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ABSTRACT
This paper introduces the constrained version of the Affine
Projection Algorithm. The new algorithm is suitable for
linearly-constrained minimum-variance applications, which
include beamforming and multiuser detection for commu-
nications systems. The paper also discusses important as-
pects of convergence and stability of constrained normal-
ized adaptation algorithms in general. It is shown that nor-
malization may introduce bias in the final solution. Com-
puter simulations are also included providing extra insight
to the algorithm performance.

1. INTRODUCTION

Adaptation algorithms which satisfy linear constraints en-
counter application in several areas of signal processing and
communications, such as beamforming, spectral estimation,
multiuser detection for communication systems, etc. A ro-
bust algorithm which does not require reinitialization and
incorporates the constraints into the solution was first intro-
duced by Frost [1]. More recently other constrained adap-
tation algorithms were introduced which are tailored to spe-
cific applications or present advantageous performance re-
garding convergence and robustness (see, e.g., [2][3]).

The affine-projection (AP) algorithm is among the promi-
nent unconstrained adaptation algorithms that may have a
good compromise between fast convergence and low com-
putational complexity. By adjusting the number of projec-
tions, or alternatively, the number of reuses, performance
can be controlled from that of the normalized least mean
squares (NLMS) algorithm to that of the sliding-window re-
cursive least squares (RLS) algorithm [4][5].

In this article we develop and analyze the constrained
version of the AP algorithm using the same framework al-
ready used for other normalized constrained algorithms, such
as the constrained NLMS and BNDR-LMS algorithms. We
also show through analysis that normalization may intro-
duce bias.

2. THE AFFINE-PROJECTION ALGORITHM

The Affine Projection (AP) Algorithm updates its coeffi-
cient vector such that the new solution belongs to the in-
tersection ofL hyperplanes defined by the present and the
L � 1 previous data pairs. The minimization problem used
to derive its updating formula is given by

w(k + 1) = min
w

k w �w(k) k (1)

subjected to

d(k) = XT (k)w (2)

where

d(k) = [d(k) d(k � 1) � � � d(k � L+ 1)]T

X(k) = [x(k) x(k � 1) � � � x(k � L+ 1)] (3)

wherex(k) = [x(k) x(k � 1) � � � x(k � N)]T andw has
orderN orN + 1 elements.

The updating equations for the AP algorithm are ob-
tained from the solution of this minimization problem, and
they are presented in Table 1 [6][7]. A step-size (�) was
used to control misadjustment and a small constant (�) mul-
tiplied by theL � L identity matrix was used to improve
robustness.

Table 1: The Affine Projection Algorithm
AP Algorithm

for eachk
f e(k) = d(k)�X

T (k)w(k)

t(k) =
�
X
T (k)X(k) + �I

�
�1

e(k)
w(k + 1) = w(k) + �X(k)t(k)

g



3. THE CONSTRAINED AFFINE-PROJECTION
ALGORITHM

In lineraly constrained adaptive filtering, the constraints are
given by the following set ofJ equations

CTw(k) = f (4)

whereC is a(N+1)�J constraint matrix andf is a vector
containing theJ constraint values.

Recalling the constrained LMS algorithm presented by
Frost in [1] and realizing that it corresponds to the projec-
tion of the unconstrained LMS solution onto the hyperplane
defined by (4), we may write

w(k + 1) = PwLMS(k + 1) +F

= P[w(k) + �e(k)x(k)] + F

with

P = I�C(CTC)�1CT (5)

the projection matrix (for a projection onto the homoge-
neous hyperplane defined byCTw(k) = 0) and vector

F = C(CTC)�1f (6)

used to move the projected solution back to the constraint
hyperplane.

The following optimization approach was used to ob-
tain the constrained version of the Affine Projection (CAP)
Algorithm

w(k + 1) = min
w

k w �w(k) k (7)

subjected to(
d(k)�XT (k)w = 0

CTw = f
(8)

We can now use Lagrange multipliers in the following
objective function to be minimized

� = [w �w(k)]T [w�w(k)]

+ �T
1
[d(k)�XT (k)w]

+ �T
2
[CTw� f ] (9)

and the solution is the equation for the CAP algorithm:

w(k + 1) = P[w(k) +X(k) t(k)] + F (10)

with

t(k) = [XT (k)PX(k)]�1e(k) (11)

and

e(k) = d(k)�XT (k)w(k) (12)

ForL = 1 or L = 2, the above relations will result in
the Constrained NLMS or Constrained BNDR-LMS algo-
rithms [8], respectively. For all constrained algorithms men-
tioned here, the simplificationPw(k) + F = w(k) should
be avoided in a finite precision environment, for accumula-
tion of round-off errors may cause the solution to drift away
from the constraint hyperplane [1].

The equations of the Constrained Affine Projection Al-
gorithm are summarized in Table 2, where a step-size0 <

� � 1 and a small constant� were used.

