SEÇÃO DE ENSINO DE ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO MAJ MONIZ DE ARAGÃO

MATERIAIS DE CONSTRUÇÃO II TECNOLOGIA DA ARGAMASSA E DO CONCRETO

- Resistência característica da dosagem.
- Responsabilidades no preparo, controle e recebimento do concreto.
- Controle estatístico do concreto. Aceitação do concreto.

3.2 Definições das responsabilidades

- 3.2.1 <u>aceitação do concreto</u>: Exame sistemático do concreto, de acordo com esta Norma, de modo a verificar se atende às especificações.
- 3.2.2 <u>aceitação do concreto fresco</u>: Verificação da conformidade das propriedades especificadas para o estado fresco, efetuada durante a descarga da betoneira.
- 3.2.3 <u>aceitação definitiva do concreto</u>: Verificação do atendimento a todos os requisitos especificados para o concreto.
- 3.2.4 <u>recebimento do concreto</u>: Verificação do cumprimento desta Norma, através da análise e aprovação da documentação correspondente, no que diz respeito às etapas de preparo do concreto e sua aceitação.

4 Atribuições de responsabilidades

O concreto para fins estruturais deve ter definidas todas as características e propriedades de maneira explícita, antes do início das operações de concretagem.

O <u>proprietário da obra</u> e o <u>responsável técnico</u> por ele designado devem garantir o cumprimento desta Norma e manter documentação que comprove a qualidade do concreto (...).

4.4 Responsável pelo recebimento do concreto

Os responsáveis pelo recebimento do concreto (3.2.4) são o proprietário da obra e o responsável técnico pela obra, designado pelo proprietário.

A documentação comprobatória do cumprimento desta Norma (relatório de ensaios, laudos e outros) deve estar disponível no canteiro de obra, durante toda a construção, e deve ser arquivada e preservada pelo prazo previsto na legislação vigente, salvo o disposto em 4.1.2.

4.1 Modalidade de preparo do concreto:

- 4.1.1 Concreto preparado pelo executante da obra
- 4.1.2 Concreto preparado por empresa de serviços de concretagem

A central deve assumir a responsabilidade pelo serviço e cumprir as prescrições relativas às etapas de preparo do concreto, bem como as disposições desta Norma e da ABNT NBR 7212.

A documentação relativa ao cumprimento destas prescrições e disposições deve ser disponibilizada para o responsável pela obra e arquivada na empresa de serviços de concretagem, sendo preservada durante o prazo previsto na legislação vigente.

4.2 Profissional responsável pelo projeto estrutural

Cabem a este profissional as seguintes responsabilidades, a serem explicitadas nos contratos e em todos os desenhos e memórias que descrevem o projeto tecnicamente, com remissão explícita para determinado desenho ou folha da memória:

- a) registro da resistência característica à compressão do concreto, *fck*, *obrigatória em todos os desenhos e* memórias que descrevem o projeto tecnicamente;
- b) especificação de *fcj* para as etapas construtivas, como retirada de cimbramento, aplicação de protensão ou manuseio de pré-moldados;
- c) especificação dos requisitos correspondentes à durabilidade da estrutura e elementos pré-moldados, durante sua vida útil, inclusive da classe de agressividade adotada em projeto (tabelas 1 e 2);
- d) especificação dos requisitos correspondentes às propriedades especiais do concreto, durante a fase construtiva e vida útil da estrutura, tais como:
 - módulo de deformação mínimo na idade de desforma, movimentação de elementos pré-moldados ou aplicação da protensão;
 - outras propriedades necessárias à estabilidade e à durabilidade da estrutura.

4.3 Profissional responsável pela execução da obra

Ao profissional responsável pela execução da obra de concreto cabem as seguintes responsabilidades:

- a) escolha da modalidade de preparo do concreto (ver 4.1);
- b) <u>escolha do tipo de concreto</u> a ser empregado e sua consistência, dimensão máxima do agregado e demais propriedades, de acordo com o projeto e com as condições de aplicação;
- c) <u>atendimento a todos os requisitos de projeto</u>, inclusive quanto à escolha dos materiais a serem empregados;
- d) aceitação do concreto, definida em 3.2.1, 3.2.2 e 3.2.3;
- e) <u>cuidados requeridos pelo processo construtivo</u> e pela retirada do escoramento, levando em consideração as peculiaridades dos materiais (em particular do cimento) e as condições de temperatura ambiente;
- f) verificação do atendimento a todos os requisitos desta Norma.

