

ESTRUTURAS METÁLICAS

DIMENSIONAMENTO SEGUNDO A NBR-8800:2008

Peças Comprimidas

Prof Marcelo Leão – Cel Prof Moniz de Aragão – Maj

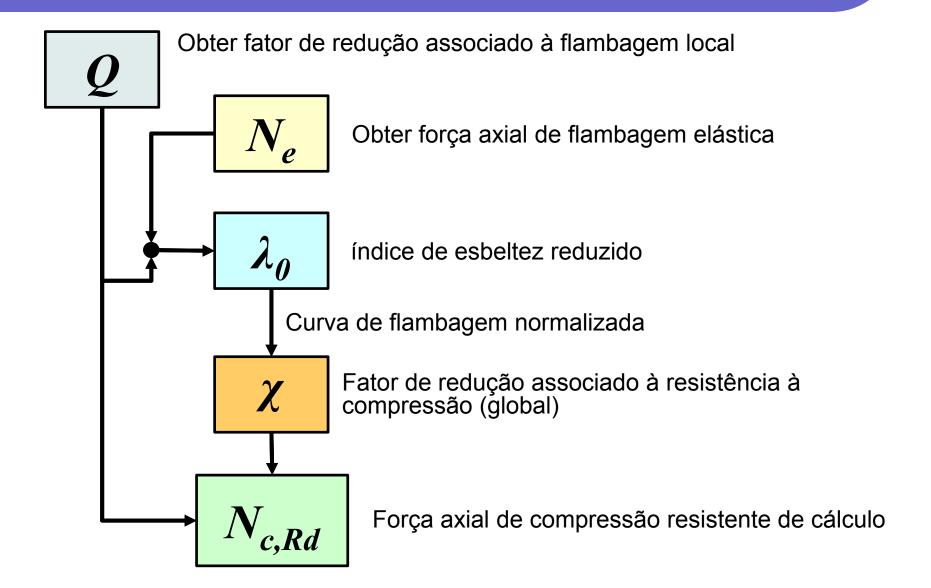
Peças Comprimidas NBR 8800:2008

Item 5.3 – Barras prismáticas submetidas à força axial de compressão

$$N_{\rm c,Sd} \leq N_{\rm c,Rd}$$

 $N_{
m c.Sd}$: força axial de compressão solicitante de cálculo;

 $N_{
m c\ Rd}$: força axial de compressão resistente de cálculo;


$$N_{c,Rd} = \frac{\chi Q A_g f_y}{\gamma_{a1}}$$

$$\chi\equiv {}^{}$$
 Fator de redução associado à resistência à compressão

$$\chi \equiv \begin{array}{l} {\rm Fator~de~redução~associado~\grave{a}} \\ \chi \equiv \begin{array}{l} {\rm Fator~de~redução~associado~\grave{a}} \\ Q \equiv \begin{array}{l} {\rm Fator~de~redução~associado~\grave{a}} \\ {\rm flambagem~local} \end{array}$$

⇒ Estados-limites últimos de instabilidade por flexão, torção ou flexo-torção

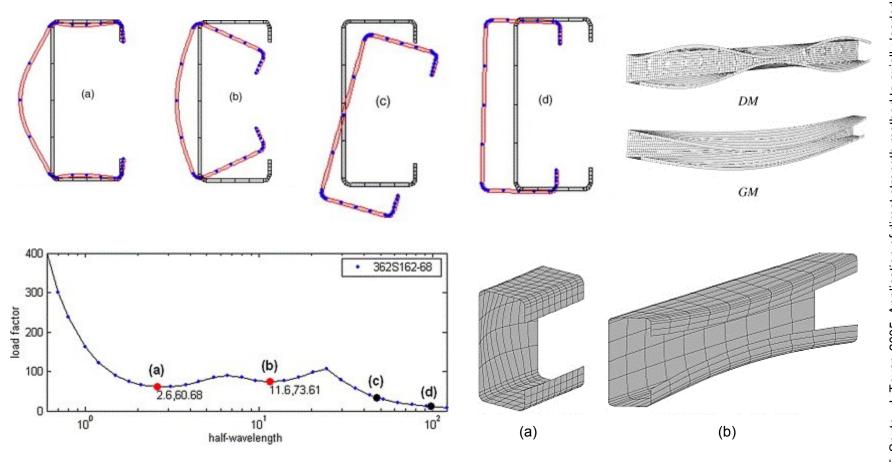
Roteiro

Peças Comprimidas Coeficientes de ponderação

Força resistente de cálculo:

