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Abstract—This paper proposes low-complexity constrained
affine-projection (CAP) algorithms. The algorithms are suitable
for linearly constrained filtering problems often encountered in
communications systems. The CAP algorithms derived in this
paper trade convergence speed and computational complexity
in the same way as the conventional affine-projection (AP) algo-
rithm. In addition, data-selective versions of the CAP algorithm
are derived based on the concept of set-membership filtering.
The set-membership constrained affine-projection (SM-CAP)
algorithms include several constraint sets in order to construct
a space of feasible solutions for the coefficient updates. The
SM-CAP algorithms include a data-dependent step size that
provides fast convergence and low mean-squared error. The paper
also discusses important aspects of convergence and stability of
constrained normalized adaptation algorithms and shows that
normalization may introduce bias in the final solution.

Index Terms—Adaptive filtering, affine projection algorithms,
antenna array, beamforming, set-membership filtering, smart
antennas.

I. INTRODUCTION

L INEARLY constrained adaptive filters (LCAFs) find ap-
plications in several areas of signal processing, e.g., beam-

forming, blind interference suppression in code-division mul-
tiple-access (CDMA) systems, and system identification. The
linear constraints usually reflect prior knowledge of certain pa-
rameters or properties of the problem under consideration, e.g.,
knowledge of direction of arrival (DOA) of user signals in an-
tenna array processing [1], user spreading codes in blind mul-
tiuser detection [2], or linear phase feature of a plant in system
identification [3].

Two alternative structures for implementation of the LCAF
are the direct-form structure as in [1] and the generalized side-
lobe canceller (GSC) structure of [4], [5]. Adaptive implemen-
tations of the direct-form structure incorporate the linear con-
straints into the adaptation algorithm in order to solve explicitly
a constrained optimization problem. The GSC structure solves
the same optimization problem as the direct-form structure filter

Manuscript received April 16, 2004; revised February 9, 2005. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Fulvio Gini.

S. Werner is with the Helsinki University of Technology, FIN-02015 HUT,
FINLAND (e-mail: stefan.werner@hut.fi).

J. A. Apolinário Jr., is with the Departamento de Engenharia Elétrica,
Instituto Militar de Engenharia, Rio de Janeiro, RJ 22290-270, Brazil (e-mail:
apolin@ieee.org).

M. L. R. de Campos is with the COPPE/Universidade Federal do Rio de,
Janeiro, Rio de Janeiro, RJ 21945-970, Brazil (e-mail: campos@lps.ufrj.br).

P. S. R. Diniz is with the COPPE/Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ 21945-970, Brazil (e-mail: diniz@lps.ufrj.br).

Digital Object Identifier 10.1109/TSP.2005.859348

by splitting the filter coefficient vector into two components op-
erating on orthogonal subspaces. An advantage of adaptation
algorithms derived for a direct-form structure is a potentially
lower computational complexity than the adaptive GSC struc-
ture [6]. On the other hand, the GSC structure offers the ad-
vantage of using several unconstrained adaptation algorithms.
A framework combining the advantages of the direct-form and
the GSC structures was proposed in [7] and [8] such that uncon-
strained adaptation algorithms could be applied to a constrained
problem while keeping the computational complexity similar to
that of the direct-form structure.

The adaptation algorithms for linearly constrained problems
proposed in the literature can be loosely categorized as least-
mean-square (LMS)-type or recursive least-squares (RLS)-type
algorithms (see, e.g., [1], [3], [6], and [9]). The constrained LMS
(CLMS) algorithm [1] is attractive due to its low computational
complexity; however, it suffers from slow convergence speed
for correlated input signals. The more complex constrained RLS
(CRLS) [9] algorithm has fast convergence but may be unstable
even for well-behaved input signals. Similarly to the case of the
conventional LMS and RLS algorithms, the CLMS and CRLS
algorithms represent two extremes in terms of complexity and
convergence speed.

The goal of this paper is to derive linearly constrained
adaptive filtering algorithms with computational complexity
and convergence speed between those of the CLMS and
CRLS algorithms. We approach this problem using two tech-
niques: 1) data reusing or projection onto affine subspaces and
2)set-membership filtering (SMF).

