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Abstract—This paper presents a tutorial-like detailed explana- /
tion of linearly constrained minimum-variance filtering in order Xl(k)
to introduce an efficient implementation that utilizes Householder Wl(k)
transformation (HT). Through a graphical description of the al-
gorithms, further insight on linearly constrained adaptive filters | /
was made possible, and the main differences among several algo- { x2(k) y(k)
rithms were highlighted. The method proposed herein, based on W2(k)
HT, allows direct application of any unconstrained adaptation al- : .
gorithm as in a generalized sidelobe canceller (GSC), but unlike the o .
GSC, the HT-based approach always renders efficient implemen- yd
tations. A complete and detailed comparison with the GSC model ? XM("’)
and a thorough discussion of the advantages of the HT-based ap- WM(k)
proach are also given. Simulations were run in a beamforming ap-
plication where a linear array of 12 sensors was used. It was veri- I
fied that not only the HT approach yields efficient implementation
of constrained adaptive filters, but in addition, the beampatterns Fig. 1. Broadband adaptive receiving array.
achieved with this method were much closer to the optimal solu-

FiOI’] than the _beampatterns_ obtained with GSC models with sim- Fig. 1 shows a schematic diagram of a broadband array-pro-
llar computational complexity. cessing filter with/ sensors and filters withV taps. The output

Index Terms—Adaptation algorithms, beamforming, efficient of the array may be expressedidg) = w™ (k)x(k), where
alogorithms, generalized sidelobe canceller, linearly constrained

adaptive filters. w(k) = [wlT(k) wy(k) --- WE(/{)]T (1)
x(k) =[xl (k) x5 (k) - 3R] @)

I. INTRODUCTION

A DAPTIVE receiving-antenna systems that can opera"f'@d

in real-time were developed in the 1960s [1], [2] and  x;(k) = [z;(k) zi(k—1) -~ x;(k — N + 1)]T. ©)

were intended to perform directional and spatial filtering o o _

with minimum knowledge of the statistics of arriving sig- For LC adaptive fllters, the coefficient update is performed
nals. Linearly constrained (LC) adaptive array processing [#§] @ Subspace that is orthogonal to the subspace spanned by a
was undoubtedly a significant improvement to previously d&€onstraint matrix [3]. The direction of the update is given by the
vised adaptive antenna-array systems for the need of train[i§ut-Signal vector premultiplied by a projection matrix, which
sequences and knowledge of interfering-signal statistics t5%[ank—deﬂC|ent (cf. Section I1). This may be regarded as the use

came unnecessary. In the approach presented in [3], outg onae:gstently.e xcn;rr:gtmputS|gnlta_1andtlack gf pe(rjsdlstc(jﬂ:ceth
power is minimized, whereas a desired signal arriving at excitation requires that a correction term be added 1o the

T : . ... coefficients to prevent accumulation of roundoff errors [3], [5].

known direction is linearly filtered according to a specifie . . :
freaUency response An alternative approach to the implementation of LC array

q Y P ' processing was introduced by Griffiths and Jim in [5], which
became known as the generalized sidelobe canceling (GSC)
model. With the GSC model, the dimension of the adaptation
subspace is properly reduced by means of a blocking matrix

Manuscript received May 7, 2001; revised May 5, 2002. The associate &ch that persistence of excitation is not lost due to imposing
itor COOI’dinating the review of this paper and approving it for pUinCatiOn W%onstralntsl By transformlng the constrained minimization
Dr. Naofal M. W. Al-Dhahir. bl . ined minimi . bl he GSC

M. L. R. de Campos is with the Programa de Engenharia EIétricQ,ro em Into an unconstraine .mm'm'Z.at'on pro em_'t €
COPPE/Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (e-maiodel allows that any adaptation algorithm can be directly ap-
campos@Ips.ufrj.br). _ o (Plied. Furthermore, as the restriction imposed on the blocking

S. Werner is with the Signal Processing Laboratory, Helsinki University of trix | v that it | t b th | to th
Technology, Espoo, Finland (e-mail: stefan.werner@hut.fi). rnatrix '_S only ] at its _CO umns mus ) € or ogo_na 0 the

J. A. Apolinério, Jr. is with the Departamento de Engenharia Elétrica, Institugonstraint matrix, a myriad of possible implementations result.
Militar de Engenharia, Rio de Janeiro, Brazil (e-mail: apolin@ieee.org).