$$f_d = \frac{f_k}{\gamma_m}$$

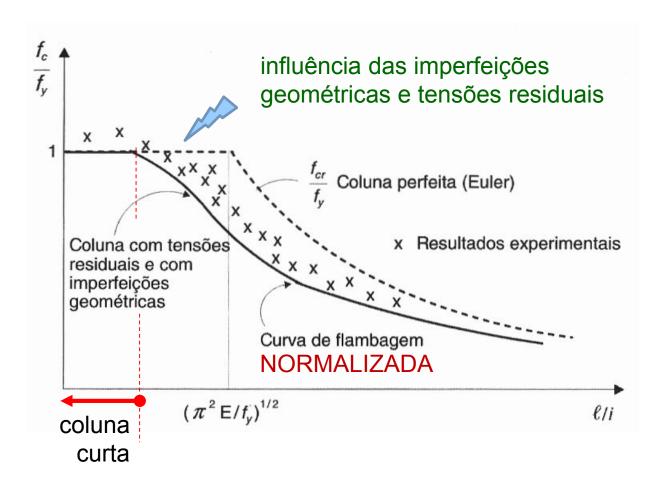
	Aço estrutural, pinos e parafusos (γ _a)			
Combinações	Escoamento e Instabilidade (γ _{a1})	Ruptura (γ _{a2})		
Normais	1,10	1,35		
Especiais ou de construção	1,10	1,35		
Excepcionais	1,00	1,15		


 f_d - resistência de cálculo ou projeto

 f_k - resistência característica

 γ_m - coeficiente de ponderação

Obtendo Q Modos de Flambagem

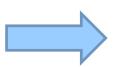

 Flambagens local, distorcional e globais de um perfil aberto de paredes esbeltas, enrijecido (PFF):

Semi-analytical finite strip method based on the shallow shell theory in buckling analysis of . Tovar, 2005, Application of direct strength method to axially loaded perforated cold-

Obtendo Q Flambagem – índice de esbeltez reduzido

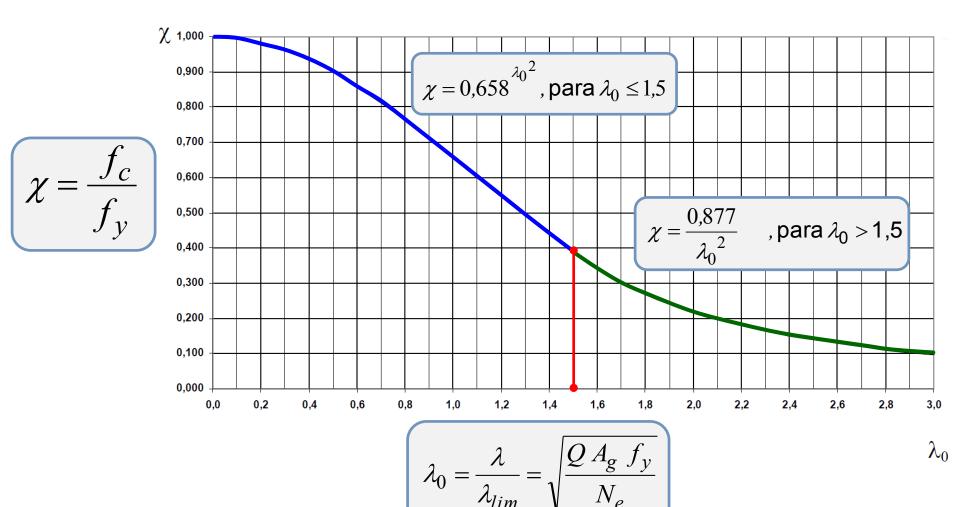
• Variação da resistência de uma coluna comprimida em função do índice de esbeltez $\lambda = \ell / i$:

Curva de Flambagem Normalizada índice de esbeltez reduzido


Carga crítica de Euler:

$$N_{cr} = \frac{\pi^2 EI}{\ell^2}$$

$$\lambda_{lim} = \frac{\ell_{lim}}{i} = \frac{\sqrt{\frac{\pi^2 EI}{N}}}{\sqrt{\frac{I}{A}}} = \sqrt{\frac{\pi^2 EA}{N}} = \sqrt{\frac{\pi^2 E}{f_y}}$$


limite teórico pré-instabilidade

índice de esbeltez reduzido:

$$\lambda_0 = \frac{\lambda}{\lambda_{\text{lim}}} = \frac{\sqrt{\frac{\ell^2 A}{I}}}{\sqrt{\frac{\pi^2 E}{f_y}}} = \sqrt{\frac{\frac{A_g f_y}{T}}{\frac{\pi^2 EI}{\ell^2}}} = \sqrt{\frac{\frac{A_g f_y}{N_e/Q}}{N_e/Q}}$$