Table 2: The Constrained Affine Projection Algorithm.
CAP Algorithm

for eachk
f e(k) = d(k)�X

T (k)w(k)

t(k) =
�
X
T (k)PX(k) + �I

�
�1

e(k)
w(k + 1) = P [w(k) + �X(k) t(k)] + F

g

4. ON THE CONVERGENCE OF THE CAP
ALGORITHM

For unconstrained adaptation algorithms, it is usually ex-
pected that convergence of the coefficients in the mean can
be assured as the number of iterations goes to infinity. For
normalized algorithms, such as the NLMS, BNDR-LMS, or
quasi-Newton [9] algorithms, convergence with probability
one is usually more tractable and is sometimes preferred.
As the CAP algorithm is a normalized algorithm, we will
favor the latter approach in the analysis to be presented in
this section.

Let wo be the optimal solution to the constrained opti-
mization problem, i.e.,

wo = R�1p�R�1C
�
CTR�1C

�
�1 �

CTR�1p� f
�

(13)

and letd(k) be modeled as

d(k) = XT (k)wo (14)

If the coefficient-error vector is defined as

�w(k) = w(k)�wo (15)

then we can easily verify (after using the fact that the opti-
mal solution satisfies the constraints i.e.,f �CTwo = 0),
that

�w(k + 1) =

PfI�X(k)[XT (k)PX(k)]�1XT (k)g�w(k)
(16)



In order to guarantee convergence to zeroeverywhere
[10] of the system described by the set of first-order ho-
mogeneous equations above, we should ascertain that the
transition matrix is time-invariant with all its eigenvalues
strictly inside the unit circle. This is clearly not satisfied.
Analysis of convergence in the mean requires independence
assumptions that are not fulfilled by (16). Furthermore, the
projection matrixP is not a Lyapunov transformation [11]
and cannot be used to define a stable equivalent system (in
the sense of Lyapunov) as was done in [12]. In fact, if we
rewrite (16) as

�w(k + 1) = PT(k)�w(k) (17)

we notice that the eigenvalues ofT(k) are not necessarily
inside the unit circle, although those ofPT(k) are always
either 1 or 0. Therefore, the constant projection matrixP

projects the drifting vectorT(k)�w(k) onto the subspace
orthogonal to the subspace spanned by the constraint ma-
trix C, such that the norm of�w(k + 1) is never greater
than the norm of�w(k). This prevents divergence from the
constraint plane, but does not assure thatk�w(k)k �! 0:
Unbiasedness is, therefore, not guaranteed.

5. SIMULATIONS RESULTS

A first experiment was carried out in a system identifica-
tion problem where the filter coefficients were constrained
to preserve linear phase at every iteration. For this example
we madeN = 10 and, in order to fulfill the linear phase
requirement, we made

C =

2
4 IN=2

0T

�JN=2

3
5 (18)

with J being a reversal matrix (an identity matrix with all
lines in reversed order), and

f = [0 � � � 0]
T (19)

This didactic setup was employed to show the improve-
ment of the convergence speed whenL is increased. Due
to the symmetry ofC and the fact thatf is a null vector,
more efficient structures could be used [13]. The input sig-
nal consists of zero mean unity variance colored noise with
eigenvalue spread around2000 and the reference signal was
obtained after filtering the input by a linear-phase FIR fil-
ter and adding an observation noise with variance equal to
1e� 10. Fig. 1 shows the learning curves for the CAP algo-
rithm with values ofL varying from1 to 5. It is also clear
from this figure that the misadjustment increases withL.

Also for this first experiment, Fig. 2 shows that we have
no bias in the coefficient vector after convergence.
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Figure 1: Learning curves for the CAP Algorithm.
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Figure 2: First experiment: no bias in the coefficient vector.

A second experiment was done where the received sig-
nal consists of three sinusoids in white noise:

x(k) = sin(0:3k�) + sin(0:325k�)

+ sin(0:7k�) + n(k) (20)

where n(k) is white noise with power such that the SNR is
40dB. The filter is constrained to pass frequency compo-
nents of 0.1rad/s and 0.25rad/s undistorted which results in
the following constraint matrix and vector:

C
T =

2
664

1 cos(0:2�) : : : cos[(N � 1)0:2�]
1 cos(0:5�) : : : cos[(N � 1)0:5�]
1 sin(0:2�) : : : sin[(N � 1)0:2�]
1 sin(0:5�) : : : sin[(N � 1)0:5�]

3
775

(21)

F
T = [1 1 0 0] (22)



The norm of the coefficient-error vector for values ofL

from 1 to 3 is depicted in Fig. 3. From this figure we can
realize that, although faster, the CAP algorithm presents an
increasing misadjustment withL, specially when this num-
ber of projections is higher than2 (this value corresponding
to the BNDR-LMS algorithm).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

Number of iterations

E
[||

W
(k

)−
W

op
t||]

L=1
L=2
L=3

Figure 3: Coefficient-vector deviation for the second exper-
iment.

The reason for this behavior is found in Fig. 4 where are
plotted the curves corresponding to the mean value of the
coefficient-error vector (averaged in 10 independent trials)
for the three first values ofL.
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Figure 4: Second experiment: there is an increasing (with
L) bias in the coefficient vector.

6. CONCLUSIONS

In this paper, we have introduced the constrained version
of the Affine Projection Algorithm. Through analysis, we
have verified that this type of algorithm may introduce bias

in the coefficient-error vector. The simulation results of two
experiments including both cases of biased and unbiased so-
lutions supported the analysis claims and evaluated the per-
formance of the proposed algorithm.
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