The concept of data reusing for conventional adaptive filters
was introduced with the conventional affine-projection (AP) al-
gorithm [10]–[12]. By adjusting the number of projections, or
alternatively, the number of reuses, the AP algorithm can ob-
tain ramping performances from that of the normalized LMS
(NLMS) algorithm to that of the sliding-window RLS algorithm
[13], [14].

SMF [15]–[21] is a recent approach to reduce computational
complexity in adaptive filtering. SMF algorithms employ a de-
terministic objective function related to a bounded error con-
straint on the filter output such that the updates belong to a set
of feasible solutions. The SMF algorithms feature reduced com-
putational complexity primarily due to data-selective updates
rendering an overall complexity that is usually much less than
that of their conventional counterparts. The sparse updating in
time can provide substantial savings in computations because
it enables sharing of processor capacity [17] and less power
consumption. A linearly constrained SMF algorithm of LMS-
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type for a single constraint was proposed in [22]. Although
belonging to another category of algorithms, the interior-point
least-squares (IPLS) algorithm [23] is an interesting alternative
approach also working with feasibility sets.

This paper proposes and analyzes a constrained affine-projec-
tion (CAP) algorithm using the same framework already used
for other normalized constrained algorithms, such as the nor-
malized constrained LMS (NCLMS) and binormalized data-
reusing constrained LMS (BNDR-CLMS) algorithms [24]. The
ideas of normalized constrained algorithms are extended to the
framework of SMF [16], from which SM-CAP algorithms are
derived. The SM-CAP algorithms, which can also be seen as
a constrained version of the set-membership affine-projection
(SM-AP) algorithm [20], retain the fast convergence of the CAP
algorithm, and low misadjustment is obtained due to the data-
selective property. The a posteriori output constrained LMS
(APOC-LMS) algorithm proposed in [22] bears similarity to the
proposed SM-CAP algorithm for the special case of one data
reuse and a single constraint. However, even for this particular
choice of parameters, our approach differs from that in [22] by
the use of a correction term that prevents accumulation of errors
when implemented in finite precision. Finally, the convergence
analysis is provided for the CAP algorithm.

The paper is organized as follows. Section II presents the
derivation of the CAP algorithm. Section III briefly reviews the
basic concepts of SMF and introduces the SM-CAP algorithms.
Computational complexity and convergence issues are ad-
dressed in Section IV. Simulations of the algorithms are shown
in Section V, and conclusions are summarized in Section VI.

II. CONSTRAINED AFFINE-PROJECTION ALGORITHM

The goal of this section is to derive an affine-projection algo-
rithm for solving linearly constrained filtering problems. The
CAP algorithm developed below can vary the number of data
reuses to find an acceptable tradeoff between computational
complexity and convergence speed.

In linearly constrained adaptive filtering, the constraints are
given by the following set of equations:

(1)

where is an constraint matrix and is a vector con-
taining the constraint values.

The CAP algorithm to be derived solves the following opti-
mization problem:

subject to

(2)

where and are the desired-signal
vector and input-signal matrix, defined by

(3)

and is the coefficient vector at time instant .

TABLE I
CONSTRAINED AFFINE-PROJECTION ALGORITHM

Using the method of Lagrange multipliers to solve (2), the
CAP algorithm becomes [25]

(4)

with

(5)

and

(6)

Matrix performs a projection onto the homogeneous hyper-
plane defined by , and vector moves the projected
solution back to the constraint hyperplane, as given below:

(7)

(8)

For the special case of or , the above recursions
are identical to those of the NCLMS and BNDR-CLMS algo-
rithms [24], respectively. For the constrained algorithms men-
tioned here, the simplification of the correction term
to should be avoided, since accumulation of roundoff er-
rors may cause the solution to drift away from the constraint hy-
perplane (for more details, see [1]). The equations of the CAP al-
gorithm are summarized in Table I, where a step size
(usually chosen between 0 and 1, see Section IV) is used. Note
that, in order to improve robustness, a diagonal matrix (
is a small constant) is employed to regularize the matrix to be
inverted.

