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but withm = l = 12, only 8% of the number of flops were required
for STAN1 and about 7% for EIV-PAST. From Fig. 1, we conclude that
all considered algorithms offer similar tracking accuracy.

Example 2: As previously stated, one of the main advantages with
STAN, compared with, for example EIV-PAST, is that estimates of the
signal singular values are available. In Fig. 2, the estimated signal sin-
gular values and the singular values ofR̂RRx�(t) are shown in a scenario
where the number of signals is time varying. The STAN3 algorithm is
run with the hypothesis thatn = 2. We note that the estimates obtained
from STAN3 allow us to detect changes inn.

Example 3: This example considers the stationary accuracy of the
proposed algorithms. In this scenario, two planar wavefronts arrive
from DOA’s [0�20�]. Further, the estimates of the first 300 samples
are discarded so that the effects of the initial conditions are negligible.
The results in Fig. 3 are based on 200 independent realizations, and� =
0:97. The first conclusion is that STAN1 performs as well as EIV-PAST
and the SVD approach. The second conclusion is that STAN3 performs
as wel as EIV-PAST and the SVD approach, only for “medium to high”
values of the SNR.

V. CONCLUSIONS

In this correspondenec, we have proposed anO((m + l)n2) class
of perturbation-based low-rank tracking algorithms, which are referred
to as STAN. The low complexity of STAN is achieved by applying a
novel approximation of a residual matrix. For the AC case with expo-
nential forgetting, none of the STAN algorithms are new. However, the
analysis that led to the different variants is useful. It was, for example,
shown that Karasalo’s algorithm and the algorithm F2 in [1] are closely
related. Only the approximation of the residual matrix differs. Further-
more, the introduced perturbation-based framework allowed us to pro-
pose a novel sliding window algorithm for the AC case, and attractive
algorithms for the CC case were found.
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Convergence Analysis of the Binormalized Data-Reusing
LMS Algorithm

José Apolinário, Jr., Marcello L. R. Campos, and Paulo S. R. Diniz

Abstract—Normalized least mean squares algorithms for FIR adaptive
filtering with or without the reuse of past information are known to con-
verge often faster than the conventional least mean squares (LMS) algo-
rithm. This correspondence analyzes an LMS-like algorithm: the binor-
malized data-reusing least mean squares (BNDR-LMS) algorithm. This al-
gorithm, which corresponds to the affine projection algorithm for the case
of two projections, compares favorably with other normalized LMS-like al-
gorithms when the input signal is correlated. Convergence analyses in the
mean and in the mean-squared are presented, and a closed-form formula
for the mean squared error is provided for white input signals as well as
its extension to the case of a colored input signal. A simple model for the
input-signal vector that imparts simplicity and tractability to the analysis
of second-order statistics is fully described. The methodology is readily ap-
plicable to other adaptation algorithms of difficult analysis. Simulation re-
sults validate the analysis and ensuing assumptions.

Index Terms—Adaptive filters, adaptive signal processing, least mean
squared methods.

I. INTRODUCTION

The least mean squares (LMS) algorithm is very popular and has
been widely used due to its simplicity. Its convergence speed, however,
is highly dependent on the eigenvalue spread (conditioning number)
of the input-signal autocorrelation matrix [1], [2]. Alternative schemes
that try to improve performance at the cost of additional computational
complexity have been proposed and extensively discussed in the past
[1]–[5].

The data-reusing LMS (DR-LMS) algorithm [3] uses current
desired and input signals repeatedly within each iteration in order
to improve its convergence speed. With the algorithms proposed in
[6], which are called normalized and unnormalized new data-reusing
LMS (NNDR-LMS and UNDR-LMS), performance can be further
improved when past data are also used within each iteration. The
binormalized data-reusing LMS (BNDR-LMS) algorithm [7], [8]
analyzed in this correspondence employs normalization on two
orthogonal directions obtained from current and past data. It can
be shown that the BNDR-LMS algorithm belongs to the family of
normalized algorithms discussed in [9] when sample-by-sample
updating is used. Although not mentioned, the affine-projections
(AP) algorithm [10]–[12] can also be classified in the same set of
algorithms studied in [9]. Actually, the BNDR-LMS algorithm is an
alternative implementation of the special case of the AP algorithm
when the number of projections is equal to two.

