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Abstract—This paper presents a tutorial-like detailed explana-
tion of linearly constrained minimum-variance filtering in order
to introduce an efficient implementation that utilizes Householder
transformation (HT). Through a graphical description of the al-
gorithms, further insight on linearly constrained adaptive filters
was made possible, and the main differences among several algo-
rithms were highlighted. The method proposed herein, based on
HT, allows direct application of any unconstrained adaptation al-
gorithm as in a generalized sidelobe canceller (GSC), but unlike the
GSC, the HT-based approach always renders efficient implemen-
tations. A complete and detailed comparison with the GSC model
and a thorough discussion of the advantages of the HT-based ap-
proach are also given. Simulations were run in a beamforming ap-
plication where a linear array of 12 sensors was used. It was veri-
fied that not only the HT approach yields efficient implementation
of constrained adaptive filters, but in addition, the beampatterns
achieved with this method were much closer to the optimal solu-
tion than the beampatterns obtained with GSC models with sim-
ilar computational complexity.

Index Terms—Adaptation algorithms, beamforming, efficient
alogorithms, generalized sidelobe canceller, linearly constrained
adaptive filters.

I. INTRODUCTION

A DAPTIVE receiving-antenna systems that can operate
in real-time were developed in the 1960s [1], [2] and

were intended to perform directional and spatial filtering
with minimum knowledge of the statistics of arriving sig-
nals. Linearly constrained (LC) adaptive array processing [3]
was undoubtedly a significant improvement to previously de-
vised adaptive antenna-array systems for the need of training
sequences and knowledge of interfering-signal statistics be-
came unnecessary. In the approach presented in [3], output
power is minimized, whereas a desired signal arriving at a
known direction is linearly filtered according to a specified
frequency response.
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Fig. 1. Broadband adaptive receiving array.

Fig. 1 shows a schematic diagram of a broadband array-pro-
cessing filter with sensors and filters with taps. The output
of the array may be expressed as , where

(1)

(2)

and

(3)

For LC adaptive filters, the coefficient update is performed
in a subspace that is orthogonal to the subspace spanned by a
constraint matrix [3]. The direction of the update is given by the
input-signal vector premultiplied by a projection matrix, which
is rank-deficient (cf. Section II). This may be regarded as the use
of nonpersistently exciting input signal,1 and lack of persistence
of excitation requires that a correction term be added to the
coefficients to prevent accumulation of roundoff errors [3], [5].

An alternative approach to the implementation of LC array
processing was introduced by Griffiths and Jim in [5], which
became known as the generalized sidelobe canceling (GSC)
model. With the GSC model, the dimension of the adaptation
subspace is properly reduced by means of a blocking matrix
such that persistence of excitation is not lost due to imposing
constraints. By transforming the constrained minimization
problem into an unconstrained minimization problem, the GSC
model allows that any adaptation algorithm can be directly ap-
plied. Furthermore, as the restriction imposed on the blocking
matrix is only that its columns must be orthogonal to the
constraint matrix, a myriad of possible implementations result.

1For a discussion on persistence of excitation, see [4].
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The structure of the blocking matrix has a direct effect on
the overall computational complexity through its multiplication
to the input-signal vector in each iteration. Construction of
the blocking matrix using, e.g., singular-value decomposition
(SVD), results in a matrix with no special structure, which in
the GSC model renders high computational complexity per
iteration. In these cases, the practical use of the GSC structure
is questionable. The extra computations resulting from the
product of the blocking matrix by the input-signal vector
may exceed those of the adaptation algorithm and filtering
operation by up to one order of magnitude. Other types of
blocking matrices with sparse structures may be of more
practical use from the perspective of computational complexity.
Many times, such solutions are application dependent, and the
resulting matrix is, in general, not orthogonal; in these cases,
adaptive implementations of the GSC and linearly constrained
minimum-variance (LCMV) filters may bear no relation [5].

The main contributions of this paper are concerned with an ef-
ficient implementation of LC adaptive filtering algorithms that
overcomes the problem of added computational complexity that
may occur in the GSC structure. In addition, as in the GSC
structure, the proposed method may be used with any uncon-
strained adaptive filtering algorithm. A geometrical interpreta-
tion is presented in order to provide better understanding of the
updating process used in constrained algorithms. Moreover, this
geometrical interpretation is used to illustrate better the use of
the Householder transformation. A detailed explanation of the
matrices involved in the process is presented, and pseudo-code
routines are provided. Even in cases where the GSC structure is
equivalent to the Householder implementation introduced here,
the latter is more efficient.