III. SET-MEMBERSHIP CONSTRAINED AFFINE-
PROJECTION ALGORITHM

This section reviews the basic concepts of SMF and proposes
two algorithms whose updates belong to a set of feasible solu-
tions spanned by past time instants while also satisfying a set
of linear constraints. The first algorithm, the SM-CAP [26], is a
direct extension of the SM-AP algorithm to linearly constrained
problems. The second algorithm, the set-membership reduced
peak-complexity CAP (SM-REDCAP) algorithm, is derived in
an attempt to reduce the peak complexity of the SM-CAP al-
gorithm. A basic feature of both algorithms is that if is
not in the solution set, coefficient updates are required. On the
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other hand, if already is in the solution set, no coefficient
updates are required, resulting in .

A. Set-Membership Filtering

SMF is a framework applicable to filtering problems. For a
more detailed introduction to the concept of SMF, the reader
is referred to [15]–[17]. Specification on the filter parameters
is achieved by constraining the output estimation error to
be smaller than a deterministic threshold. As a result of the
bounded error constraint, there will exist a set of filters that
satisfy the imposed condition rather than a single filter.

Let denote the set containing all vectors for which
the associated output error at time instant is upper bounded in
magnitude by . In other words

(9)

where . The set is referred to as
the constraint set, and its boundaries are hyperplanes.

Finally, let us define the exact membership set as the
intersection of the constraint sets over the time instants

, i.e.,

(10)

The idea of set-membership adaptive recursion techniques
(SMART) is to find adaptively an estimate that belongs to the
exact membership set by reusing one or several constraint sets.
One approach is to apply one of the many optimal bounding
ellipsoid (OBE) algorithms, e.g., [17] and [27], in an attempt
to outer bound the exact membership set with ellipsoids.
Another adaptive approach is the computation of a point esti-
mate through projections using, for example, the information
provided by the constraint set . This is the approach used
for derivation of the set-membership NLMS (SM-NLMS) al-
gorithm [16]. The SM-AP algorithm [20] uses the information
provided by the past constraint sets.

B. The SM-CAP Algorithm

Our objective here is the derivation of an algorithm whose
coefficients belong to the hyperplane defined by the linear con-
straints and also to the last constraint sets. For
this formulation, we express the exact membership set in (10)
as , where corresponds to the
intersection of the last constraint sets

(11)

Next, we consider the derivation of a data-selective algorithm
whose coefficients belong to the hyperplane defined by (1) and

also to the last constraint sets, i.e., and
. Let us state the following optimization criterion when-

ever :

subject to

(12)

where specifies the point in
for the update. To be consistent with (11), the elements

of should be chosen such that for .
The solution obtained by applying the method of Lagrange

multipliers is given by (13), shown at the bottom of the page,
where

(14)

and denoting the a
posteriori error at iteration , with and given by (7) and
(8), respectively.

The SM-CAP version in [26] chooses , for
such that all but the first element in the vector

of (13) are canceled, and such that the a
posteriori error lies on the closest boundary of , yielding
the update recursion [26]

(15)
where and

if
otherwise

(16)

is the data dependent step size.
The equations of the SM-CAP algorithm [26] are summarized

in Table II, and a graphical description in is shown in Fig. 1
for the case of and . For the particular case of

, the SM-CAP algorithm is, apart from the correction
term, identical to the APOC-LMS algorithm proposed in [22].
In our formulation, with the use of a correction term as pointed
out in Section II, no accumulation of roundoff errors will cause
the solution to drift away from the constraint hyperplane. The
departure from the constraint plane is generally slower for the
APOC-LMS algorithm as compared with the NCLMS without
correction term due to the data-selective updating [21] coming
from the SMF approach to adaptive filtering.

Remark 1: Whenever an update is needed, part or all of the
elements of matrix need to be recalculated, in-
creasing the computational burden per update, especially, close
to a steady-state solution, when updating is sparse in time. How-
ever, this may not pose any major problem since the reduced
frequency of updating more than compensates for the increase
in complexity introduced by .

if
otherwise

(13)
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TABLE II
SET-MEMBERSHIP CONSTRAINED AFFINE-PROJECTION ALGORITHM

Fig. 1. Geometrical interpretation of the SM-CAP algorithm in forN = 2

and L = 1.