Publisher Item Identifier 10.1109/TSP.2002.801893. 1For a discussion on persistence of excitation, see [4].

1053-587X/02$17.00 © 2002 IEEE



2188 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 9, SEPTEMBER 2002

The structure of the blocking matrix has a direct effect oNote thatp corresponds to the number of constraints.
the overall computational complexity through its multiplication By using the method of Lagrange multipliers, the optimal so-
to the input-signal vector in each iteration. Construction dfition becomes [3], [6]
the blocking matrix using, e.g., singular-value decomposition .
(SVD), results in a matrix with no special structure, which in wot = R 1'C(CTR'C) " f. (6)
the GSC model renders high computational complexity per
iteration. In these cases, the practical use of the GSC structurédhe equation above bears the difficulty of knowing in real
is questionable. The extra computations resulting from tfigne the inverse of the input-signal autocorrelation maix'.
product of the blocking matrix by the input-signal vectoA much more practical approach is to produce an estimate of
may exceed those of the adaptation algorithm and filtering.p: recursively at every iteration. As time proceeds, the esti-
operation by up to one order of magnitude. Other types ufate is improved such that convergence in the mean to the op-
blocking matrices with sparse structures may be of motinal solution may eventually be achieved.
practical use from the perspective of computational complexity.
Many times, such solutions are application dependent, and the LC Adaptive Filtering

resulting matrix is, in general, not orthogonal; in these casesggst [3] has proposed an algorithm to estimatg,, based
adaptive implementations of the GSC and linearly constraingf| {he gradient method or, more specifically, based on the least-

minimum-variance (LCMV) filters may bear no relation [5]. mean-square (LMS) algorithm for adaptive filtering. tvetk)
The main contributions of this paper are concerned with an thénote the estimate of .. at time instant: and
ficient implementation of LC adaptive filtering algorithms tha ort

overcomes t_he problem of added computa_tl_onal cor_aneX|ty that y(k) = wT(k)x(k) @)
may occur in the GSC structure. In addition, as in the GSC

structure, the proposed method may be used with any unceRnote the filter output, equal in absolute value to the output
tion is presented in order to provide better understanding of therhe constrained LMS (CLMS) algorithm [3] uses as an es-

updating process used in constrained algorithms. Moreover, thiSate of the input-signal autocorrelation matii at instant
geometrical interpretation is used to illustrate better the use Ok ter product of the input-signal vector by itself, i.e
the Householder transformation. A detailed explanation of the x(k)xL (k). In this case, the coefficient-update equ,at.io'r,l

matrices involved in the process is presented, and pseudo-c de_0 mes [3]
routines are provided. Even in cases where the GSC structur 5§
equivalent to the Householder implementation introduced here,_ . ey NEE Ty =L T )
the latter is more efficient. wik +1) =w(k) — py(k) [I C (C C) C } x(k)
The organization of the paper is as follows. Section Il gives +C (CTC)_l [f — CTw(k)]
the background of the LCMV filter and the GSC model. In — EYPx(k
Section IIl, the new Householder-transform constrained algo- =w(k) — py( )1 x(k)
rithms are presented as a low-complexity solution for reducing +C(C'C)  [f - C w(k)]
the subspace in which adaptive-filter coefficients are updated. —Plw(k) — pulk)x(k F 8
Relations to the GSC model are made, resulting in a framework [w() = py(k)x(k)] + ®
where any unconstrained adaptation algorithm can be appligherel is the M Nth-order identity matrix
to linearly constrained problems using the proposed method.
Section IV contains simulation results, followed by conclusions P=1-C(C'C) 1ot 9)
in Section V.
is the projection matrix onto the subspace orthogonal to the sub-
II. BACKGROUND space spanned by the constraint matrix, and [3]
A. Optimal Linearly-Constrained Minimum-Variance Filter F=C (CTC)—l £ (10)
The optimal (LCMV) filter in the sense of the minimum mean
output energy (MOE) is the one that minimizes the objective Note in (8) that the term multiplied by the projection matrix

