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Abstract— This paper presentsa modification in a tech-
nique of channel normalization widely known as Cepstral
Mean Subtraction (CMS). This modification is basedon the
intr oduction of languagedependentphonetic modification.
A careful investigationusing Brazilian Portuguesewascar-
ried out showing that it ispossibleto impr ovethe CMS chan-
nel identification thr ough a constantvector, associatedwith
the language,obtained fr om an estimation of the meancep-
stral coefficientsfr om clean speechsignal over time. As a
consequenceof better channel estimation, better features
normalization is attained. Computer simulations were car-
ried out with cepstral coefficientsextracted fr om Mel-scale
in a speaker identification experiment where the proposed
technique, in somecases,impr oved the recognition rate on
the top of the CMS goodresults.

I . INTRODUCTION

NE of the main problems reported in automatic
speechandspeaker recognitiontechnologyhasbeen

the differentrecordingenvironmentsusedin training and
testingcorpora.This mismatchmay be causedby differ-
enttransmissionchannels,differentacousticenvironment,
and/ordifferentmicrophones.Recentresearchhasshown
that, for the caseof no mismatchandcleandata,speech
recognitionsystemshave reacheda goodperformanceor,
equivalently, they presentverysmallerrorrates.Neverthe-
less,for the casewherethereis mismatchbetweentrain-
ing andtestingsignals,theperformancedropssignificantly
[1]. Nowadays,thereis a growing interestandconsequent
increasingresearcheffort in channelnormalizationtech-
niques,which try to compensatefor thesechanneldistor-
tions.

Channelnormalizationis usually carriedout in some
specificfeaturesextractedfrom speechsignal.Themostly
usedfeaturesfor this purposeare the onesbasedon the
conceptof homomorphicdeconvolution [2] suchascep-
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stralcoefficients,whichhasthefollowing formulation.Let������� be the resultof the convolution betweensignal � ���	�
and 
 ���	� , thechannelimpulseresponse,suchthat

��������� � ���	��
 
 ���	� (1)

Oncethis signal is digitized and the DiscreteFourier
Transform(DFT) is applied to eachframe1, the convo-
lution in (1) resultsin a multiplication on the frequency
domain.

� ����� ��� � ������� ����� �����
(2)

where� is theDFT index and � is theframeindex. In order
to simplify thenotation,we will drop theDFT index and
use  "! , #$! , and % to denotethe DFT vector(containing
all DFT coefficients)for eachframe.

Aiming the removal of the channelinfluenceby sub-
tractingits components,the logarithmfunction is applied
to bothsidesof thepreviousequationsuchthatamultipli-
cationturnsinto anaddition.

&�')( �  *! � � &�')( � #�! �,+ &�')( � % �
(3)

It is now possibleto retrieveoneinformationif weknow
theotherone.An inversetransformis thenusedin (3) and
the result, in the cepstraldomain(DFT cepstrumin this
case),is

-. ! � -/ ! + -0
(4)

where
-. ! , -/ ! , and

-0
arethecepstralcoefficientsvectorfor

eachframeof the distortedspeech,thecleanspeech,and
thechannel,respectively.

CepstralMeanSubtraction(CMS) [4], [5], alsoknown
asCepstralMeanNormalization(CMN), isoneof themost
widelyusedschemesfor channelnormalization.Thistech-
nique is basedon the removal of the DC level obtained
from the time evolution of the cepstralcoefficients. This
temporalmean is a rough estimateof the transmission1

Thespeechsignalis dividedin overlappingframesandeachframeis
windowedbeforeapplyingtheDFT. It is alsoassumedthatthewindow
sizeis around2 timesthechannelimpulseresponse[3].
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channelor microphoneresponse.Nevertheless,its far and
wide usecomprisesboth speechandspeaker recognition
[5], [6].

In [7], amodificationin theCMSwasproposedin order
to compensatefor the distortionsintroducedby the poles
(of the all-pole filter in the LPC model) in the channel
identificationproblem.Thistechniquewasknown aspole-
filter andpresentedasmoothingpropertyonthepeaksgen-
eratedby thosepoles. In [6], two algorithmsusedto im-
prove theCMSnormalizationwereanalyzed:onethrough
log-DFT meannormalizationwhich shows that the blind
channelidentificationcarriedout by the CMS is subop-
timal anda secondusingsecondorderstatisticswith the
help of a Hidden Markov Model (HMM) for the chan-
nel identification. The useof the secondorder statistics
improves the normalizationwith the expenseof a higher
computationalcomplexity.

