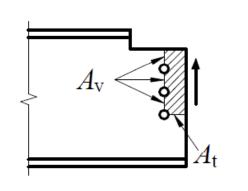
$$F_{\rm r,Rd} = \frac{1}{\gamma_{\rm a2}} (0.60 \, f_{\rm u} \, A_{\rm nv} + C_{\rm ts} \, f_{\rm u} \, A_{\rm nt})$$

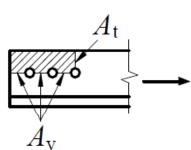
$$\leq \frac{1}{\gamma_{a2}} \left(0,60 f_{y} A_{gv} + C_{ts} f_{u} A_{nt} \right)$$

 $A_{
m gv}$ é a área bruta sujeita a cisalhamento;

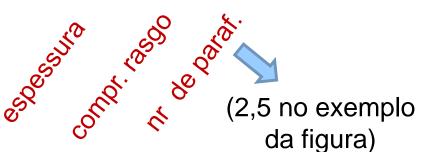
 $A_{\rm nv}$ é a área líquida sujeita a cisalhamento;

 $A_{\rm nt}$ é a área líquida sujeita à tração;

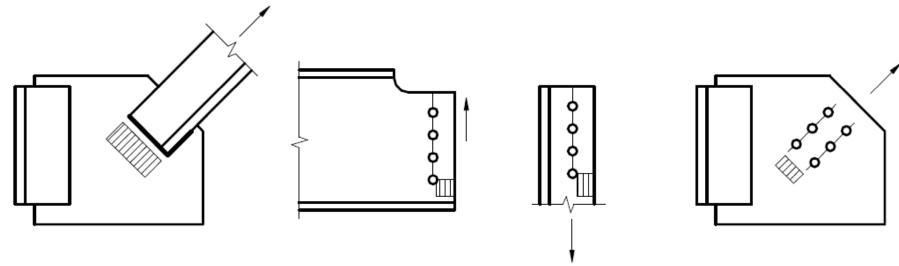

 $C_{
m ts}$ é o coeficiente de redução da área líquida.

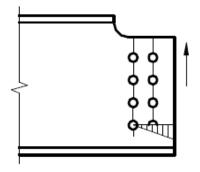

5.2.4 Área líquida

- **5.2.4.1** Em regiões com furos, feitos para ligação ou para qualquer outra finalidade, a área líquida, $A_{\rm n}$, de uma barra é a soma dos produtos da espessura pela largura líquida de cada elemento, calculada como segue:
- em ligações parafusadas, a largura dos furos deve ser considerada 2,0 mm maior que a dimensão máxima desses furos, definida em 6.3.6, perpendicular à direção da força aplicada (alternativamente, caso se possa garantir que os furos sejam executados com broca, pode-se usar a largura igual à dimensão máxima);

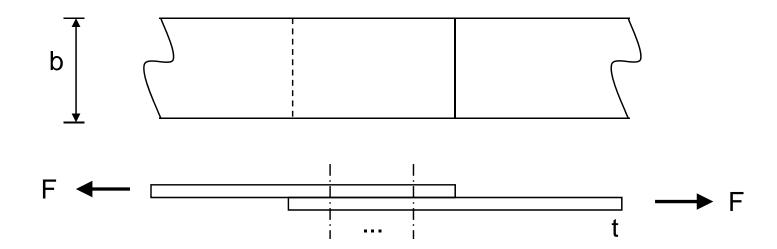

 $A_{
m nv}$ é a área líquida sujeita a cisalhamento;

 $A_{
m nt}$ é a área líquida sujeita à tração;

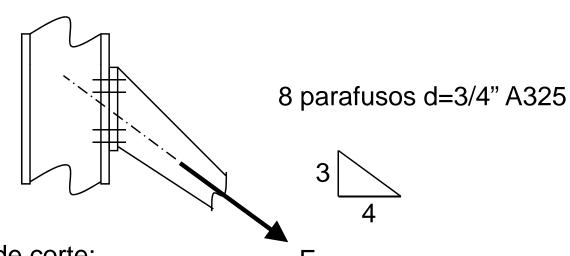

$$A_n = t \cdot \left[\ell - n \cdot \left(d_b + 3.5mm\right)\right]$$


2 mm + 1,5 mm (furo padrão)

 C_{ts} - coeficiente de redução da área líquida:


 $C_{\rm ts}$ =1,0 \Rightarrow Tensão de tração na área líquida uniforme:

 $C_{ts} = 0.5 \Rightarrow$ Tensão de tração na área líquida NÃO-uniforme:


1. Dimensionar a ligação parafusada entre duas chapas com b=400mm e t=12,5mm de aço AR-345 solicitadas com Q=550kN de tração. Usar parafusos A-325 d=3/4" em corte simples. Dimensionar uma ligação "por contato" e outra "por atrito".