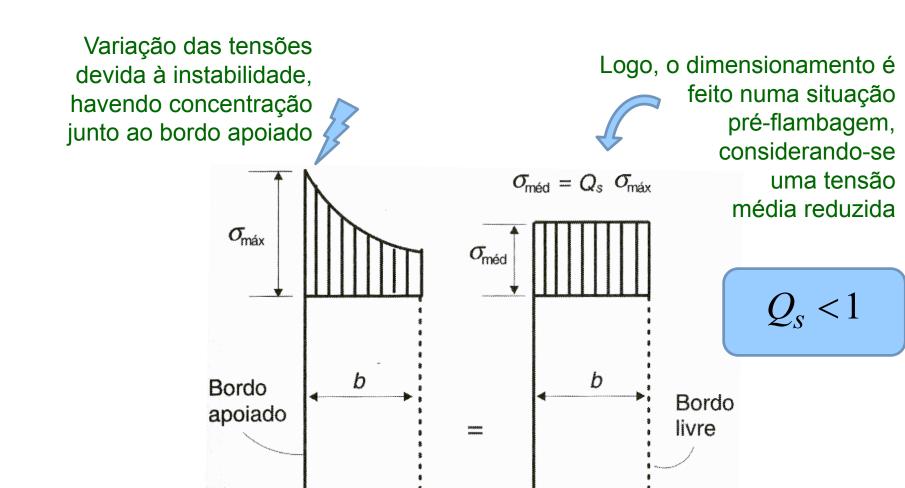
Curva de Flambagem Normalizada fator de redução χ

Obtendo Q NBR 8800:2008 – Anexo F

Elementos que fazem parte das seções transversais usuais são classificados em:

AA (duas bordas longitudinais vinculadas)

AL (apenas uma borda longitudinal vinculada)


As barras submetidas à força axial de compressão, nas quais todos os elementos componentes da seção transversal possuem relações entre largura e espessura que não superam os valores dados na Tabela F.1, têm o fator de redução total:

$$Q = 1$$

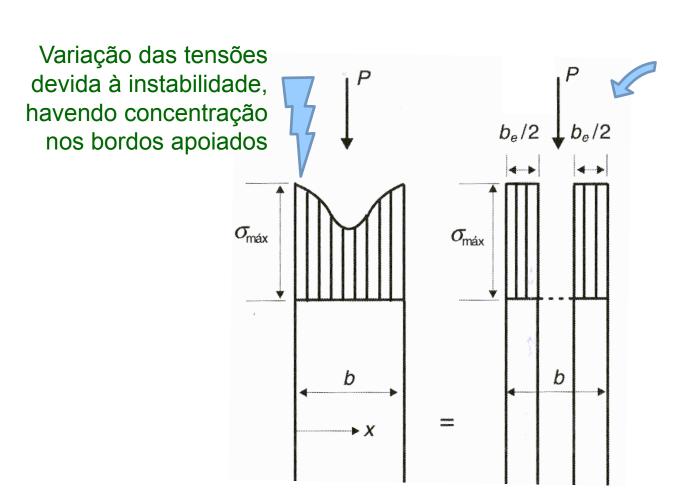
Caso contrário, deverá ser calculado segundo itens F.2 ou F.3 da NBR 8800:2008.

Obtendo Q Fator de redução associado à flambagem local

Placa AL (bordo Apoiado - bordo Livre): Não existe resistência após a flambagem

Obtendo Q - NBR 8800:2008 - Anexo F Valores limites de *b/t* para impedir flambagem local

Elementos AL


(apenas uma borda longitudinal vinculada, "não-enrijecidos")

Elementos	Grupo	Descrição dos elementos	Alguns exemplos com indicação de b e t	$(b/t)_{\lim}$
	3	Abas de cantoneiras simples ou múltiplas providas de chapas de travejamento		$0.45\sqrt{\frac{E}{f_{\rm y}}}$
AL	4	 Mesas de seções I, H, T ou U laminadas Abas de cantoneiras ligadas continuamente ou projetadas de seções I, H, T ou U laminadas ou soldadas Chapas projetadas de seções I, H, T ou U laminadas ou soldadas 	b t b t b t b t b t b t b t b t b t b t	$0.56\sqrt{\frac{E}{f_{y}}}$
	5	— Mesas de seções I, H, T ou U soldadas ^a		$0.64\sqrt{\frac{E}{(f_{\rm y}/k_{\rm c})}}$
	6	— Almas de seções T	b	$0.75\sqrt{\frac{E}{f_{y}}}$