In the following subsection, we consider an algorithm that
can reuse all past calculations of the cross correlations in

, even when updating is sparse in time.

C. The SM-REDCAP Algorithm

In an attempt to reduce the increased peak complexity
of the SM-CAP algorithm for the case of nonconsecutive
updating instants, we propose an alternative algorithm—the
SM-REDCAP—which seeks a solution that belongs to the

past constraint sets that contributed to an update. This
philosophy is in agreement with the underlying principles of
quasi-OBE algorithms (see, e.g., [28]).

Let denote the member of the exact membership set
spanned by arbitrary constraint sets, i.e.,

(17)

where is an index set with taken from the
set specifying the time instants of constraint sets
used in the update. This more general formulation includes
the SM-CAP algorithm described in the previous section as a
special case. For the SM-REDCAP algorithm considered here,

simply reduces to

if
otherwise.

(18)

Notice that in (18) is changing only if , which
is equivalent to verifying whether . This is be-
cause reuses constraint sets from . Using
a similar optimization criterion as in (12) and the same rea-
soning for choosing vector , the updating recursions of the
SM-REDCAP become (19), shown at the bottom of the page,
where and are the same as used with the SM-CAP al-
gorithm. The input-signal matrix is given by

(20)

Note that the input-signal matrix of the SM-REDCAP algo-
rithm in (20) differs from that of the SM-CAP and CAP algo-
rithms in (3) whenever there is a gap in successive updates (and
only equal if successive updates occur). The equations of the
SM-REDCAP algorithm are presented in Table III.

Remark 2: If no update occurs for consecutive iterations,
only the inner products appearing
in need to be recalculated. As a consequence, the
peak complexity of the SM-REDCAP algorithm will be lower
than that of the SM-CAP algorithm as will be illustrated in the
following section.

IV. COMPUTATIONAL COMPLEXITY AND CONVERGENCE ISSUES

This section deals initially with the computational com-
plexity of the three algorithms—CAP, SM-CAP, and
SM-REDCAP—in terms of number of multiplications and
divisions. The analysis for the coefficient-error vector is ad-
dressed for two different scenarios: with and without reference
or training signals. Section IV-B analyzes a system identi-
fication problem where a training sequence is available. An
example of such setup is given in [3], where the plant is con-
strained to having linear phase. Thereafter, in Section IV-C,
a system is analyzed where no training sequence is available.

if

otherwise
(19)
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TABLE III
SET-MEMBERSHIP REDUCED PEAK-COMPLEXITY

CONSTRAINED AFFINE-PROJECTION ALGORITHM

Examples of applications where no training is available are
beamforming and multiuser detection [1], [2].

A. Computational Complexity

Computational complexity in terms of number of multipli-
cations and divisions per update for the CAP, SM-CAP, and
SM-REDCAP algorithms are shown in Table IV.

In the case of the CAP algorithm, computation of
requires calculation of the elements of its

first row (or column) at every iteration (all other information
is available from previous iterations). In the SM-REDCAP
algorithm, the computation of requires the
calculation of its first row (or column) and only when updating
is necessary. In the case of the SM-CAP algorithm, the com-
putation of requires the calculation of rows (or
columns) from 1 to , depending on the gap (in number of
iterations) between successive updates.

In Table IV, for the SM-CAP algorithm, the maximum com-
plexity is listed assuming that the coefficient vector is updated
and also the worst case of computing without
any previously computed element. However, whenever updates
occur within iterations, previous information can be used to
reduce number of operations.

The results in Table IV do not reflect one of the important
gains of applying SMF algorithms, viz., the reduced number
of required updates. For time instants where no updates are re-
quired, the complexity of the SMF algorithms is due to filtering
only, i.e., additions and multiplications.

Finally, note that the bound is a specification on the output
error of the adaptive filter. For increasing , updates will occur
less frequently. In certain applications, a slight increase in the
mean-square error (MSE) is expected, as pointed out in [27]. In
the case of system identification, the contrary may happen for a
region close to the minimum MSE, as pointed out in [19].