A thorough analysis of convergence in the mean and mean-squared
for the BNDR-LMS algorithm coefficient vector is provided, together
with a graphical description of the coefficient-vector updating for sev-
eral LMS-like algorithms. Stability limits for the convergence factor,
as well as closed-form formulas for mean squared error (MSE) after
convergence for white and colored input signals, are obtained from
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the analysis. The inadequacy of the independence assumption [13] for
analyses of data-reusing algorithms [6], [9] is overcome by adopting a
simplified model for the input-signal vector that is consistent with the
first two moments and renders a tractable analysis [4], [14]. This anal-
ysis can be readily extended to other data-reusing algorithms.

II. BNDR-LMS AND THE AFFINE-PROJECTIONSALGORITHMS

The BNDR-LMS algorithm combines data reusing, orthogonal
projections of two consecutive gradient directions, and normalization
in order to achieve faster convergence when compared with other
LMS-like algorithms. At iteration(k + 1), the coefficient vector is
calculated such that it belongs to hyperplanesS(k) (which contains
all vectorswww such thatxxxT (k)www = d(k)) andS(k � 1), and it is at a
minimum distance fromwww(k), i.e.,www(k + 1) is the solution of

min
www(k+1)

kwww(k + 1)�www(k)k2 (1)

subjected to

xxx
T (k)www(k+ 1) = d(k) (2)

and

xxx
T (k � 1)www(k+ 1) = d(k� 1) (3)

whered(k) is the desired signal, andxxx(k) is the input-signal vector
containing theN + 1 most recent input-signal samples, i.e.,

xxx(k) = [x(k) x(k � 1) � � � x(k �N)]: (4)

The function to be minimized is therefore

f [www(k+ 1)] = kwww(k+ 1)�www(k)k2

+ �1[d(k)� xxx
T (k)www(k+ 1)]

+ �2[d(k � 1)� xxx
T (k � 1)www(k+ 1)] (5)

which, for linearly independent input-signal vectorsxxx(k) andxxx(k�1),
has the unique solution

www(k+ 1) = www(k) +
�1

2
xxx(k) +

�2

2
xxx(k � 1) (6)

where�1 and�2 are the Lagrange multipliers given by

�1

2
=

[d(k)� xxxT (k)www(k)]kxxx(k � 1)k2

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2

�
[d(k � 1)� xxxT (k � 1)www(k)]xxxT (k � 1)xxx(k)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2
(7)

and

�2

2
=

[d(k � 1)� xxxT (k � 1)www(k)]kxxx(k)k2

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2

�
[d(k)� xxxT (k)www(k)]xxxT (k � 1)xxx(k)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2
: (8)

The derivation presented above is valid for anywww(k), which may or
may not belong toS(k � 1). However, if successive optimized steps
are taken forwww(k) for all k, then

xxx
T (k � 1)www(k) = d(k� 1) (9)

Fig. 1. Coefficient vector update forL = 1: Position 1www(k). Position 2
www (k + 1), first step towardwww - (k + 1) andwww - (k + 1).
Position 3www - (k + 1). Position 4www (k + 1) and first step
towardwww - (k + 1). Position 5www - (k + 1). Position 6
www - (k + 1). Position 7www - (k + 1) andwww (k + 1).

and a simplified set of updating equations for the algorithm results:

www(k + 1) = www(k) +
�01

2
xxx(k) +

�02

2
xxx(k � 1) (10)

where

�01

2
=

[d(k)� xxxT (k)www(k)]kxxx(k � 1)k2

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2
(11)

and

�02

2
=

�[d(k)� xxxT (k)www(k)]xxxT (k � 1)xxx(k)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2
: (12)

The AP algorithm relates to the NLMS and BNDR-LMS algorithms
directly for it is a generalization forL data reuses of an algorithm that
yields at every iterationk a solution that belongs to the intersection of
hyperplanes defined by the present and allL previous data pairs. The
coefficients are updated as follows:

www(k+ 1) = www(k) + �XXX(k)ttt(k) (13)

where

ttt(k) = [XXXT (k)XXX(k) + �III]�1
eee(k) (14)

eee(k) = ddd(k)�XXX
T (k)www(k) (15)

and, forL + 1 projections, the desired-signal vector and input-signal
matrix are

ddd(k) = [d(k) d(k� 1) � � � d(k� L)]T (16)

and

XXX(k) = [xxx(k) xxx(k � 1) � � � xxx(k � L)] (17)

respectively, withxxx(k) denoting the input-signal vector as in (4).
Fig. 1 illustrates the updating of the coefficient vector for a two-

dimensional problem for the algorithms mentioned above, starting with
an arbitrarywww(k). As we are interested in comparing algorithms of
similar complexity, it was considered the case of one reuse, i.e.,L = 1.