The organization of the paper is as follows. Section II gives
the background of the LCMV filter and the GSC model. In
Section III, the new Householder-transform constrained algo-
rithms are presented as a low-complexity solution for reducing
the subspace in which adaptive-filter coefficients are updated.
Relations to the GSC model are made, resulting in a framework
where any unconstrained adaptation algorithm can be applied
to linearly constrained problems using the proposed method.
Section IV contains simulation results, followed by conclusions
in Section V.

II. BACKGROUND

A. Optimal Linearly-Constrained Minimum-Variance Filter

The optimal (LCMV) filter in the sense of the minimum mean
output energy (MOE) is the one that minimizes the objective
function

(4)

subjected to the set of linear constraints defined by

(5)

where
vector of coefficients of length ;
square-root factor of the autocorrelation matrix of the
input signal;

constraint matrix;
gain vector.

Note that corresponds to the number of constraints.
By using the method of Lagrange multipliers, the optimal so-

lution becomes [3], [6]

(6)

The equation above bears the difficulty of knowing in real
time the inverse of the input-signal autocorrelation matrix .
A much more practical approach is to produce an estimate of

recursively at every iteration. As time proceeds, the esti-
mate is improved such that convergence in the mean to the op-
timal solution may eventually be achieved.

B. LC Adaptive Filtering

Frost [3] has proposed an algorithm to estimate based
on the gradient method or, more specifically, based on the least-
mean-square (LMS) algorithm for adaptive filtering. Let
denote the estimate of at time instant and

(7)

denote the filter output, equal in absolute value to the output
error, since in this case, the reference signal is zero.

The constrained LMS (CLMS) algorithm [3] uses as an es-
timate of the input-signal autocorrelation matrix at instant

the outer product of the input-signal vector by itself, i.e.,
. In this case, the coefficient-update equation

becomes [3]

(8)

where is the th-order identity matrix

(9)

is the projection matrix onto the subspace orthogonal to the sub-
space spanned by the constraint matrix, and [3]

(10)

Note in (8) that the term multiplied by the projection matrix
corresponds to the unconstrained LMS so-

lution, which is projected onto the homogeneous hyperplane
and moved back to the constraint hyperplane by

adding vector . Fig. 2 illustrates this operation.
A normalized version of the CLMS algorithm, namely, the

NCLMS algorithm, can be easily derived [7]; the update equa-
tion becomes

(11)
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Fig. 2. Geometrical interpretation of some constrained algorithms. 1)w(k) =
F+Pw(k). 2)w(k+1) for the unconstrained LMS algorithm. 3)w(k+1)
for the unconstrained NLMS algorithm. 4)w(k + 1) for the constrained LMS
algorithm [3]. 5)Pw(k+1) for the constrained LMS algorithm [3]. 6)w(k+1)
for the projected NLMS algorithm [8]. 7)w(k+1) for the constrained NLMS
algorithm [7].

We will stress here the fact that for the normalized constrained
LMS (NCLMS) algorithm in (11), thea posteriorioutput signal
is zero for . The solution is at the intersection of the hyper-
plane defined by the constraints with the hyper-
plane defined by the nulla posterioricondition

. Therefore, the solution is not merely a
projection of the solution of the normalized LMS (NLMS) al-
gorithm onto the hyperplane defined by the constraints. This is
also illustrated in Fig. 2, where we present a detailed graph-
ical description of the coefficient update of several algorithms
in the case of two coefficients only. In this case, hyperplanes

and become two lines, as noted in the figure. As
must satisfy the constraints, it must belong to and can be
decomposed in two mutually orthogonal vectorsand .
The figure also illustrates how the solutions of the constrained
version of the LMS algorithm, the NLMS algorithm, and the
projection algorithm [8] relate. Note that in this figure, all up-
dated vectors for the constrained algorithms are located along
the direction of (points 4, 6, and 7). Therefore, if

were rotated such that the axis and had the same di-
rection, the component along this direction would not need to
be updated. This fact will be used in Section III, where the new
Householder-transform algorithms are introduced.