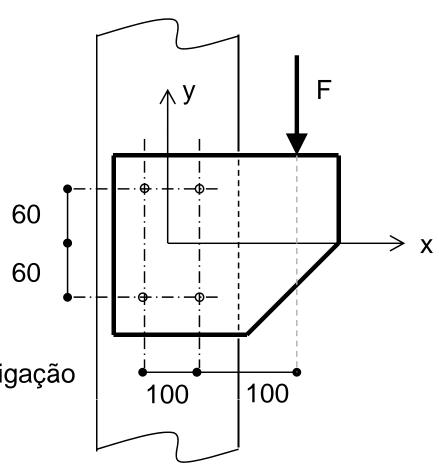
- 2. Verificar se a ligação parafusada abaixo é satisfatória se considerada:
 - a) "por contato";
 - b) "por atrito".

G=100kN

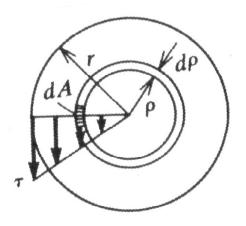
Q=300kN

Considere:

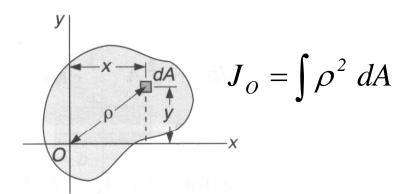
- Roscas no plano de corte;
- Efeito de alavanca desprezível;
- Chapas espessas sem risco de esmagamento pelo parafuso;
- Não verificar a pressão de contato;
- Furos-padrão.


3. Determinar o diâmetro dos parafusos para a ligação apresentada abaixo:

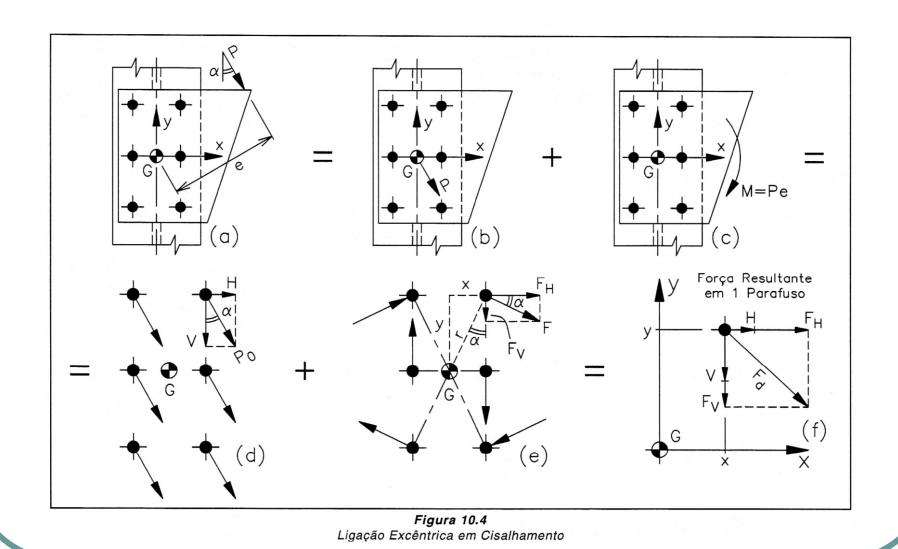
parafusos A325


F=100kN

Considere:


- Ligação por atrito;
- Sem rosca no plano de corte;
- Furos padrão;
- A chapa de ligação não governa a ligação

Observações sobre ligações de cisalhamento excêntrico:



$$\tau = \frac{T}{J}\rho$$

$$F = \tau \, dA = \frac{T}{J} \rho \, dA = \frac{T\rho}{\sum r^2}$$

$$F_{x} = \frac{T\rho_{y}}{\sum r^{2}} \qquad F_{y} = \frac{T\rho_{x}}{\sum r^{2}}$$

Ref: "Curso Básico de Estruturas de Aço", Péricles Barreto de Andrade, Ed. IEA, 1994.