In order to control the excess of MSE of the BNDR-LMS algorithm,
a step-size�may be used. Although maximum convergence rate is usu-
ally obtained with� = 1, the use of a smaller value for the step-size
may be required in applications where measurement error is too high.
Alternatively, a variable step-size� has been derived, yielding fast con-
vergence and low mean squared error [15]. In these cases, we must em-
phasize that the solutionwww(k + 1) obtained at each iteration is not at
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TABLE I
BINORMALIZED DATA-REUSING LMS ALGORITHM

the intersection of hyperplanesS(k � 1) andS(k), and therefore, the
simplified version of this algorithm should not be used.

It is worth mentioning that ifxxx(k) andxxx(k � 1) are linearly de-
pendent, thenS(k) is parallel toS(k � 1), and the BNDR-LMS al-
gorithm should correspond to the NLMS algorithm. In order to avoid
the case of almost parallel hyperplanes, a small test is carried out. The
BNDR-LMS algorithm is summarized in Table I.

III. CONVERGENCEANALYSIS OF THECOEFFICIENTVECTOR

In this section, we assume that an unknown FIR filter with coefficient
vector given bywwwo is to be identified by an adaptive filter of same order
employing the BNDR-LMS algorithm, i.e.,d(k) can be modeled as

d(k) = xxxT (k)wwwo + n(k) (18)

wheren(k) is measurement noise. It is also assumed that input signal
and measurement noise are taken from independent and identically dis-
tributed zero-mean white noise processes with variances�2x and�2n,
respectively.

We are interested in analyzing the convergence behavior of the co-
efficient vector in terms of a step-size�. Let

�www(k) = www(k)�wwwo (19)

be the error in the adaptive filter coefficients as related to the ideal coe-

fficient vector. For the BNDR-LMS algorithm as described in Table I
and using (18),�www(k + 1) is given by

�www(k+ 1) = [III + �AAA]�www(k) + �bbb (20)

where

AAA =
xxx(k)xxxT (k)xxx(k � 1)xxxT (k � 1)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2

+
xxx(k � 1)xxxT (k � 1)xxx(k)xxxT (k)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2

�
kxxx(k � 1)k2xxx(k)xxxT (k)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2

�
kxxx(k)k2xxx(k � 1)xxxT (k � 1)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2
(21)

and

bbb =
n(k)kxxx(k � 1)k2 � n(k � 1)xxxT (k)xxx(k � 1)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2
xxx(k)

+
n(k � 1)kxxx(k)k2 � n(k)xxxT (k � 1)xxx(k)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2
xxx(k � 1): (22)

By taking the expected value on both sides of (20), forn(k) andx(k)
samples from independent zero-mean random processes, we have
E[bbb] = 0 and

E[�www(k+1)]

= E[(III + �AAA)�www(k)]

= E III+�
xxx(k)xxxT (k)xxx(k � 1)xxxT (k � 1)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2

+
xxx(k � 1)xxxT (k � 1)xxx(k)xxxT (k)� kxxx(k � 1)k2xxx(k)xxxT (k)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2

�
kxxx(k)k2xxx(k � 1)xxxT (k � 1)

kxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2
�www(k) :

(23)

Expression (23) can be further simplified if the following assump-
tions are made:

1) �www(k) is statistically independent ofxxx(k)xxxT (k) (independence
assumption [13]).

2) E[num=den] � E[num]=E[den], wherenum andden are the
elements in the numerator and denominator of (23), respectively,
which implies independence betweennum andden as well as a
first-order approximation1 in the evaluation ofE[1=den].

Moreover, the following relations can be easily verified when the el-
ements ofxxx(k) are samples of a white Gaussian process (see Appendix
A):

Ef[xxxT (k)xxx(k � 1)]2g = (N + 1)(�2x)
2 (24)

Efkxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2g

= N(N + 3) (�2x)
2 (25)

fE[xxx(k � 1)xxxT (k � 1)xxx(k)xxxT (k)]gij

=
(�2x)

2; i = j or i = j � 2

0; otherwise
(26)

1For a more in-depth discussion on this approximation, see [4] and [16].
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for [�]ij , which is the(i; j) element of matrix[�].