The necessity of the last term in (8) and (11) may be sur-
prising for it is expected that all satisfy the constraint, and
therefore, this last term should be equal to zero. In practical im-
plementations, however, this term will be included to prevent
divergence in a limited-precision arithmetic machine [5] due to
perturbations introduced in the coefficient vector in a direction
that is not excited by vector . The same reasoning can

Fig. 3. Generalized sidelobe canceling (GSC) model.

be applied to the constrained recursive least-squares (CRLS) al-
gorithm presented in [9] and to the constrained quasi-Newton
(CQN) algorithm presented in [10].

C. Generalized Sidelobe Canceling Model

Many implementations of LC adaptive filters utilize the ad-
vantages of the GSC model [6], mainly, because this model em-
ploys unconstrained adaptation algorithms that have been ex-
tensively studied in the literature. Fig. 3 shows the schematic of
the GSC model.

Let in Fig. 3 be a full-rank blocking
matrix designed to completely filter out the components of the
input signal that are in the same direction as the constraints.
Matrix must span the null space of the constraint matrix,
i.e.,

(12)

In order to relate the GSC model and the linearly constrained
minimum variance (LCMV) filter, let be an
transformation matrix such that

(13)

Now, suppose that a transformed coefficient vectorrelates to
the LCMV coefficient vector through

(14)

This transformation of the coefficient vector does not modify
the output error [11] as long as is invertible, which is always
guaranteed from (12). If we partition vectoras

(15)

with and vectors of dimensions and ,
respectively, it can be easily shown that we have [6]

(16)

and

(17)

(18)

where is the constant part of vector that satisfies
the constraints, i.e., [6]. Vector is not
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affected by the constraints and may be adapted using uncon-
strained adaptation algorithms in order to reduce interference
from signal components that lie within the null space of.

It is clear from the previous discussion that coefficient adap-
tation for the GSC model is performed within a reduced-dimen-
sion subspace. The transformationin (13) applied onto the
input-signal vector is such that the lower part of this transformed
input is restricted to the null space of the constraint ma-
trix , which is of dimension . Therefore, adaptation
along causes no departure from the constraint hyper-
plane. Another important factor to stress is that the input signal
of the adaptive filter is persistently exciting of order .

The structure of matrix plays an important role in the
GSC structure for its choice determines the computational
complexity and, in many cases, the robustness against nu-
merical instabilities of the overall system [12]. If SVD or any
other decomposition is employed, the resulting nonsquared
( ) matrix will, in general, have no exploitable
special structure. This may result in a highly inefficient im-
plementation with computational complexity up to one order
of magnitude higher than that of the adaptation algorithm
itself. This is due to the matrix-vector multiplication
performed at each iteration. Although, in some applications
[5], it may be possible to construct trivial blocking matrices
whose elements are either 0, 1, or1, these matrices pose some
practical problems that may prevent their use. For instance,
if matrix is such that the transformation matrix is not
unitary, then the transients of the adaptive filters in the GSC
model and in the LCMV may bear no relation [5]. Furthermore,
if applied to the multistage Wiener filter structure presented
in [11], nonunitary transformations invariably yield severe
problems related to finite precision arithmetic [12]. The House-
holder decomposition used as suggested herein allows efficient
implementation and results in a unitary transformation matrix.
If necessary, the Householder reflections can be performed via
dedicated CORDIC hardware or software [13].

III. H OUSEHOLDER-TRANSFORMCONSTRAINEDALGORITHMS

For a general constrained minimization problem, the multipli-
cation of the blocking matrix by the input signal vector in a GSC
structure may be computationally intensive and, for many appli-
cations, not practical. In this section, we will propose an elegant
solution to this problem. The derivation of the first algorithm
presented in this section starts from the CLMS algorithm [see
(8)] and performs a rotation on vector in order to make
sure that the coefficient vector is never perturbed in a direction
not excited by . This can be done if an orthogonal rota-
tion matrix is used as the transformation that will generate a
modified coefficient vector that relates to according
to

(19)

We can visualize this operation in Fig. 2 if we imagine axes
and rotated counterclockwise by an angle.

If we choose the matrix such that and

(20)

Fig. 4. Coefficient-vector rotation. 1)w(0) = QF = QC(C C) f .
2) w(k + 1) for the HCLMS algorithm. 3)w(k + 1) for the HNCLMS
algorithm.