In order to have the cepstralmeanbeing admittedas
a fair estimateof the channel,CMS assumesthat clean
speechcepstralmeantendsto zero [8]. The goal of this
paperis thepropositionthatthis is notexactly truebut de-
pendsonthelanguage.We,therefore,proposeamodifica-
tion wherethecepstralmeanof thelanguageis taken into
accountfor a morereliableestimateof thechannel.As a
result, a moreeffective featuresnormalizationis accom-
plished.

This paperis dividedasfollows. In SectionII, the for-
mulationof theCMS andits basicproblemsarereviewed.
SectionIII introducestheproposedmethodwhich tries to
compensatefor the effect of the languagein the channel
estimation.Thesimulationresultsof a speaker identifica-
tion experimentarepresentedin SectionIV followedby a
few conclusions.

I I . CMS CHANNEL NORMALIZATION

CepstralMeanSubtractionis a featuresnormalization
techniquebasedon channelblind identification. There-
fore,any previousknowledgeaboutthesignalfeaturescan
bring someadvantageto the algorithm. Let us first con-
sidera framemeanin thecepstraldomaingivenby

3 -.4� 56
78 �:9<; -. � � 56

78 �:9<; � -/ � + -0 � (5)

where
6

is thenumberof speechframes.
In many cases,a previousknowledgeof a givenspeech

signalis theassumptionthat thechannelis time invariant
as indicatedabove by the lack of subscript� in

-0
. This

meansthat, given the time evolution of a cepstralcoef-
ficient, the channelaffects only its DC level. With this

assumption,(5) canbewrittenas

3 -.4� -0 + 56
78 �:9<; -/ � (6)

or,
3 -.4� -0 + 3 -/ (7)

According to [8], if the speechsignal is balancedin
termsof voiced,unvoiced,andplosivesounds,thecepstral
meantendsto zeroor

3 -/>=@? suchthat
3 -.BA -0

.
Onceobtainedthe channelestimate,we cango further

to normalizationwith thefollowing subtraction

-/ � A -. ��C 3 -. (8)

Nevertheless,CMS presentstwo basicproblems. The
first oneis thefactthattheassumedbalancehardlyoccurs.
Moreover, this balanceis expectedto vary from language
to language.Thesecondproblemconcernsthesubtraction
of thecepstralmeanitself which will not only remove the
effect of the channelbut anything constantandcommon
for all speechframes.This meansthatwe areloosingin-
formation. This problemwasaddressedin [9], wherethe
varianceof thesignalwasanalyzedbeforeandafterCMS,
showing thatthespeakersvarianceis reducedafterCMS.

II I . THE PROPOSED METHOD

This sectiondevelopsan approachwhich tries to im-
prove channelnormalizationfrom the assumptionthat

3 -/
doesnot tendto zero. We couldnameit a Language De-
pendentModifiedCMS.

Fromtheright sideof (7), we notethat if
3 -/ is not zero,

as expectedby the CMS, the channelestimatewill be
biased. According to our experiments,this assumption
(
3 -/ A ? was not true for Portuguese.Computerexperi-

mentsdrove us to the conclusionthat
3 -/ , the cleanspeech

cepstralmean,remainsconstantfor a particularlanguage
anda pre-definedsex (maleor female). This assumption
implies that, for eachspeaker, the cepstralmeantendsto
aconstantvalueandalsothattheseconstants,for different
speakers,presentsmallvariance.

In [6], it wasshown that for the Englishlanguage,the
elementsof

3 -/ presentsmallvariancein channelidentifica-
tion if estimatedoveraminimumperiodof time. This fact
supportsour basicassumptionfor the Englishcase. For
the Portuguesecase,two experimentswereconductedin
ordercheckourclaim of constantmean.

In the first experiment,the coefficientswereextracted
from a D minutes, reasonablyclean (lab conditions),
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speechsignal recordedby a malespeaker. The estimate
wasobtainedvia EGF � ;

F<H F�:9<; -/ � . Fig. 1 depictsthetem-
poralevolution of this estimatefor thefirst four Mel cep-
stralcoefficients(MelC) [10].
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Fig. 1. Evolution of the estimatesof the first four Mel coeffi-
cients.