TABLE IV
COMPUTATIONAL COMPLEXITY PER UPDATE: N IS THE NUMBER OF

COEFFICIENTS IN w, J IS THE NUMBER OF CONSTRAINTS, L IS

THE NUMBER OF REUSED HYPERPLANES, AND K IS A

CONSTANT ASSOCIATED WITH THE COMPLEXITY OF THE

METHOD USED TO IMPLEMENT THE

MATRIX INVERSION REQUIRED IN (5)

B. Analysis With Training Signal

The optimal solution to the constrained optimization
problem is given by [29], [30]

(21)
where and are the
input-signal correlation matrix and cross-correlation vector,
respectively.

Let be modeled as in a system identification setup, as
follows:

(22)

If the coefficient-error vector is defined as

(23)

we obtain

(24)

The constraints are clearly satisfied by the optimal solution, i.e.,
. As a result, the next expression follows:

(25)
It can be verified that , by noting that

any coefficient vector satisfying the constraints can
be decomposed as such that

Also note that, due to the matrix inversion, (25) is valid only in
cases where .

Using the fact that matrix is idempotent, i.e., and
, together with the relation , we

can write (25) as

(26)

where and
.
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We now examine the conditions for convergence with prob-
ability 1 (convergence everywhere) of the system describing

. In order to guarantee stability of the linear time-
variant system of (26), consider the following lemma

Lemma 1: The CAP algorithm with the coefficient-error
vector update given by (26) is stable, i.e.,

, for and .
Proof: Using the relation , we get

(27)

where we used the fact that for .
As for the asymptotic stability, we state the following

theorem.
Theorem 1: If the input signal is persistently exciting and

, then the solution of (26) and, consequently, the
CAP algorithm is asymptotically stable for .

Proof: Using singular value decomposition (SVD), we
can rewrite the transformed input matrix
as , where the unitary matrices

and contain the left and right
singular vectors respectively, and contains the
singular values on its main diagonal. Consequently, we can
write

(28)

where we used the fact that for two invertible matrices and
, .
Persistence of excitation of the input signal and condition

guarantee that matrix exists. Ma-

trix is a diagonal matrix
with ones and zeros, i.e.,

(29)

Therefore

(30)

where .

For the asymptotic stability, we can conclude that
remains constant, i.e.,

, during an interval if and only if we choose
or , or if is orthogonal to the left singular

vectors of corresponding to the nonzero
singular values in for all , i.e.,

where the elements denoted can take arbitrary values. How-
ever, if the input signal is persistently exciting, we can define
an infinite number of sets , where

denotes the first columns of , with
, such that each set completely

spans for some finite value of . This makes it im-
possible to have orthogonal to all and, as a
consequence, . Since the number
of sets is infinite, the coefficient-error norm is always reduced
by the action of successive projections. Moreover, we know
that , for

; then, we can write

(31)

where and are scalars between 0 and 1, as far as is
chosen properly. In order to establish that for

, we can run a convergence test on a series with all
values of corresponding to . From the above,
we know that there exists an infinite number of time instants
where ; then, we let denote the infinite index set
containing the time instants when . According to the ratio
test, the series converges, and, therefore,
we must have for , which concludes
the proof.

Observation: Equation (30) indicates that practical step
sizes are in the range , since larger step sizes
neither increase the speed of convergence nor further reduce
the coefficient-error norm.

If observation noise is present in the reference-signal vector,
i.e., , where

, shall be modified to include
an additional term , given by

(32)

Assuming noise to be uncorrelated and zero mean, this term
averages out to zero and does not contribute to bias.

C. Analysis Without Training Signal

In the case where no training sequence is available, the op-
timum solution is given by [1]

(33)
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The coefficient-error vector can now be expressed as

(34)

where we used . Note that the term
is an additional term

as compared with the situation where a training sequence is
present. In order to investigate bias, we will study the mean
value of the coefficient-error vector given by

(35)

In order to proceed, we use of the following assumption:

A1) is independent of
.