E[kxxx(k � 1)k2xxx(k)xxxT (k)] = (N + 3) (�2x)
2III (27)

xxxT (k � 1)�www(k)

= (1� �)xxxT (k � 1)�www(k� 1) + �n(k � 1): (28)

Based on these assumptions and relations, (23) can be rewritten as

E[�www(k + 1)]

� E III + �
xxx(k � 1)xxxT (k � 1)xxx(k)xxxT (k)

N(N + 3) (�2x)2

�
kxxx(k � 1)k2xxx(k)xxxT (k)

N(N + 3) (�2x)2
�www(k)

+ �(1� �)
xxx(k)xxxT (k)xxx(k � 1)xxxT (k � 1)

N(N + 3) (�2x)2

�
kxxx(k)k2xxx(k � 1)xxxT (k � 1)

N(N + 3) (�2x)2
�www(k � 1)

� 1�
�

N
E[�www(k)]�

�(1� �)

N
E[�www(k� 1)]: (29)

The last relation of (29) was obtained by consideringkxxx(k� 1)k2 sta-
tistically independent of�www(k) and by making a first-order approxi-
mation in the calculation of the numerators with the help of (26) to (28).
From (29), it is clear that convergence in the mean of the BNDR-LMS
algorithm to an unbiased solution is guaranteed for values of step size
� such that all elements ofE[�www(k+1)] in (29) go to zero ask !1.
This is achieved if the poles of the second-order difference equation are
strictly inside the unit circle, i.e.,

jz1;2j =
1�

�

N
� 1�

�

N

2

�
4�(1� �)

N
2

< 1 (30)

which is always true forN � 1 and� satisfying

0 < � < 2: (31)

Note that for the caseN = 0, the BNDR-LMS algorithm degenerates
to the NLMS algorithm, and (31) is still valid [4].

IV. SECOND-ORDER STATISTICS ANALYSIS

A. White Input Signal

Although�www(k) converges in average to zero ask goes to infinity,
which characterizes unbiasedness of the estimate, consistency of coef-
ficient estimates can seldom be achieved for nonvanishing values of�.
In general, an excess of MSE, which depends on the second-order sta-
tistics of vector�www(k), will be present. The excess of MSE is defined
as [1], [2]

�exc = lim
k!1

�(k)� �min (32)

where�(k) = E[e2(k)], and�min is the minimum mean-squared error
due to nonexact-modeling or presence of additive noise, or both [1].

The difference��(k) = �(k)��min is known as excess in the MSE
[1] and can be expressed as

��(k) = Ef[n(k)��wwwT (k)xxx(k)]2g � �min

= E[�wwwT (k)RRR�www(k)]

= trfRRR cov[�www(k)]g: (33)

It is necessary, therefore, to derive an expression for the coefficient-
error-vector covariance matrix cov[�www(k + 1)]. From (20)

cov[�www(k + 1)] = E[�www(k+ 1)�wwwT (k + 1)]

= Ef[III + �AAA]�www(k)�wwwT (k) [III + �AAA]g

+ Ef�[III + �AAA]�www(k)bbbT g

+ Ef�bbb�wwwT (k)[III + �AAA]g+ E[�2bbbbbbT ]:

(34)

Recalling (21) and (22), we can foresee the enormous complexity
to evaluate (34), even with a number of assumptions [6], [9], which
thus far had prevented the complete analysis of this family of algo-
rithms. An interesting alternative is the use of a simplified model for
the input-signal vectorxxx(k), which can be consistent with the first- and
second-order statistics of a general input signal but has a reduced and
countable number of possible directions of excitation. This model was
successfully employed in [4] and [14]. The input-signal vector for the
model is

xxx(k) = skrkVVV k (35)

where we have the following.

• sk is�1 with probability of occurrence 1/2.
• r2k has the same probability distribution function ofkxxx(k)k2 or,

for the case of interest, is a sample of an independent process with
�-square distribution of(N + 1) degrees of freedomE[r2k] =
(N + 1)�2x.