TABLE I
HCLMS ALGORITHM

then satisfies , and the transformed
projection matrix is such that

(21)

If is initialized as

(22)

then its first elements need not be updated. The
update equation of the proposed algorithm, named the
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TABLE II
COMPUTATION OFx = Qx

Householder-transform constrained LMS [14], is obtained by
premultiplying (8) by

(23)

where and denote the last elements
of vectors and , respectively. Note that vector

has only nonzero elements.
Although the solution is biased by a transformation
, the output signal and, consequently, the output error are not

modified by the transformation. We conclude, therefore, that the
proposed algorithm minimizes the same objective function min-
imized by the CLMS algorithm.

A. Choice of the Transformation Matrix

We maintain that matrix in (19) may be constructed with
successive Householder transformations [15] applied onto each
of the columns of matrix , where is the square-root factor
of matrix , i.e., .

Theorem 1: If

(24)

where

(25)

and is an Householder
transformation matrix on the form [15], then
(20) is satisfied.

Proof: After transformations, matrix
may be partitioned as

...

...
(26)

The Householder transformations make matrix upper
triangular. Now, let denote the th column of the ma-

TABLE III
CONSTRUCTION OFMATRIX V CONTAINING THE HOUSEHOLDERVECTORS

trix. It is easy to show by carrying out the Householder trans-
formation on that if the columns,viz.

, of satisfy

(27)

(28)

then

...
...

...
...

(29)

For , , and . Matrix has
orthonormal columns because
. Therefore, (27) and (28) are directly satisfied. By thefun-

damental theorem of inner product invariance in Householder
transforms[16], orthonormality is maintained for and,
by induction, (27) and (28) are also satisfied for any . As
a consequence, is a diagonal matrix with entries, and

is a matrix of zeros. This concludes the proof.
Notice that the 1 entries in matrix result from the robust

implementationof theHouseholder transformationgiven in [15].
From (23), we verify that the algorithm updates the coeffi-

cients in a subspace with reduced dimension. The entries of
vector that lie in the subspace of the constraints need
not be updated. Due to the equivalence of Householder reflec-
tions and Givens rotations [17], a succession of Givens rotations
could also be used. However, rotations are not as efficiently im-
plemented as reflections and computational complexity might
render the resulting algorithm not practical.

B. Normalized HCLMS Algorithm

A normalized version of the HCLMS algorithm, namely, the
NHCLMS algorithm [14], can be derived, and its update equa-
tion is

(30)
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TABLE IV
COMPUTATIONAL COMPLEXITY

Note that the Householder transformation allows normalization
without the need of multiplication by a projection matrix, as it
is required for the NCLMS in (11).

Fig. 4 illustrates the coefficient update for the HCLMS and
the NHCLMS algorithms. Note, in this figure, that a rotation
by is performed on the coordinate system

. This angle is chosen such that the ro-
tated axis becomes parallel to the constraint hyperplane, and
the coordinate corresponding to needs no further update.
This is so because becomes orthogonal to . Table I shows
an algorithmic description of the HCLMS algorithm.

C. Computational Complexity Issues

In this section, we explain why and how the implementation
via Householder transformation is better than the GSC and the
constrained alternatives. Let us start with the procedure used to
compute the product . In order to have an efficient House-
holder implementation, the transformation of the input-signal
vector in every iteration is carried out throughreflections given
by

(31)

where

(32)

and matrix is a
Householder transformation matrix [15].

If we define the vector , where the
vector introduces zeros before , we can construct
matrix , and the factored product in (31)
could be implemented with the procedure described in Table II.
Furthermore, the procedure for the calculation of the House-
holder vectors and the resulting is described in Table III. In
Table III, is the matrix to be triangularized, which, in our par-
ticular case of interest, corresponds to , where is the
square-root factor of the matrix , as proposed earlier
in this section.

From Table II, we see that the computation of
using the product representation in (31) only involves

multiplications and additions. Table IV

shows the computational complexity for the CLMS, NCLMS,
HCLMS, and NHCLMS algorithms and the GSC implementa-
tion of the CLMS and NCLMS algorithms. The computational
complexity for the GSC implementation is given for two choices
of the blocking matrix . The first implementation uses a matrix

obtained by, e.g., SVD leading to an inefficient implementa-
tion of the multiplication . The second implementation,
which is applicable only in certain problems, uses a matrix
constructed through a cascade of sparse matrices as presented in
[18], rendering an implementation of the multiplication
of low computational complexity.