5 - Requisitos para o concreto e métodos de verificação

Tabela 1 -	- Classes	de agressividade	ambiental
------------	-----------	------------------	-----------

Classe de agressividade ambiental	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura	
	Fraca	Rural	Insignificante	
1	Fraca	Submersa		
II	Moderada	Urbana ^{1), 2)}	Pequeno	
III	Forte	Marinha ¹⁾	Grande	
	Forte	Industrial 1), 2)		
IV	Muito forte	Industrial 1), 3)	Elevado	
	wulto forte	Respingos de maré	Elevado	

5 - Requisitos para o concreto e métodos de verificação

Tabela 2 — Correspondência entre classe de agressividade e qualidade do concreto

Concreto	Tino	Classe de agressividade (Tabela 1)					
Concreto	Tipo		П	III	IV		
Relação água/cimento em	CA	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45		
massa	СР	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45		
Classe de concreto	CA	≥ C20	≥ C25	≥ C30	≥ C40		
(ABNT NBR 8953)	СР	≥ C25	≥ C30	≥ C35	≥ C40		
Consumo de cimento por metro cúbico de concreto kg/m³	CA e CP	≥ 260	≥ 280	≥ 320	≥ 360		

NOTA CA Componentes e elementos estruturais de concreto armado; CP Componentes e elementos estruturais de concreto protendido.

5 - Requisitos para o concreto e métodos de verificação

Tabela 3 — Requisitos para o concreto, em condições especiais de exposição

Condições de exposição	Máxima relação água/cimento, em massa, para concreto com agregado normal	Mínimo valor de f _{ok} (para concreto com agregado normal ou leve) MPa		
Condições em que é necessário um concreto de baixa permeabilidade à água	0,50	35		
Exposição a processos de congelamento e descongelamento em condições de umidade ou a agentes químicos de degelo	0,45	40		
Exposição a cloretos provenientes de agentes químicos de degelo, sais, água salgada, água do mar, ou respingos ou borrifação desses agentes	0,40	45		

5.6 Estudo de dosagem do concreto

5.6.1 Dosagem racional e experimental

A composição de cada concreto de classe C15 ou superior a ser utilizado na obra deve ser definida, em dosagem racional e experimental, com a devida antecedência em relação ao início da concretagem da obra. O estudo de dosagem deve ser realizado com os mesmos materiais e condições semelhantes àquelas da obra, tendo em vista as prescrições do projeto e as condições de execução. O cálculo da dosagem do concreto deve ser refeito cada vez que for prevista uma mudança de marca, tipo ou classe do cimento, na procedência e qualidade dos agregados e demais materiais.

5.6.2 Dosagem empírica

O traço de concreto pode ser estabelecido empiricamente para o concreto da classe **C10**, com consumo mínimo de **300 kg de cimento** por metro cúbico.

NBR 6118:2003 Projeto de estruturas de concreto - Procedimento

8.2.4 Resistência à compressão

As prescrições desta Norma referem-se à resistência à compressão obtida em ensaios de cilindros moldados segundo a NBR 5738, realizados de acordo com a NBR 5739. Quando não for indicada a idade, as resistências referem-se à idade de 28 dias. A estimativa da resistência à compressão média, $f_{\rm cmj}$, correspondente a uma resistência $f_{\rm ckj}$ especificada, deve ser feita conforme indicado na NBR 12655.

A evolução da resistência à compressão com a idade deve ser obtida através de ensaios especialmente executados para tal. Na ausência desses resultados experimentais pode-se adotar, em caráter orientativo, os valores indicados em 12.3.3.

5.6.3 Cálculo da resistência de dosagem

A resistência de dosagem deve atender às condições de variabilidade prevalecentes durante a construção. Esta variabilidade medida pelo desviopadrão $\mathbf{S_d}$ é levada em conta no cálculo da resistência de dosagem, segundo a equação:

$$f_{cj} = f_{ck} + 1,65 S_d$$

onde:

f_{cj} é a resistência média do concreto à compressão, prevista para a idade de j dias, em megapascals;

 $\mathbf{f_{ck}}$ é a resistência característica do concreto à compressão, em megapascals; $\mathbf{S_d}$ é o desvio-padrão da dosagem, em megapascals.

5.6.3.1 Condições de preparo do concreto

O cálculo da resistência de dosagem do concreto depende, entre outras variáveis, da condição de preparo do concreto, definidas a seguir:

a) condição A (aplicável às classes C10 até C80):

o cimento e os agregados são medidos em **massa**, a água de amassamento é medida em massa ou volume com **dispositivo dosador** e corrigida em função da **umidade dos agregados**;

b) condição B:

- aplicável às classes C10 até C25 (...)

c) condição C

- aplicável apenas aos concretos de classe C10 e C15 (...)