function w(k) — py(k)x(k) corresponds to the unconstrained LMS so-
9 lution, which is projected onto the homogeneous hyperplane
fw=73 HRI/QWH =3 w'Rw (4) CTw = 0 and moved back to the constraint hyperplane by
adding vectofF. Fig. 2 illustrates this operation.
subjected to the set of linear constraints defined by A normalized version of the CLMS algorithm, namely, the
T NCLMS algorithm, can be easily derived [7]; the update equa-
Cw=f () tion becomes
where y(k)
w  vector of coefficients of length/ V; w(k+1) =P |w(k) - H T () Px(k) x(h)| + F
R!/2 square-root factor of the autocorrelation matrix of the y(k)
input signal, =w(k) — p————7—— Px(k
C MpN X g constraint matrix; ® xt(k)Px(k) “

f  px 1 gain vector. +C(CTC) 7 [f - CTw(k)]. (11)
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6 Fig. 3. Generalized sidelobe canceling (GSC) model.

\ PR S be applied to the constrained recursive least-squares (CRLS) al-
: gorithm presented in [9] and to the constrained quasi-Newton
R 1 w(k) (CQN) algorithm presented in [10].

| C. Generalized Sidelobe Canceling Model

vantages of the GSC model [6], mainly, because this model em-
6 . ploys unconstrained adaptation algorithms that have been ex-
0 ;1 tensively studied in the literature. Fig. 3 shows the schematic of
the GSC model.
Fig.2. Geometrical interpretation of some constrained algorithms(%) = Let B in Fig. 3 be a full-rankdM N x (M N — p) blocking

F + Pw(k). 2)w(k + 1) for the unconstrained LMS algorithm. 8)(k + 1) : ; )
for the unconstrained NLMS algorithm. #)(k + 1) for the constrained LMS matrix designed to completely filter out the components of the

algorithm [3]. 5)Pw (k1) for the constrained LMS algorithm [3]. 6y (k+1)  input signal that are in the same direction as the constraints.

f(;rthEhPrOJtefted NLMS algorithm [8]. Ay (k + 1) for the constrained NLMS  Matrix B must span the null space of the constraint matix
algorithm [7]. .
ie.,

Pw(k) \ F H,:CTw=rf Many implementations of LC adaptive filters utilize the ad-

We will stress here the fact that for the normalized constrained BTCc=o. (12)

LMS (NCLMS) algorithm in (11), the posteriorioutput signal i )
is zero foru = 1. The solution is at the intersection of the hyper! Order to relate the GSC model and the linearly constrained

plane defined by the constrairit : CTw = £ with the hyper- Minimum variance (LCMV) filter, letI' be anM N x MN

plane defined by the nu#l posterioricondition’,: xT(k)w = transformation matrix such that
d(k) = 0. Therefore, the solutionv(k + 1) is not merely a T=[C B] (13)
projection of the solution of the normalized LMS (NLMS) al- o )

gorithm onto the hyperplane defined by the constraints. Thislj\ﬁ)w' suppose that a transformed coefficient vestaelates to
also illustrated in Fig. 2, where we present a detailed grapfps | cMV coefficient vectomw through
ical description of the coefficient update of several algorithms

in the case of two coefficients only. In this case, hyperplanes w = Tw. (14)
‘Ho and’H; become two lines, as noted in the figure. #ék)

must satisfy the constraints, it must belongie and can be This transformation of the coefficient vector does not modify
decomposed in two mutually orthogonal vectBrandPw (k). the output error [11] as long &B is invertible, which is always
The figure also illustrates how the solutions of the constraingdiaranteed from (12). If we partition vecteras

version of the LMS algorithm, the NLMS algorithm, and the o

projection algorithm [8] relate. Note that in this figure, all up- W = [ Xl} (15)
dated vectors for the constrained algorithms are located along —WL

L T ) .
the d|rect|<3[)nt O(SC Wh E] ft Eﬁglmts 4 G’d%‘nﬂ 7d).tr':'hereforec,j_|f with W, andw, vectors of dimensiorngx 1 and(AM N —p) x 1,
w were rotated such tha axis an ad the same di- respectively, it can be easily shown that we have [6]

rection, the component along this direction would not need to
be updated. This fact will be used in Section Ill, where the new w =F — BW;,, (16)
Householder-transform algorithms are introduced.