Theoretically, themeanis obtainedas
6 =JI . How-

ever, wecanseein thefigurethataftersometime– differ-
entfor eachcoefficient – theestimationof themeanvalue
of thatcoefficient tendsto aconstant.Othertestswerecar-
ried out with severalspeakersand,in all cases,theresults
weresimilar.

The secondexperimentconcerningthe claim of a lan-
guagedependentconstantcleanspeechcepstralmean( E )
impliesthatthisvectoris representative for any speaker of
thesamesex andsamelanguage.Fig. 2 shows theresults
of two curves: theonewith small squarescorrespondsto
vector E estimatedfrom aroundKML minutesof undistorted
Portuguese,with different phrasesfrom [11], spoken by

5 D malespeakers.Thesecondcurve comesfrom 5ON other
male speakers, eachone speakingaround KML secondsof
undistortedPortuguese.Thiscurvecontainsthemeanplus
minusstandarddeviationshown with verticalbarsmarked
with “X” at theextremities. FromFig. 2, we canseethat
the meanestimatedfrom 5ON speakers is very closeto the
oneobtainedwith KML minutes.Thissuggeststhat E corre-
spondsto arepresentative constantfor speechsignalsfor a
given language(andsex) andcanbeusedasa reasonable
approximationof

3 -/ for shortersignals. The experiments
have shown that this meanvector is speaker independent
andthatthey canbeunderstoodasa linguistic featureof a
language.
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Fig. 2. ComparingMel cepstralcoefficients from 2 distinct
estimations.

Assumingthe term
3 -/ beingapproximatelyequalto the

cepstralcoefficientmeanestimatedfrom acleansignal,E ,
we canobtaina morereliablechannelestimate,according
to
3 -. C E �QP0 +SR P/ C E suchthatif

3 -/ A E then-0 A 3 -. C E (9)

In theprevioussection,it wasmentionedthat for blind
channelestimationany prior knowledgecanimprove the
result.We now show that this prior knowledgeof thelan-
guagecharacteristicgivenby E , leadsto animprovedesti-
mationof thechannel.In orderto testchannelestimation,
two telephonechannelswereused.Onefollows ITU Rec-
ommendationG.151and will be designatedChannelA.
Theotheroneis adigital modelof acontinentalpoorvoice
channel,designatedChannelB. Both channelscanbeob-
served in Fig. 3 aswell as the resultsof a blind channel
estimationusingconventionalCMS, the proposedmodi-
fiedCMS,andwhatwehavenamedBestPossibleEstima-
tion (viz BPE,thenon-realcasewherewehave bothclean
anddistortedsignalsandobtainthechannelestimationby
subtractingthecepstrumof thecleanspeechfrom thecep-
strumof thedistortedsignalaccordingto (4)). In this par-
ticularexample,DML LPCcepstralcoefficients(LPCC)[12],
wereused.Thetestconsistedof estimatingthefrequency
responseof thesetwo channelswith D minutesof speech
convolvedwith A andB. The(BrazilianPortuguese/male)
meanvectorusedwasobtainedwith the KML minutesesti-
mationpreviously described.

FromFig. 3, wecanobserve thattheestimationthrough
theproposedmodifiedCMS is superiorthanthatfrom the
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Fig. 3. Channelestimationwith conventionalCMS, proposed
modification,andthetheoreticalbestpossibleestimation.

conventionalCMSprocedure.

IV. EXPERIMENT IN SPEAKER IDENTIFICATION

AutomaticSpeakerRecognition(ASR)is agenericterm
concerningthetaskof discriminatingpeoplebasedontheir
speechfeatures.ASR canbeclassifiedaccordingto their
taskasSpeaker IdentificationandSpeaker Verification. In
this section,we will addressthe text independentspeaker
identificationproblemwhichcorrespondsto theclassifica-
tion of an utteranceasbelongingto onespecificspeaker
from a—closedin ourcase—setof referencespeakers.

A. DecisionSystemUsed

Vector Quantization(VQ) applied to ASR was intro-
ducedin [13] andwasthedecisionsystemchosenfor the
evaluationof the proposedcompensationschemes.Each
speaker codebookwasobtainedfrom K)D speechfeatures
groupsextractedfrom eachspeaker utterance. For the
training, it was usedthe LBG algorithm as describedin
[14]. Thesystemidentificationschemeis shown in Fig. 4.