D. Householder-Transform Constrained Algorithms and the
GSC

Fig. 5 shows, step-by-step, the relation between a House-
holder-constrained (HC) algorithm and the GSC structure. If

is factored into an upper part and lower part (see Fig. 5),
it is easy to show that spans the null space of and
may be regarded as a valid blocking matrix. Furthermore,

, which is the upper part of
the GSC structure. However, we stress that for most practical
values of , the implementation of and separately
renders much higher computational complexity because it
does not take advantage of the efficiency of the Householder
transformation. The transformed input-signal vector can be
efficiently obtained via Householder transformations, which
require only inner products. We maintain that our approach
can be regarded as a GSC structure and, therefore, any uncon-
strained adaptive algorithm can be used to update . As an
example of this assertion, Table V shows the equations of the
Householder-transform-constrained quasi-Newton (HCQN)
algorithm obtained directly from [10] and Fig. 5, as previously
reported in [19]. Notice that the algorithm in Table V does
not require the inversion and construction of the matrix
encountered in the conventional CQN algorithm presented
in [10], resulting in a much simpler implementation of the
algorithm.

IV. SIMULATION RESULTS

In this section, the performance of the proposed algorithms
is evaluated through simulations and compared with their GSC
counterparts.
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Fig. 5. HC adaptive filter under the GSC model. 1) Applying the transformation as in (19). 2) Splitting the transformed vector as in (23). 3) PartitioningQ in
order to reach the GSC equivalent. 4) HC algorithm under a GSC perspective.

TABLE V
HCQN ALGORITHM

A uniform linear array with antennas with element
spacing equal to a half wavelength was used in a system with

users, where the signal of one user is of interest, and the
other four signals are treated as interferers. The direction of ar-
rival (DOA) and the signal-to-noise ratio (SNR) for the different
signals can be found in Table VI.

A second-order derivative constraint matrix [20] was used,
giving a total of three constraints. For the GSC implementation,
the nonunitary blocking matrix in [18] was used.

TABLE VI
SIGNAL PARAMETERS

Fig. 6. Learning curves of the algorithms.
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Fig. 7. Beampattern for the HCLMS and GSC-LMS algorithms.

Fig. 8. Beampattern for the HNCLMS and the GSC-NLMS algorithms.

Fig. 6 shows the learning curves of the different algorithms.
The results were obtained by averaging 2000 realizations of the
experiment. The step sizes used in the algorithms were

• for the CLMS and the HCLMS algorithms;
• for the GSC-LMS algorithm;
• for the NLMS algorithms;
• for the QN algorithms.

As can be seen from Fig. 6, the Householder implementations
have a better performance than the corresponding GSC imple-
mentations using the sparse blocking matrix.

Figs. 7–9 show the beampatterns resulting from the different
algorithms. The beampatterns obtained with the Householder
algorithms are very close to the optimal solution. On the other
hand, the GSC-based implementations failed to suppress com-
pletely all interferers at the same time, which suggests that the
adaptation algorithms did not achieve a steady state, even after
7000 iterations. The output gains in the directions of the inter-
ferers are shown in Table VII.

Fig. 9. Beampattern for the HCQN and the GSC-QN algorithms.

TABLE VII
OUTPUT GAINS IN THE DIRECTIONS OF THEINTERFERERS

V. CONCLUSIONS

In this paper, we presented an efficient implementation of
linearly-constrained minimum-variance adaptive filters based
on the Householder transformation of the input signal. With
this type of transformation, we derived several adaptation algo-
rithms for LCMV applications, such as the Householder-trans-
form constrained least mean square algorithm and its normal-
ized version, and maintained that extension to other adaptation
algorithms should be trivial.

Via the Householder transformation, we were able to reduce
the dimension of the subspace in which the adaptive-filter co-
efficients are updated, therefore obtaining a transformed input
signal that is persistently exciting. Viewed under the perspective
of the generalized sidelobe canceling model, we showed that the
transformation matrix can be factored into a matrix satisfying
the constraints and a blocking matrix.

In terms of computational complexity, our method is compa-
rable with the most efficient implementations of the blocking
matrix found in the literature, with the advantage that the
Householder transformation, and, consequently, the blocking
matrix implicitly used in the transformation, are unitary. For
this reason, not only the steady-state mean squared output error
is the same as that of the conventional nontransformed LCMV
filter, but the equivalence is also verified during the transient.
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Having a unitary transformation also imparts robustness to
the method [12], for example, when applied to nonconven-
tional Wiener-filter structures (e.g., multistage representation).
Some of these properties were illustrated in one example of
beamforming.
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