The necessity of the last term in (8) and (11) may be suiind
prising for it is expected that ai( k) satisfy the constraint, and
therefore, this last term should be equal to zero. In practical im- wy =(CTC)™'f a7
plementations, however, this term will be included to prevent Wi = Wasc (18)
divergence in a limited-precision arithmetic machine [5] due to
perturbations introduced in the coefficient vector in a directionhereF = Cwy; is the constant part of vect®¥ that satisfies
that is not excited by vectdPx(k). The same reasoning canthe constraints, i.eCTw = CTF = £ [6]. Vectorwgsc is not
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affected by the constraints and may be adapted using uncc wy 4
strained adaptation algorithms in order to reduce interferen:
from signal components that lie within the null spacdbf
It is clear from the previous discussion that coefficient adag
tation for the GSC model is performed within a reduced-dimer
sion subspace. The transformati@nin (13) applied onto the
input-signal vector is such that the lower part of this transforme
inputB™x(k) is restricted to the null space of the constraint ma
trix C, which is of dimensiom N — p. Therefore, adaptation
alongBTx(k) causes no departure from the constraint hypei
plane. Another important factor to stress is that the input sign
of the adaptive filter is persistently exciting of ordefN — p. N
The structure of matrixB plays an important role in the 2
GSC structure for its choice determines the computation ko
complexity and, in many cases, the robustness against r \
merical instabilities of the overall system [12]. If SVD or any K
other decomposition is employed, the resulting nonsquare v
(M N x M N —p) matrix B will, in general, have no exploitable \
special structure. This may result in a highly inefficient im- 5
plementation with computational complexity up to one orde %
of magnitude higher than that of the adaptation algorithr :
itself. This is due to the matrix-vector multiplicatiddx(k) 0
performed at each iteration. Although, in some applications
[5], it may be possible to construct trivial blocking matrices N . ,
whose elements are either 0, 1-at, these matrices pose som '9"}‘]‘(‘;? f(ﬁﬁ;g'remg’e;g_rl\;%ta;og}i%0)3; (ka N gﬁf;ﬁg;;{é
practical problems that may prevent their use. For instangorithm. 9 ’ ’
if matrix B is such that the transformation matrik is not
unitary, then the transients of the adaptive filters in the GSC
model and in the LCMV may bear no relation [5]. Furthermore,
if applied to the multistage Wiener filter structure presented HCL,\;QBALLEGO'RWHM
in [11], nonunitary transformations invariably yield severe
problems related to finite precision arithmetic [12]. The House-

Available at time instant k:

holder decomposition used as suggested herein aII(_)ws efficient x(k), C, f, Q, and u (step-size)
implementation and results in a unitary transformation matrix. Initialize:
If necessary, the Householder reflections can be performed via %(0) = QC(CTC)'f;
dedicated CORDIC hardware or software [13]. '
fork=0,1,2, ...
[ll. HOUSEHOLDER TRANSFORMCONSTRAINED ALGORITHMS {
For a general constrained minimization problem, the multipli- x(k) = Qx(k);
cation of the blocking matrix by the input signal vector in a GSC xr(k) = MN — p last elements of X(k);
structure may be computationally intensive and, for many appli- w(k) = VE’U(O) .
cations, not practical. In this section, we will propose an elegant wi(k)]’
solution to this problem. The derivation of the first algorithm y(k) = Wl (k)x(k);
presented in this section starts from the CLMS algorithm [see wi(k+1) =wr(k) — py(k)xL(k);
(8)] and performs a rotation on vect®x(k) in order to make }

sure that the coefficient vector is never perturbed in a direction
not excited byPx(%). This can be done if an orthogonal rota-