• VVV k is equal to one of theN + 1 orthonormal eigenvectors ofRRR,
which are denotedVi, i = 1; � � � ; N+1. We will also assume that
for a white Gaussian input signal,VVV k is uniformly distributed,
and consequently, ifP (�) denotes the probability of occurrence
of event(�)

P (VVV k = Vi) =
1

N + 1
: (36)

For the given input-signal model, we may express��(k + 1) as

��(k + 1) = ��(k + 1)jxxx(k)kxxx(k�1) � P [xxx(k)kxxx(k � 1)]

+ ��(k + 1)jxxx(k)?xxx(k�1) � P [xxx(k) ? xxx(k � 1)]

(37)

Conditionsxxx(k)kxxx(k�1) andxxx(k) ? xxx(k�1) in the adopted model
are equivalent toVVV k = VVV k�1 andVVV k 6= VVV k�1, respectively, such that
VVV k andVVV k�1 can only be parallel or orthogonal to each other.

As remarked before, the BNDR-LMS algorithm behaves exactly like
the NLMS algorithm when the input signal vector at instantsk andk�1
are parallel. In this case, the excess of MSE is given by [4]

��(k + 1)k = 1 +
�(�� 2)

N + 1
��(k) +

�2

(N + 2� �x)
�2n (38)

where�x = E[x4(k)=�4x] is thekurtosisof the input signal, which
varies from 1 for a binary distribution to 3 for a Gaussian distribution
to1 for a Cauchy distribution [4], [17]. It must be stressed, however,
that (38) holds only for�x � N + 1 [4].
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For the case wherexxx(k) andxxx(k � 1) are always orthogonal, from
(33) and (34), we have, forRRR = �2xIII , i.e., white-noise input signals
(see Appendix B)

��(k + 1)? = 1 +
�(�� 2)

N + 1
��(k)

+
�(1� �)2(�� 2)

N + 1
��(k � 1)

+
�2(�� 2)2

N + 2� �x
�2n: (39)

A final expression for the excess in the MSE may now be obtained
from (38) and (39) combined and weighted accordingly, as suggested
in (37). For a white input signal, the probabilities ofVVV k = VVV k�1 and
VVV k 6= VVV k�1 are equal to1=N + 1 andN=N + 1, respectively. The
excess in the MSE is, therefore, given by

��(k + 1) = 1 +
�(�� 2)

N + 1
��(k)

+
N�(1� �)2(�� 2)

(N + 1)2
��(k � 1)

+
�2[1 +N(�� 2)2]

(N + 1) (N + 2� �x)
�2n: (40)

B. Colored Input Signal

Using the input-signal-vector model given in (35), we may now ex-
tend the analysis to colored input signals. The angular distribution of
xxx(k) needs be changed in order to incorporate different probabilities for
the directions given by the(N +1) eigenvectors ofRRR. In other words,
(37)–(39) are maintained, and only probabilitiesP [xxx(k)kxxx(k�1)] and
P [xxx(k) ? xxx(k � 1)] need to be recalculated. Each eigenvector ofRRR,
which is denoted asVi, i = 1; � � � ; N +1 will now have the following
probability of occurrence [4]:

P (VVV k = Vi) =
�i

tr(RRR)
(41)

where�i is the eigenvalue associated to the eigenvectorVi. For an easy
association betweenP [xxx(k)kxxx(k�1)] and input-signal correlation, let
us suppose that the input signalx(k) is correlated by an allpole filter
as in

x(k) = x(k � 1) + (1� )�(k); 0 �  � 1 (42)

where�(k) is a sample from an independent zero-mean process with
variance given by�2� . The autocorrelation matrix for this input signal
can be easily derived and is expressed as

RRR =
1� 

1 + 
�2�

1  2 � � � N

 1  � � � N�1

...
...

...
. . .

...
N N�1 N�2 � � � 1

: (43)

From (43), we have all the necessary eigenvalues and eigenvectors such
that we can compute

P [xxx(k)kxxx(k � 1)]

= P [VVV kkVVV k�1]

= P [VVV kkVVV k�1jVVV =VVV ]� P [VVV k�1 = VVV 1] + � � �

+ P [VVV kkVVV k�1jVVV =VVV ]� P [VVV k�1 = VVV N+1]

=

N+1

i=1

�i
tr(RRR)

2

(44)

and

P [xxx(k) ? xxx(k � 1)] = 1� P [xxx(k)kxxx(k � 1)]: (45)

Fig. 2. Excess of MSE forN = 10 as a function of�.