5.6.3.2 Concreto com desvio-padrão conhecido

Quando o concreto for elaborado com os mesmos materiais, mediante equipamentos similares e sob condições equivalentes, o valor numérico do desvio-padrão Sd deve ser fixado com no mínimo **20 resultados** consecutivos obtidos no intervalo de 30 dias, em período imediatamente anterior. Em nenhum caso o valor de Sd adotado pode ser menor que **2 MPa**.

5.6.3.3 Concreto com desvio-padrão desconhecido

No início da obra, ou em qualquer outra circunstância em que não se conheça o valor do desvio-padrão Sd, deve-se adotar para o cálculo da resistência de dosagem o valor apresentado na tabela:

Condição	Desvio-padrão (MPa)				
Α	4,0				
В	5,5				
С	7,0				

Para condição de preparo C, e enquanto não se conhece o desvio-padrão, exige-se para os concretos de classe C15 o consumo mínimo de **350 kg** de cimento por metro cúbico.

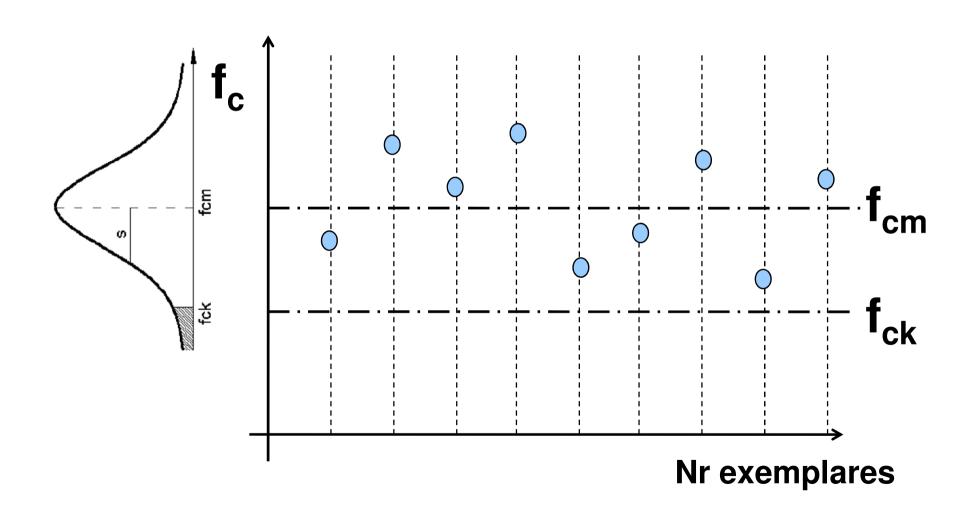
6.2 Ensaios de resistência à compressão

6.2.1 Formação de lotes

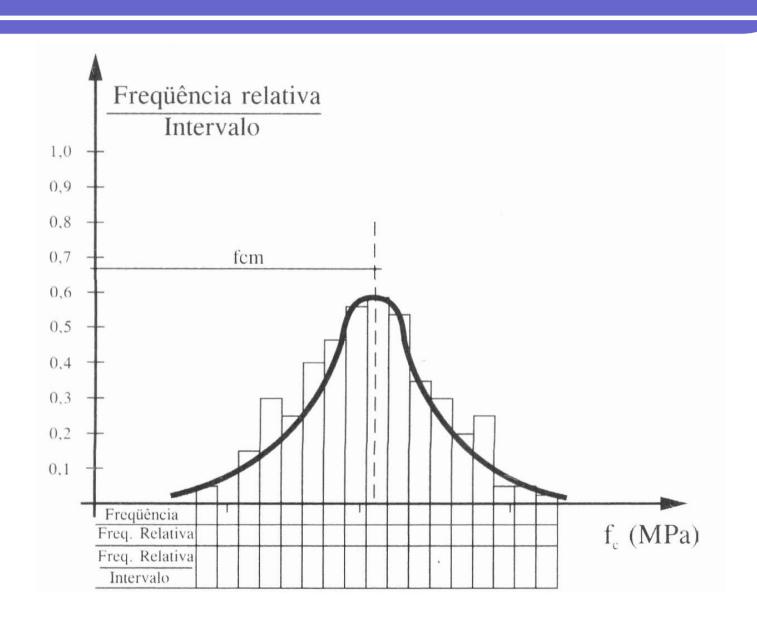
A amostragem do concreto para ensaios de resistência à compressão deve ser feita dividindo-se a estrutura em lotes que atendam a todos os limites da tabela 7. De cada lote deve ser retirada uma amostra, com número de exemplares de acordo com o tipo de controle.