tion matrixQ is used as the transformation that will generate gonc — QC satisfiest = CTw(k + 1), and the transformed
modified coefficient vectow (k) that relates tev(k) according projection matrix is such that '

to
B _ T_1_eeten-1aT _ | Opxp O
w(k) = Qw(k). (19) P=QPQ" =I-C(C'C)""C" = [ o 1l (21)
We can visualize this operation in Fig. 2 if we imagine axd§ w(0) is initialized as
w; andw rotated counterclockwise by an angle o
If we choose the matriQ such thalQQ™ = QTQ = I and w(0) =C(CTC)™'f = QF (22)

then its firstp elementsw;;(0) need not be updated. The

update equation of the proposed algorithm, named the

C(CTC)1TT = [IPOXP g} (20)
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TABLE 1l TABLE 11l
COMPUTATION OFX; = QX CONSTRUCTION OFMATRIX V' CONTAINING THE HOUSEHOLDERVECTORS
R = X(k); Avail;fxble at start: . . .
. A is an M N X p matrix to be triangularized
fori=1:p Initialize:
nitialize:
{ . . V = 0mvxps
}_(k(l : MN) = }_(k(l : MN)
=2V (i : MN,i) [V (i : MN, )%, (i : MN)]; fori=1:p
} {
% — %, =A(i: MN,i);
xX(k) = Xp; x
(k) k er = [1 Orxmv—i))T
v = sign (x(1)) [|x||e1 + x;
v=v/|vll; ‘ ‘ . '
Householder-transform constrained LMS [14], is obtained & é(l_ %Jl\\;l +p) = Al MNi:p) = 2v (VIAG: MN,i:p));
premultiplying (8) byQ \ (i: MN, i) = v;
w(k+1)

=Qw(k JTF ) =Q{Pw(k) - “y(k));(k)] +F} trix. It is easy to show by carrying out the Householder trans-
=[QPQ'] [Qw(k)] — uy(k) [QPQ'] [Qx(k)] + QF formation Q; on A% that if the columnsyiz. {a}”, j =

=% Ol iy ) [ Or O gy | FUO | 1 MN =it 1}, of AW satisfy
0 I 0 I 0 "
. . a’ll =1 27)
e 1[0l 0] e |«
wi(k+1) | [wr(k) X (k) NT
- _ (a”) 2 =63 (28)
wherew (k) andx (k) denote theM N — p last elements !
of vectors w(k) and X(k), respectively. Note that vectorthen
C(CTC) ~f has onlyp nonzero elements. 110 ... 0
Although the solutiorw (k) is biased by a transformation 0 % - %
Q, the output signal and, consequently, the output error are not QA(” = . . . . (29)
modified by the transformation. We conclude, therefore, that the R
proposed algorithm minimizes the same objective function min- 0 x -

imized by the CLMS algorithm. Fori = 1,Q, = Qi, andA® — CL. Matrix CL has

orthonormal columns becau$é€L)TCL = LY(LLT)~!L =
o o L Therefore, (27) and (28) are directly satisfied. By fhe-

We maintain that matrix in (19) may be constructed with gamental theorem of inner product invariance in Householder
successive Householder transformations [15] applied onto e@@hsforms[lﬁ]' orthonormality is maintained fo®; CL and,
of thep columns of matrixCL, whereL is the square-root factor py induction, (27) and (28) are also satisfied for any 1. As

A. Choice of the Transformation Matr{)

of matrix (C*C)~*, i.e., LL* = (C*C)™. a consequenc®(®) is a diagonal matrix witht1 entries, and
Theorem 1:1f E® is a matrix of zeros. This concludes the proof. O
Notice that thek-1 entries in matridD® result from the robust
Q=Qp - Q:Q (24) implementation of the Householder transformation givenin[15].
where From (23), we verify that the algorithm updates the coeffi-
T cients in a subspace with reduced dimension. The entries of
Q; = [Ii—lxi—l 0_ } (25) vector w(k) that lie in the subspace of the constraints need
0 Q, not be updated. Due to the equivalence of Householder reflec-