This assumption is similar to the one made in [31] and [32] for
the analysis of the conventional AP algorithm and is a weaker
assumption than assuming is independent of
[32]. Introducing the notations

(36)

and using assumption A1) in (35), we have

(37)

If we let , the first term in (37) will go
to zero if . This is because the eigenvalues of are
bounded as (see details in [1]). The second
term, which is the bias term, requires some more detailed study.
For clarity, let us rewrite the bias term at time instant

(38)

For , the bias

(39)
In order for the bias to go to zero, we need

to hold. How-
ever, using the expression for in (33), this requirement is
equivalent to having ,
which does not hold for the general case. However, when

and is large, the requirement holds—in this case,
the expression can be
approximated by —and the bias tends to zero,
i.e., when the CAP algorithm is the normalized constrained
LMS (NCLMS) algorithm [8], [24]. In other words, we can
conclude that normalization may introduce bias for the blind
case whenever is greater than one.

V. SIMULATION RESULTS

In this section, the performances of the CAP, SM-CAP, and
SM-REDCAP algorithms are investigated in three simulations.
A first experiment using a desired or reference signal (the more
general case), , is a system-identification application
where the adaptive filter is constrained to have linear phase. The
second experiment is a beamforming application where the de-
sired signal is set to zero, i.e., . The last simulation
uses the same setup of the first experiment in order to present
the performance of the SM-REDCAP.

A. Simulation 1

A simulation was carried out in a system-identification
problem where the filter coefficients were constrained to pre-
serve linear phase at every iteration. For this example, we chose

and, in order to fulfill the linear phase requirement,
we made

(40)

with being a reversal matrix (an identity matrix with all rows
in reversed order), and

(41)

This setup was employed to show the improvement of the
convergence speed when is increased. Due to the symmetry
of and the fact that is a null vector, more efficient struc-
tures could be used [3]. The input signal consists of colored
noise with zero mean, unity variance, and eigenvalue spread
around 2068. The reference signal was obtained after filtering
the input signal by a linear-phase finite-duration impulse re-
sponse (FIR) filter and adding observation noise with variance
equal to . The optimal coefficient vector used to
compute the coefficient-error vector was obtained from (21)
after replacing (the Wiener solution) by (the FIR
unknown system). The input signal was taken as colored noise
generated by filtering white noise through a filter with a pole at
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Fig. 2. Learning curves for the CAP and the SM-CAP algorithms withL = 1,
L = 2, and L = 4 data reuses, � = 10 ,  =

p
6� , and colored input

signal.

. The autocorrelation matrix for this example is given
by

...
...

. . .
...

(42)
where is set such that corresponds to
the desired input signal variance , made equal to one in this
experiment.

Fig. 2 shows the learning curves for the CAP and the
SM-CAP algorithms for , , and . The value
of in the SM-CAP algorithm was chosen equal to .
A higher value would result in less frequent updates and a
possible slower convergence. It is clear from this figure that,
for the CAP algorithm, the misadjustment increases with .1

It is also clear from this figure that the misadjustment with the
SM-CAP algorithm is lower than that of the CAP algorithm
and that the misadjustment increases more slowly when is
increased. The only way for the CAP algorithm to achieve the
low misadjustment of the SM-CAP algorithm is through the
introduction of a step size, resulting in a slower convergence
(in this simulation, we have used ). In cases where the
error is very high and fast convergence is required, such as
in adaptive beamforming or adaptive multiuser detection in
CDMA systems, a variable step size could be used [24] with the
CAP algorithm. Furthermore, in 500 iterations, the SM-CAP
algorithm performed (in average) updates in 485 (97%), 111
(22.2%), and 100 (20%) time instants for , , and

, respectively. In other words, the SM-CAP algorithm
with had a better performance than the CAP algorithm
while performing updates for only a fraction of time instants.

1Although not visible in Fig. 2, after convergence, the MSE curve corre-
sponding to the CAP algorithm for L = 1 is nearly 3 dB lower than the MSE
curve corresponding to L = 2.

Fig. 3. Evaluating consistency for the CAP and SM-CAP algorithms withL =

1,L = 2, and L = 4 data reuses, � = 10 ,  =
p
6� , and colored input

signal (first experiment setup).