Tabela F.1 — Valores de $(h/t)_{lim}$

Obtendo Q Fator de redução associado à flambagem local

Placa AA (bordo Apoiado - bordo Apoiado): existe resistência após a flambagem

Consideração de uma largura efetiva resistente:

$$b_e = Q_a b$$
$$Q_a < 1$$

Obtendo Q - NBR 8800:2008 - Anexo F Valores limites de *b/t* para impedir flambagem local

Elementos AA (duas bordas longitudinais vinculadas, "enrijecidos")

Tabela F.1 — Valores de $(b/t)_{lim}$

Elementos	Grupo	Descrição dos elementos	Alguns exemplos com indicação de b e t	$(b/t)_{\lim}$
AA	1	 Mesas ou almas de seções tubulares retangulares Lamelas e chapas de diafragmas entre linhas de parafusos ou soldas 	b b t (uniforme)	$1,40\sqrt{\frac{E}{f_{\mathrm{y}}}}$
	2	 Almas de seções I, H ou U Mesas ou almas de seção-caixão Todos os demais elementos que não integram o Grupo 1 	b_1 b_2 t_2 t b t b	$1{,}49\sqrt{\frac{E}{f_{y}}}$

Fator de Redução *Q*Resumo

- > Associado à *flambagem local*
- Anexo F da NBR-8800:2008
 - > Tabela F.1: Valores de $(b/t)_{lim}$

$$\rightarrow$$
 $(b/t) \leq (b/t)_{lim} \rightarrow Q = 1.0$

$$\rightarrow$$
 $(b/t) > (b/t)_{lim} \rightarrow Q = Q_a Q_s$

- $\rightarrow Q_a$: Associado a elementos AA (item F.3)
- Q_s : Associado a elementos AL (item F.2)
- Seções tubulares: item F.4

Obtendo N_e - NBR 8800:2008 – Anexo E Força axial de flambagem elástica

Seções duplamente simétricas ou simétricas em relação a um ponto:

$$N_{ex} = \frac{\pi^2 E I_x}{\left(K_x L_x\right)^2}; \qquad N_{ey} = \frac{\pi^2 E I_y}{\left(K_y L_y\right)^2} \qquad \text{(flambagem por flexão)}$$

$$N_{ez} = \frac{1}{r_0^2} \left[\frac{\pi^2 E C_w}{(K_z L_z)^2} + GJ \right]$$
 (flambagem por torção)

- $\succ C_w$ constante de empenamento da seção
- r_0 raio de giração polar em relação ao centro de cisalhamento

$$r_0 = \sqrt{{r_x}^2 + {r_y}^2 + {x_0}^2 + {y_0}^2}$$

Obtendo N_e - NBR 8800:2008 - Anexo E Força axial de flambagem elástica

Seções monossimétricas (exceto cantoneiras simples):

$$N_{ex} = \frac{\pi^2 E I_x}{\left(K_x L_x\right)^2}$$

$$N_{eyz} = \frac{N_{ey} + N_{ez}}{2\left[1 - \left(\frac{y_0}{r_0}\right)^2\right]} \left[1 - \sqrt{1 - \frac{4N_{ey}N_{ez}\left[1 - \left(\frac{y_0}{r_0}\right)^2\right]}{\left(N_{ey} + N_{ez}\right)^2}}\right]$$

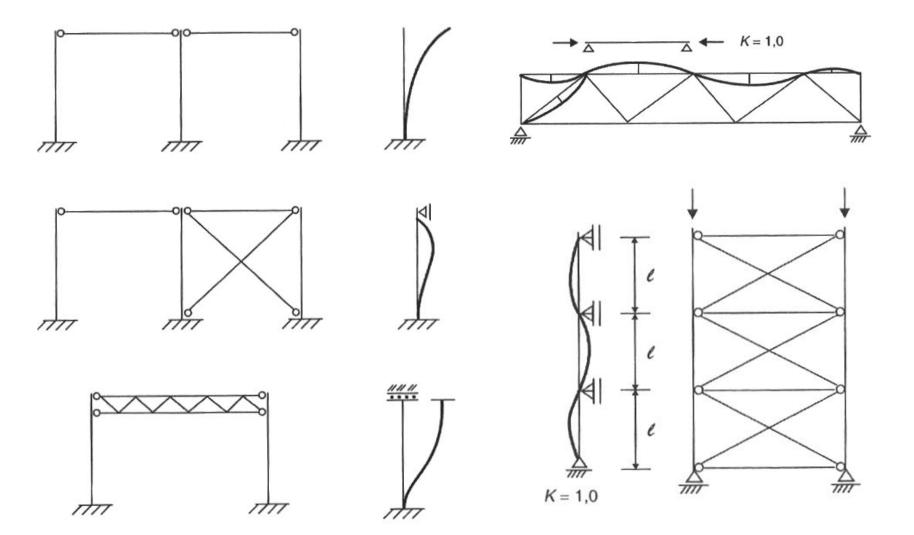
Obtendo N_e - NBR 8800:2008 - Anexo E Força axial de flambagem elástica