. ) ) tions and Givens rotations [17], a succession of Givens rotations
andQ, is an(MN —i + 1) x (MN — i + 1) Householder ¢oyid also be used. However, rotations are not as efficiently im-
transformation matrix on the forn@; = I —2v,;v; [15], then plemented as reflections and computational complexity might

(20) is satisfied. _ _ render the resulting algorithm not practical.
Proof. After ¢ — 1 transformations, matrixQ;_;

--- Q1 CL may be partitioned as B. Normalized HCLMS Algorithm

;—i Mﬁ—\vﬂrl A normalized version of the HCLMS algorithm, namely, the

NHCLMS algorithm [14], can be derived, and its update equa-
Q,_1 - QCL= DH : EW }L -1 tion is
............. W (0)
0 ‘ A® MN —i+1. wk+1)= [_ }
} (26) wr(k+1)

Thei — 1 Householder transformations make maiii%’ upper _ [wu(0) 3 y(k) 0 (30)
triangular. Now, let!”’ denote thejth column of theA®) ma- LWL (k) SO0 xr(k)]
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TABLE IV
COMPUTATIONAL COMPLEXITY
ALGORITHM ADDITIONS MULTIPLICATIONS DIVISIONS
CLMS (2p+ 2)MN — (p+ 1) (2p+ 2)MN + 1 0
NCLMS (3p+ 3)MN — (p+2) (3p+ 3)MN + 1 1
GSC-LMS (MN)2+(2—p)MN - (1+p) | (MN)2+(3—p)MN —(2p—1) 0
GSC-NLMS (MNY? +(B-p)MN—-2(1+p) | (MN)?+(4—p)MN — (3p—1) 1
GSC-LMS with B of [18] (3+p)MN - 2EER (3+2p)MN —p(p+3) +1 0
GSC-NLMS with B of [18] (4+p)MN — 22T _ 5 (A+20)MN —p(p+4) +1 1
HCLMS (2p+2)MN — (p2 +p+1) (2p+ 2)MN — (p? — 1) 0
NHCLMS (2p+ 3)MN — (p? +2p +2) (Zp+3)MN = (p> +p—1) 1

Note that the Householder transformation allows normalizati@mows the computational complexity for the CLMS, NCLMS,

without the need of multiplication by a projection matrix, as IHCLMS, and NHCLMS algorithms and the GSC implementa-

is required for the NCLMS in (11). tion of the CLMS and NCLMS algorithms. The computational
Fig. 4 illustrates the coefficient update for the HCLMS andomplexity for the GSC implementation is given for two choices

the NHCLMS algorithms. Note, in this figure, that a rotatiorof the blocking matrixB. The firstimplementation uses a matrix

by 6 is performed on the coordinate syst&m= [w; w2|* = B obtained by, e.g., SVD leading to an inefficient implementa-

Qw(k) = Q[w; wy]*. This angle is chosen such that the rotion of the multiplicationBx (k). The second implementation,

tated axigo, becomes parallel to the constraint hyperplane, amehich is applicable only in certain problems, uses a maix

the coordinate corresponding @ needs no further update.constructed through a cascade of sparse matrices as presented in

This is so because; becomes orthogonal t; . Table | shows [18], rendering an implementation of the multiplicatiBx (%)

an algorithmic description of the HCLMS algorithm. of low computational complexity.
C. Computational Complexity Issues D. Householder-Transform Constrained Algorithms and the
GSC

In this section, we explain why and how the implementation
via Householder transformation is better than the GSC and thd=ig. 5 shows, step-by-step, the relation between a House-
constrained alternatives. Let us start with the procedure used@der-constrained (HC) algorithm and the GSC structure. If
compute the produ@®x (k). In order to have an efficient House-Q is factored into an upper part and lower part (see Fig. 5),
holder implementation, the transformation of the input-sign#l is easy to show thaQ); spans the null space of and
vector in every iteration is carried out througreflections given may be regarded as a valid blocking matrix. Furthermore,
by Qiwy(0) = C(CTC)~f = F, which is the upper part of
the GSC structure. However, we stress that for most practical
x(k) = Qx(k) = Qp - - QoQux(k) (31) values ofp, the implementation ofQ; and Q;; separately
renders much higher computational complexity because it
where does not take advantage of the efficiency of the Householder
L_1x;y O transformation. The transformed input-signal vector can be
_ } (32) efficiently obtained vigp Householder transformations, which
0 Q require onlyp inner products. We maintain that our approach
and matrixQ; = I—2v; 97 is a(MN —i+1) x (MN —i+1) can be regarded as a GSC structure and, therefore, any uncon-
Householder transformation matrix [15].