Equations (44) and (45) are in accordance with the white-input situa-
tion because this case corresponds to = 0, and all eigenvalues will
be equal to�2x such thatP (VVV k = Vi) = (1=N + 1), as already de-
scribed. When the input signal is correlated through a first-order allpole
filter and modeled with (35) and (41), the excess of MSE is given by
(37)–(39) with probabilities given by (44) and (45). Although (38) and
(39) have been obtained based on a white Gaussian model for the input
signal, simulations have shown that our reasoning is valid when the
input signal is generated according to (35) with probabilities given by
(41) and�i obtained from (43). Moreover, for� = 1 and a modeled
input signal where only parallel or perpendicular vectors may occur,
the BNDR-LMS algorithm degrades to the NLMS algorithm, and the
steady-state MSE becomes independent of the radial distribution of
xxx(k) [4]. This is perfectly described by (38) and (39), supporting the
validity of our reasoning.

V. SIMULATION RESULTS

In order to test the theoretical results obtained from the convergence
analysis, the following experiment was carried out in a system identi-
fication problem: The input signal was white noise, and the excess of
MSE was measured for different values of the step-size (� varied from
0.1 to 1.9). As it was shown that the filter orderN has a great influence
on the theoretical results, the experiment was repeated forN = 10 and
N = 63. The results are depicted in Figs. 2 and 3, respectively, where
we can see that the theoretical curve is closer to the experimental curve
asN is increased. Furthermore, asN is increased, the probability of
VVV k = VVV k�1 occurring becomes less likely, and the curves tend to the
situation where consecutive input-signal vectors are always orthogonal.

A second experiment was designed to test the influence of colored
signals on the excess of MSE and the accuracy of the expressions
derived in the analysis. Four situations were contemplated, corre-
sponding to input signals having different characteristics. In the first
two situations, signals were obtained from zero-mean white-Gaussian
sequences filtered by first-order allpole IIR filters with poles at 0.8 and
0.9, yielding autocorrelation matrices with eigenvalue rates of 50.85
and 145.44, respectively. In the other two situations, input-signal
vectors were generated with discrete radial probability distributions,
and autocorrelation matrices with eigenvalue rates also equal to
50.85 and 145.44, respectively. The excess of MSE in decibels for
these simulations are depicted in Fig. 4, where simulation results and
theoretical curves are confronted. Theoretical values were calculated
using (37)–(39) with probabilities given by (44) and (45). The analysis
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Fig. 3. Excess of MSE forN = 63 as a function of�.

Fig. 4. Excess of MSE for colored input signals.

for colored input-signals presented very good agreement with the
simulations carried out for input-signal vectors presenting discrete
angular probability distributions. For the signals obtained by filtering
white-Gaussian sequences with first-order allpole IIR filters, only a
qualitative description of the evolution of the excess of MSE with
respect to the step-size could be observed. This can be explained by
the fact that the model characterizes correlated signals by increasing
the probability of occurrence of parallel subsequent data vectors. It
is assumed in the analysis that for this situation the two hyperplanes
S(k � 1) andS(k) are the same and that the algorithm adapts the
coefficients in a single step, performing like the NLMS algorithm. In
a more practical implementation, correlated subsequent data vectors
are not likely to be parallel. In fact, the algorithm attempts to reach the
intersection of nonparallel hyperplanesS(k � 1) andS(k), reaching
a solution that may be very distant from that of the NLMS algorithm.
However, in the range of interest(0 < � � 1), the difference
between the simulated and the theoretical curves is less than 3 dB.

VI. CONCLUSIONS

This correspondence presented the analyses of convergence and
mean-squared error for the BNDR-LMS algorithm.

These analyses in the mean and covariance were based on a sim-
plified model for the input signal that rendered tractable expressions
for the complex problem of analyzing data-reusing algorithms. Consis-
tency with the first two moments of the input signal is maintained by the
model. For white input signals, analysis of mean-squared error, which
is in excellent agreement with simulations, was carried out. Limits for
convergence in the mean and the covariance of the coefficient vector
were also established. Moreover, a closed-form expression for the ex-
cess of MSE as a function of the step-size was derived for the case of
white input signals. The applicability of this expression for the case of
colored input signals was also addressed. The model and the analyses
can be readily extended to other data-reusing algorithms that have not
been considered in the past due to exceeding complexity.