Seções assimétricas: menor das raízes da equação cúbica:

$$(N_e - N_{ex})(N_e - N_{ey})(N_e - N_{ez}) - N_e^2(N_e - N_{ey})\left(\frac{x_0}{r_0}\right)^2 - N_e^2(N_e - N_{ex})\left(\frac{y_0}{r_0}\right)^2 = 0$$

Cantoneiras Simples

$$N_{ex} = \frac{\pi^2 E I_{x1}}{(K_{x1} L_{x1})^2}$$


 I_{x1} - Momento de inércia da seção transversal em relação ao eixo que passa pelo centro geométrico e é paralelo à aba conectada.

NBR 8800:2008 – Anexo E Coeficiente de Flambagem K

Tabela E.1 — Coeficiente de flambagem por flexão de elementos isolados

	(a)	(b)	(c)	(d)	(e)	(f)
A linha tracejada indica a linha elástica de flambagem					# # # # # # # # # # # # # # # # # # #	
Valores teóricos de $K_{ m x}$ ou $K_{ m y}$	0,5	0,7	1,0	1,0	2,0	2,0
Valores recomendados	0,65	0,80	1,2	1,0	2,1	2,0
Código para condição de apoio	**************************************	Rotação e translação impedidas Rotação livre, translação impedida Rotação impedida, translação livre Rotação e translação livres				

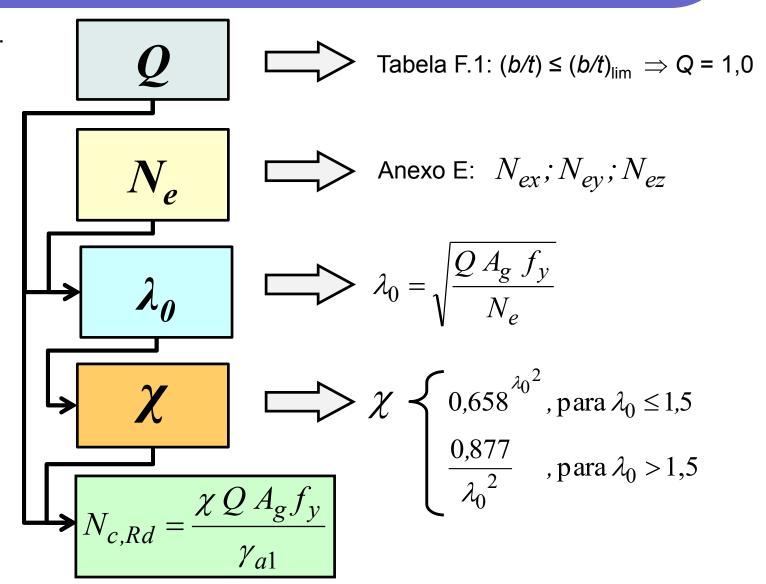
NBR 8800:2008 - Anexo E Coeficiente de Flambagem K

Ref: PFEIL, Walter, PFEIL, Michèle, Estruturas de aço: dimensionamento prático. $8^{\rm a}$ ed., Ed. LTC, 2009

Coeficiente de Flambagem

- Flexo-Torção (K_z)
 - 1,00, quando ambas as extremidades da barra possuírem rotação em torno do eixo longitudinal impedida e empenamento livre;
 - 2,00, quando uma das extremidades da barra possuir rotação em torno do eixo longitudinal e empenamento livres e, a outra extremidade, rotação e empenamento impedidos
- O índice de esbeltez das barras comprimidas (KL/r), não deve ser superior a 200.

Roteiro Dim. Compressão - NBR 8800:2008


Fator de red. flambagem local

Força axial flambagem elástica

índice de esbeltez reduzido

Fator de red. resistência à compressão

força axial compressão resistente de cálculo