Theoutputresultfor eachpossiblespeaker(Spk � ), �UT4V 5
to WYX is thetotaldistanceZ � givenby:

Z � � 56
78 �:9<;\[�]:^;�_a`,_cbSd �fe �hgjih` � (10)

where � correspondsto thespeaker index, k is thenum-
berof centroids,and

6
is thenumberof windows of the

testsignal.

For thecomputationof d �fe � gji ` � , theEuclideandistance
was used. This distance(as well as the VQ itself) was
chosenfor its simplicity and the fact that our goal was
thecomparative analysisof theefficiency of theproposed
technique,notobtainingthebestpossiblerecognitionrate.
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Fig. 4. IdentificationSystemusingVQ.

B. CorpusUsed

In orderto carry out simulationsof the speaker identi-
fication usingtheproposednormalizations,a speechdata
basewasrecordedin theSpeechLab of theInstitutoMil-
itar deEngenharia(IME). This simplecorpuswasformed
by recordingspeechfrom N L male speakers, each one
speakingDML groupsof 5 L phrasesproposedin [11].

The silenceperiodsof the speechsignalsfrom these
phraseswereextractedanddividedasfollows:l speechusedfor training andtesting– we usedthe first
18 groupssuchthat:
– trainingspeakers: mnL speaking5 min each;
– testutterances:mao�m recordedby the mnL speakers,each

utterancewith KML secof speech.l speechusedfor obtainingvector E : thelast 5 L speakers
wereusedandthe last two groupsof text readsuchthat
trainingandtestutterancesweredifferent.

ThetrainingutteranceswerefilteredthroughchannelA
andthetestutterancesthroughchannelB.
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C. Speaker IdentificationResults

TableI presentsthe error rate2 obtainedunderthe fol-
lowing conditions: without channelcompensation,when
CMS wasused,andwhenthe proposedmethod,the lan-
guagedependentmodifiedCMS, wasused. Note, in the
first column,the hugeerror causedby channelmismatch
when VQ is used. Also note in this table that the con-
figuration presentedwas concerningthe frame rate: the
framesizein millisecondsandtheoverlappingof adjacent
frames. It is worth-mentioningthat the featureusedwas
the Mel CepstralCoefficients (MCC) which in prior ex-
perimentscarriedout with thesamecorpusresultedin the
lowesterrorratewhenMel, LPC,DFT, andPLP[15] were
comparedwith no compensationscheme.In the speaker
identificationexperimentdescribedhere,consideringthat
we areusing telephonechannels,we have usedonly the
filters (from the Mel scalefilter bank)which centralfre-
quencieswere inside the typical telephonebandwidthofKML)L C KpmnL)L Hz.

TABLE I

ERROR RATE IN % OF THE SPEAKER IDENTIFICATION USING

VQ WITH NO COMPENSATION, CMS, AND THE MODIFIED

CMS

Config. No Compens. CMS Modif. CMS

20ms50% 79.54 1.05 0.42
20ms75% 79.96 0.42 0.42
40ms75% 79.11 0.84 0.84
40ms50% 81.01 1.05 0.84

V. CONCLUSIONS

This paperaddressesCMS blind channelidentification
using phoneticinformation of the Brazilian Portuguese.
Nevertheless,the techniqueproposedhereis expectedto
be valid for any otherlanguage.It is shown that the lan-
guagecontainsconstantinformationin themeancepstral
coefficientsobtainedform speakersof thesamesex. This
informationcanbeusedto improvethechannelestimation
usedin the CMS approach. It is worth mentioningthat
the proposedmodificationandthe conventionalCMS are
comparablein termsof computationalcomplexity, for they
have thesamenumberof multiplications.

It is importantto emphasizethat theresultsobtainedso
far arepreliminarydueto thefollowing aspects:

q
Ratebetweenthenumberof wrongidentificationsandthetotalnum-

berof tests.

l thecorpususedis very smallandwe do nothave anad-
equatePortuguesecorpusavailablefor researchin speaker
recognition.Wearecurrentlyworking in thedevelopment
of a 5 L)L)L speakersdatabase;l thelanguagemeanmustbeobtainedfrom speechsignals
recordedin anacousticallyisolatedchamberandwith high
qualitymicrophones;l the main idea proposedhereshouldbe investigatedin
otherlanguages.
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