strained adaptive algorithm can be used to updaték). As an
If we define the vector = [0, LT, where thep x 1 example of this assertion, Table V shows the equations of the
T 1—1 7 ’
vector0;_; introduces — 1 zeros beforér;, we can construct

Householder-transform-constrained quasi-Newton (HCQN)
matrix V.= [vy va --- v,], and the factored product in (31)

algorithm obtained directly from [10] and Fig. 5, as previously
could be implemented with the procedure described in Tablel

?ported in [19]. Notice that the algorithm in Table V does
Furthermore, the procedure for the calculation of the Houge! I’GQLtJII’e (tjhg mt\;]ersmn andt.conIStht;\?n ?f ﬂjﬁ]p matrix ted
holder vectors and the resulting is described in Table Ill. In gnc;)cL)ln ere It!n e conve?] lona | Q T\gorl tT’ pre?etr;]e
Table Ill, A is the matrix to be triangularized, which, in ourpar1n [10], resulting in a much simpler implementation of the

o

ticular case of interest, correspondsio= CL, whereL is the algorithm.
square-root factor of the matrpC*C)~1, as proposed earlier
in this section. IV. SIMULATION RESULTS
From Table II, we see that the computatiorxgk) = Qx; In this section, the performance of the proposed algorithms
using the product representation in (31) only invol2é$Np— is evaluated through simulations and compared with their GSC

p(p — 1) multiplications and2M Np — p? additions. Table IV counterparts.
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1 MN 1 . _
» WL(O) P
x(k) y(k) I Y T N
_-p W —> = wmp Ql mpy W —> ) QT I e
MN MN MN —Wjy,
MN MN-p
1 2
P 1
_ dasc = FTx(k)
Qr Wi (0) F
<]
MN . x(k) . y(k)
MN-p 1 - XGso = QLx(k)
T —W T w,
‘ QL — Wy, QL p— e GsC
MN MN-p
3 4

Fig. 5. HC adaptive filter under the GSC model. 1) Applying the transformation as in (19). 2) Splitting the transformed vector as in (23). 3)ngaptitioni
order to reach the GSC equivalent. 4) HC algorithm under a GSC perspective.

TABLE V TABLE VI
HCQN ALGORITHM SIGNAL PARAMETERS
Available at time instant k:

x(k), C, f, and Q SIGNAL DOA | SNR
Initiali%e:

a, R71(0), and w(0) = QC(CTC)~'f desired 0° | 15dB
fork=1,2,... interferer 1 | 22° | 20dB
{ ~ interferer 2 | —15° | 25 dB

x(k) = Qx(k); terk o d

%y (k) = p first elements of %(k); interferer 3 | —20° | 25 dB

%1 (k) = MN — p last elements of X(k); interferer 4 | —50° | 20 dB

-1 1y wy(0) .

(k 1) o —V_VL(]{: - 1) ’

&(k) = wi (0)xu (k) — W, (k — D, (k);

% é(k) is equivalent to the a priori output
% or y(k) = WT(k - ].))_((k) 22 T T T T T T
t(k) = R;"(k — )% (k); '
T = %L (k)t(k); 2 ]
,U,(k) - er(k)v :
Ry (k) = R (k — 1) + “sLe(k)e™ (k); K R -
wi (k) = wi(k — 1) + a 24Xt (k); *
} gte =
=

GSC-LMS

GSC-NLMS

A uniform linear array withA/ = 12 antennas with element
spacing equal to a half wavelength was used in a system w
K = 5 users, where the signal of one user is of interest, and t
other four signals are treated as interferers. The direction of i '

1.2

HCQON HNCLMS: : HGLMS

rival (DOA) and the signal-to-noise ratio (SNR) for the differen
Signals can be found in Table VI D‘80 10l00 2()'00 3(;00 40‘0'0 50'00 60‘00 7000
A second-order derivative constraint matrix [20] was used., Ieration k

giving a total of three constraints. For the GSC implementation,
the nonunitary blocking matrix in [18] was used. Fig. 6. Learning curves of the algorithms.