APPENDIX A

1) Equation (24):

E[xxxT (k)xxx(k � 1)xxxT (k � 1)xxx(k)]

= E

N

i=0

N

j=0

x(k � i)x(k � 1� i)x(k� 1� j)x(k� j)

=

N

i=0

E[x2(k � i)x2(k � 1� i)]

= (N + 1) (�2x)
2
: (46)

2) Equation (25):

Efkxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2g

= E

N

i=0

N

j=0

x
2(k � i)x2(k � 1� j)

� Ef[xxxT (k)xxx(k � 1)]2g

=

N

i=0

E[x2(k � i)]

N

j=0;j 6=i�1

E[x2(k � 1� j)]

+

N

i=1

E[x4(k � i)]� Ef[xxxT (k)xxx(k � 1)]2g

= (N2 +N + 1) (�2x)
2 +NE[x4(k)]� (N + 1) (�2x)

2
:

(47)

For stationary Gaussian-distributed signals, using the fourth-mo-
ment factoring theorem, we haveE[x4(k)] = 3(�2x)

2 [17], and
therefore

Efkxxx(k)k2kxxx(k � 1)k2 � [xxxT (k)xxx(k � 1)]2g

= N(N + 3) (�2x)
2
: (48)

3) Equation (26): Let[�]ij be the(i; j) element of matrix[�]; then

Ef[xxx(k � 1)xxxT (k � 1)xxx(k)xxxT (k)]ijg

= E x(k � 1� i)x(k� j)

N

l=0

x(k � 1� l)x(k� l) :

(49)
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For Gaussian-distributed signals, we may use the fourth-moment
factoring theorem to obtain

Ef[xxx(k � 1)xxxT (k � 1)xxx(k)xxxT (k)]ijg

=

N

l=0

fE[x(k � 1� i)x(k� j)]E[x(k� 1� l)x(k� l)]

+ E[x(k � 1� i)x(k � 1� l)]E[x(k� j)x(k� l)]

+ E[x(k � 1� i)x(k � l)]E[x(k� j)x(k� 1� l)]g

=
(�2x)

2; i = j or i = j � 2

0; otherwise.
(50)

4) Equation (27): Once again, using the fact that for stationary
Gaussian-distributed signalsE[x4(k)] = 3(�2x)

2 [17], we have

Ef[kxxx(k � 1)k2xxx(k)xxxT (k)]ijg

= E

N

l=0

x2(k � 1� l)x(k� i)x(k � j)

=
N(�2x)

2 + E[x4(k)]; i = j

0; otherwise

=
(N + 3) (�2x)

2; i = j

0; otherwise.
(51)

APPENDIX B

1) Equation (39): In the derivation of (39),xxx(k) andxxx(k � 1)
were replaced byskrkVk andsk�1rk�1Vk�1, respectively,
with Vk ? Vk�1. Therefore,xxxT (k)xxx(k � 1) = 0. Further-
more, a second-order approximation forE[1=r2k]was used [4],
i.e.,

E
1

kxxx(k)k2
= E

1

kxxx(k � 1)k2
= E

1

r2k

�
1

(N + 2� �x)�2x
(52)

where�x is the kurtosis of the input signal.
ForRRR = �2xIII , using (33) and (34), the expression for��(k)

may be rewritten as

��(k + 1) = �2x trfcov[�www(k+ 1)]g

= �2x trfE[�www(k+ 1)�wwwT (k + 1)]g

= �2x tr(Ef[III + �AAA]�www(k)�wwwT (k) [III + �AAA]g)

+ �2x tr(Ef�[III + �AAA]�www(k)bbbT g)

+ �2x tr(Ef�bbb�wwwT (k)[III + �AAA]g)

+ �2x tr(E[�2bbbbbbT ])

= �1 + �2 + �3 + �4: (53)

Evaluating each of these terms separately, we obtain

�1= �2x tr(Ef[III+�AAA]�www(k)�wwwT (k)[III+�AAA]g)

= �2x trf cov[�www(k)]g

���2x tr E
xxx(k�1)xxxT (k�1)�www(k)�wwwT (k)

kxxx(k�1)k2

���2x tr E
xxx(k)xxxT (k)�www(k)�wwwT (k)

kxxx(k)k2

���2x tr E
�www(k)�wwwT (k)xxx(k�1)xxxT (k�1)

kxxx(k�1)k2

���2x tr E
�www(k)�wwwT (k)xxx(k)xxxT (k)

kxxx(k)k2

+�2�2x tr E
xxx(k�1)xxxT (k�1)�www(k)

kxxx(k�1)k2

�
�wwwT (k)xxx(k�1)xxxT (k�1)

kxxx(k�1)k2

+�2�2x tr E
xxx(k)xxxT (k)�www(k)�wwwT (k)xxx(k�1)xxxT (k�1)

kxxx(k)k2kxxx(k�1)k2

+�2�2x tr E
xxx(k�1)xxxT (k�1)�www(k)�wwwT (k)xxx(k)xxxT (k)

kxxx(k)k2kxxx(k�1)k2

+�2�2x tr E
xxx(k)xxxT (k)�www(k)�wwwT (k)xxx(k)xxxT (k)