Tabela 7 - Valores para a formação de lotes de concreto

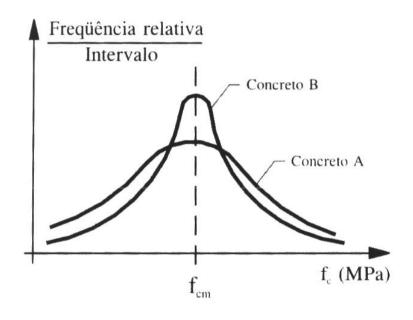
Limitoo ounorioroo	Solicitação principal dos elementos da estrutura				
Limites superiores	Compressão ou compressão e flexão	Flexão simples			
Volume de concreto	50 m ³	100 m ³			
Número de andares	1	1			
Tempo de concretagem	3 dias de concretagem				

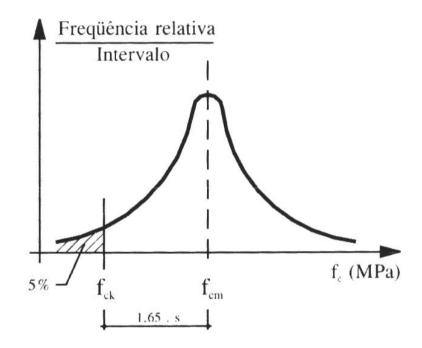

6.2.2 Amostragem

As amostras devem ser coletadas aleatoriamente durante a operação de concretagem, conforme a NBR 5750. Cada exemplar é constituído por dois corpos-de-prova da mesma amassada, conforme a NBR 5738, para cada idade de rompimento, moldados no mesmo ato. Toma-se como resistência do exemplar o maior dos dois valores obtidos no ensaio do exemplar.

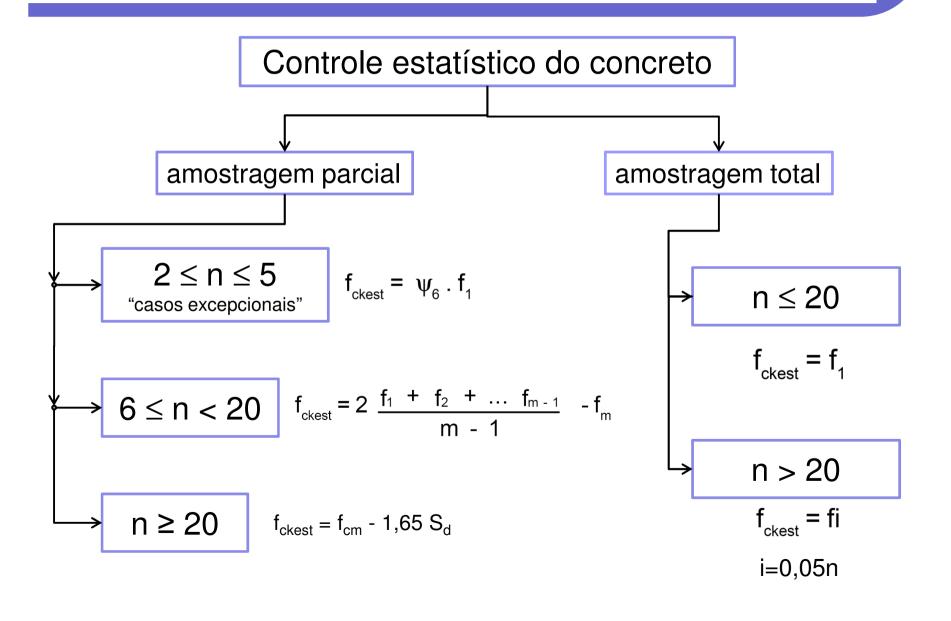

6.2.3 Tipos de controle da resistência do concreto:

- 6.2.3.1 Controle estatístico do concreto por amostragem parcial
- 6.2.3.2 Controle do concreto por amostragem total (100%)
- 6.2.3.3 Casos excepcionais


Gráfico histórico da resistência dos exemplares


Histograma e Função Densidade de Probabilidade

Distribuição Normal


Dispersão em função de diferentes condições de preparo do concreto

95% das amostras apresentam f_c>f_{ck}

$$f_{cm} = f_{ck} + 1,65 S_d$$

Ref: Concreto: Ensino, Pesquisa e Realizações, IBRACON 2005

6.2.3.1 Controle estatístico do concreto por amostragem parcial

Para este tipo de controle, em que são retirados **exemplares de algumas betonadas** de concreto, as amostras devem ser de no mínimo **seis exemplares** para os concretos do Grupo I (classes até C50, inclusive) e **doze** exemplares para os concretos do Grupo II (classes superiores a C50), conforme define a NBR 8953:

a) para lotes com números de exemplares 6 < n < 20, o valor estimado da resistência característica à compressão (f_{ckest}), na idade especificada, é dado por:

$$f_{ckest} = 2 \frac{f_1 + f_2 + \dots f_{m-1}}{m-1} - f_m$$

$$\geq \psi_6 \cdot f_1$$

onde:

m = n/2. Despreza-se o valor mais alto de n, se for ímpar;