2194 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 9, SEPTEMBER 2002

Beampattern
Beampattern

_40 1 I i 1 1 I3 1 1 i _40 L il il 1 i
-80 -60 -40 =20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80
DOA DOA
Fig. 7. Beampattern for the HCLMS and GSC-LMS algorithms. Fig. 9. Beampattern for the HCQN and the GSC-QN algorithms.
TABLE VII
10— T : ; T T T : T
: Wy OuTPUT GAINS IN THE DIRECTIONS OF THEINTERFERERS
~— HNCLMS
5L .. S RPN EPRPRPRP T Gséonims H
ALGORITHM g =22° #=—-15° | 8§ =—-20° | 8§ = =50°
o GSC-LMS -26.20 dB | -13.29dB | -11.76 dB | -22.99 dB
E
% GSC-NLMS -31.74dB | -21.39dB | -18.73dB | -22.67 dB
§ GSC-QN -26.97 dB | -27.29 dB | -22.79 dB | -24.88 dB
& HCLMS -35.40 dB | -23.38 dB | -17.94 dB | -32.85 dB
NHCLMS -31.50 dB | -33.85dB | -24.82 dB | -27.83 dB
HCQN -32.92 dB | -30.76 dB | -28.66 dB | -26.75 dB

V. CONCLUSIONS

In this paper, we presented an efficient implementation of
linearly-constrained minimum-variance adaptive filters based

Fig. 8. Beampattern for the HNCLMS and the GSC-NLMS algorithms. 5, the Householder transformation of the input signal. With
this type of transformation, we derived several adaptation algo-

Fig. 6 shows the learning curves of the different algorithm&thms for LCMV applications, such as the Householder-trans-
The results were obtained by averaging 2000 realizations of figgm constrained least mean square algorithm and its normal-
experiment. The step sizes used in the algorithms were ized version, and maintained that extension to other adaptation

e 104 . . algorithms should be trivial.
p=5-10""forthe CLMS and the HCLMS algorithms; Via the Householder transformation, we were able to reduce

: K :_18_0?? t[]he ?\I?j/IIS_MIS al%?rlth.m; the dimension of the subspace in which the adaptive-filter co-
Hn = ',Of orh € I a'%on ms; efficients are updated, therefore obtaining a transformed input
* @ =005 forthe QN algorithms, signal that is persistently exciting. Viewed under the perspective

As can be seen from Fig. 6, the Householder implementatiogne generalized sidelobe canceling model, we showed that the
have a better performance than the corresponding GSC impjgnsformation matrix can be factored into a matrix satisfying
mentations using the sparse blocking matrix. the constraints and a blocking matrix.

Figs. 7-9 show the beampatterns resulting from the different|n, terms of computational complexity, our method is compa-
algorithms. The beampatterns obtained with the Householggple with the most efficient implementations of the blocking
algorithms are very close to the optimal solution. On the othgfatrix found in the literature, with the advantage that the
hand, the GSC-based implementations failed to suppress ceduseholder transformation, and, consequently, the blocking
pletely all interferers at the same time, which suggests that #h@trix implicitly used in the transformation, are unitary. For
adaptation algorithms did not achieve a steady state, even aftés reason, not only the steady-state mean squared output error
7000 iterations. The output gains in the directions of the intds the same as that of the conventional nontransformed LCMV
ferers are shown in Table VII. filter, but the equivalence is also verified during the transient.
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Having a unitary transformation also imparts robustness ° Marcello L. R. de Campos(S'89-M'96) was born
the method [12], for example’ When applled to nonconve in Niterai, BraZII, in 1968. He received theBSC
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