[kx(k)k2]2

=  1+ 2+� � �+ 9 (54)

where

 1 = ��(k)

 2 = �
�(1� �)2

(N + 1)
��(k � 1)�

�3�2n
(N + 2� �x)

 3 = �
�

(N + 1)
��(k): (55)

Recalling that tr[AAABBB] = tr[BBBAAA] for any square matricesAAA
andBBB, we find that

 4 =  2

 5 =  3

 6 = � � 2

 7 =  8 = 0

 9 =
�2

N + 1
��(k): (56)

Therefore

�1 = 1 +
�(�� 2)

N + 1
��(k) +

(1� �)2�(�� 2)

N + 1
��(k � 1)

+
�3(�� 2)

N + 2� �x
�2n: (57)

Similarly

�2 = �3 =
�2(1� �)

(N + 2� �x)
�2n (58)

�4 =
2�2�2n

(N + 2� �x)
: (59)

From (57)–(59), the difference equation for��(k) is finally
obtained as in (39)

��(k + 1) = 1 +
�(�� 2)

N + 1
��(k)

+
(1� �)2�(�� 2)

N + 1
��(k � 1)

+
�2(�� 2)2

N + 2� �x
�2n: (60)
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Multiresolution Circular Harmonic Decomposition

Giovanni Jacovitti and Alessandro Neri

Abstract—A dictionary of complex waveforms suited for multiresolution
analysis and individually steerable by multiplication by a complex factor is
presented. It is based on circular harmonic wavelets (CHW) and is useful
for pattern analysis under rotations. The main theoretical aspects of CHWs
are illustrated, and an example of application to motion estimation is pro-
vided.

Index Terms—Circular harmonic wavelets, complex multiscale represen-
tation, self-steerable pyramid.

I. INTRODUCTION

In many applications of computer vision, it is desired that pattern
rotations are characterized by few parameters in the representation
domain. In order to get a basis for multiresolution image representation
possessing such a property, a wavelet expansion based on "steerable"
functions has been introduced in [1]. Steerable filters are obtained
as linear combinations of a finite set of basic point-spread functions
(PSFs) so that the spatial orientation is determined by properly tuning
the values of the weighting coefficients (steering coefficients) [2]. By
extension, steerable pyramids are obtained by combination of basic
multiresolution analyzes.

In this work, we present another approach to steerability based
on complex wavelets called circular harmonic wavelets (CHWs).
The CHWs are polar-separable wavelets, with harmonic angular
shape. This implies that they are steered in any wanted direction
by simple multiplication with a complex steering factor (we will
refer this property to asself-steerability). The CHWs have been
introduced by the authors in [3] and [4] starting from the circular
harmonic functions (CHFs), yet employed in optical correlators for
rotation invariant pattern recognition (see, for instance, [5]). The
same functions also appear in harmonic tomographic decomposition
[6] and have been considered for local image symmetry analysis [7].
In addition, recently, CHFs have been employed for the definition
of rotation-invariant pattern signatures [8]. In this contribution, a
family of orthogonal CHWs forming a multiresolution pyramid called
the circular harmonic pyramid (CHP) is presented. In essence, each
CHW pertaining to the pyramid represents the image by translated,
dilated, and rotated versions of a CHF. At the same time, for a fixed
resolution, the CHP orthogonal system provides a local representation
of the image around any point in terms of CHFs. The self-steerability
of each component of the CHP can be exploited for pattern analysis
in presence of rotation (other than translation and dilation) and, in
particular, for pattern recognition, irrespective of orientation.

This paper is organized as follows. In Section II, basic definitions and
theorems are provided. In Section III, the Laguerre–Gauss expansion
of the image around a generic point of the complex plane is presented
along with the related Laguerre–Gauss pyramid (LGP). In Section IV,
an application of the CHPs to local motion estimation in presence of
non-negligible rotations is briefly illustrated.
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