6.2.3.1 Controle estatístico do concreto por amostragem parcial

b) para lotes com número de exemplares $n \ge 20$:

$$f_{ckest} = f_{cm} - 1,65 S_d$$

onde:

f_{cm} é a resistência média dos exemplares do lote, em megapascals; S_d é o desvio-padrão do lote para n-1 resultados, em megapascals.

6.2.3.2 Controle do concreto por amostragem total (100%)

Consiste no ensaio de exemplares de cada amassada de concreto e aplica-se a casos especiais, a critério do responsável técnico pela obra (ver 5.3). Neste caso não há limitação para o número de exemplares do lote e o valor estimado da resistência característica é dado por:

- a) para $n \le 20$, $f_{ckest} = f_1$;
- b) para n > 20, $f_{ckest} = f_i$.

onde:

i = 0,05 n. Quando o valor de i for fracionário, adota-se o número inteiroimediatamente superior.

6.2.3.3 Casos excepcionais

Pode-se dividir a estrutura em lotes correspondentes a no máximo 10 m³ e amostrá-los com número de exemplares entre 2 e 5. Nestes casos, denominados excepcionais, o valor estimado da resistência característica é dado por:

$$f_{ckest} = \psi_6 \cdot f_1$$

Onde ψ_6 é dado pela tabela 3, para os números de exemplares de 2 a 5.

Tabela 3 - Valores de ψ_6

Condição de				Número	de exemp	olares (n)	7				
preparo	2	3	4	5	6	7	8	10	12	14	≥ 16
Α	0,82	0,86	0,89	0,91	0,92	0,94	0,95	0,97	0,99	1,00	1,02
B ou C	0,75	0,80	0,84	0,87	0,89	0,91	0,93	0,96	0,98	1,00	1,02

NOTA - Os valores de n entre 2 e 5 são empregados para os casos excepcionais (ver 7.2.3.3).

6.2.4 Aceitação ou rejeição dos lotes de concreto

Os lotes de concreto devem ser aceitos, quando o valor estimado da resistência característica, calculado conforme 7.2.3, satisfizer a relação:

$$f_{ckest} \ge f_{ck}$$

NOTA - Em caso de rejeição de lotes, devem-se recorrer aos critérios estabelecidos na NBR 6118.

NBR 6118:2003 Projeto de estruturas de concreto - Procedimento

25.3 Existência de não-conformidades em obras executadas

25.3.1 Ações corretivas

No caso de existência de não-conformidades, devem ser adotadas as seguintes ações corretivas:

- a) <u>revisão do projeto</u> para determinar se a estrutura, no todo ou em parte, pode ser considerada aceita, considerando os valores obtidos nos ensaios;
- b) no caso negativo, devem ser <u>extraídos e ensaiados testemunhos</u> conforme disposto na NBR 7680, se houver também deficiência de resistência do concreto cujos resultados devem ser avaliados de acordo com a NBR 12655, procedendo-se a seguir a nova verificação da estrutura visando sua aceitação, podendo ser utilizado o disposto em 12.4.1;
- c) não sendo finalmente eliminada a não-conformidade, aplica-se o disposto em 25.3.3. Há casos em que pode também ser recomendada a prova de carga, desde que não haja risco de ruptura frágil.

NBR 6118:2003 Projeto de estruturas de concreto - Procedimento

25.3.2 Ensaio de prova de carga da estrutura

A prova de carga deve ser planejada procurando representar a combinação de carregamentos que determinou na verificação analítica a não-conformidade. No caso de não-conformidade que indique a possibilidade de ruptura frágil, a prova de carga não é um recurso recomendável. Nesse ensaio deve ser feito um monitoramento continuado do carregamento e da resposta da estrutura, de modo que esta não seja desnecessariamente danificada durante a execução do ensaio.

25.3.3 Não-conformidade final

Constatada a não-conformidade final de parte ou do todo da estrutura, deve ser escolhida uma das seguintes alternativas:

- a) determinar as **restrições de uso** da estrutura;
- b) providenciar o **projeto de reforço**;
- c) decidir pela **demolição** parcial ou total.