Also for this first experiment, Fig. 3 shows that a consistent
estimation of the coefficient vector is obtained, suggesting that
there is no bias in the coefficient vector after convergence. In this
figure, the CAP algorithm and the SM-CAP algorithm presented
basically identical curves.

B. Simulation 2

A second experiment was carried out in a beamforming ap-
plication. In this scenario, a uniform linear array with
antennas with element spacing equal to a half-wavelength was
used in a system with 4 users. The signal of one user
(look-direction set to 0 ) is of interest, and the other three sig-
nals (incident angles corresponding to 25 , 45 , and 50 )
are treated as interferers or jammers. The received discrete-time
signal can be modeled as

where is the steering matrix
containing the steering vectors of the users, is the DOA,

contains the user amplitudes ,
is a vector of the transmitted

user information, and is the sampled noise sequence across
the array. The signal-to-noise ratio (SNR) was set to 0 dB, and
jammer-to-noise ratios (JNRs) of 30 dB were used.

The learning curves—actually the mean output energy
(MOE) for this case of no training signal—are depicted in
Fig. 4. We observe, from this figure, approximately the same
behavior as in the first experiment: a lower misadjustment for
the SM-CAP algorithm.

In Fig. 5, the norm of the average coefficient-error norm is
shown, suggesting that there is bias for large values of .

In this beamforming simulation, we have also plotted the
beam pattern for the CAP and the SM-CAP algorithms. It was
done in two time instants and using the results of one single
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Fig. 4. Learning curves for the CAP and the SM-CAP algorithms withL = 1,
L = 2, and L = 4 data reuses,  =

p
48, SNR = 0 dB, and JNR = 30 dB in

a beamforming application.

Fig. 5. Average coefficient-error norm for the CAP and the SM-CAP
algorithms with L = 1, L = 2, and L = 4 data reuses,  =

p
48,

SNR = 0 dB, and JNR = 30 dB in a beamforming application.

run. Fig. 6 shows the results after a large (500) number of sam-
ples, and Fig. 7 shows the results after a small (20) number of
samples. From both figures, we observe that algorithms CAP
and SM-CAP, due to bias in blind applications, do not present
a good performance in terms of beam pattern for large number
of data reuses . Conversely, the implementations with a small
number of data reuses, 1 or 2, render very good sample
support capability.

C. Simulation 3

In this simulation, we have used the same setup of the
first experiment to test the performance of the SM-REDCAP
algorithm.

The result of this simulation in terms of learning curves are
depicted in Fig. 8. We see from this figure that the SM-REDCAP

Fig. 6. Beamforming patterns for the CAP and the SM-CAP algorithms with
L = 1, L = 2, and L = 4 data reuses, SNR = 0 dB, and JNR = 30 dB in a
beamforming application after 500 iterations.

Fig. 7. Beamforming patterns for the CAP and the SM-CAP algorithms with
L = 1, L = 2, and L = 4 data reuses, SNR = 0 dB, and JNR = 30 dB in a
beamforming application after 20 iterations.

algorithm performs very similarly to the SM-CAP algorithm for
all values of data reuses ( ) employed. It is only noticeable a
slightly lower misadjustment (lower MSE after convergence) in
the SM-CAP learning curves.

VI. CONCLUSION

In this paper, we have introduced the constrained affine-pro-
jection (CAP) algorithm as well as two set membership CAP
algorithms. These data-selective versions of the CAP algorithm
can, in certain applications, substantially reduce the number of
required updates.

Through theoretical analysis, we have shown that these al-
gorithms may present bias in the coefficient vector. Simulation
results of two experiments, including both cases of biased and
unbiased solutions, supported the analysis claims and evaluated
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Fig. 8. Learning curves for the SM-CAP and the SM-REDCAP algorithms
with L = 1, L = 2, and L = 4 data reuses, � = 10 ,  =

p
6� , and

colored input signal.

the performance of the proposed algorithms. A third simula-
tion shows the very good performance achieved with a much
simplified version of the set-membership CAP (SM-CAP) al-
gorithm, namely the set-membership reduced peak-complexity
CAP (SM-REDCAP) algorithm, first developed and presented
here.
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