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Abstract. This chapter provides a survey of known and state-of-the-art linear-
ly constrained adaptive filters focusing on updating algorithms and imple-
mentation structures. Presentation of the material is general to fit various
applications where linear constraints can be incorporated in the problem spec-
ification in order to enhance performance or simplify the solution. This in-
cludes, for example, narrowband and broadband arrays. In the next pages the
reader will find an introduction to optimal constrained filters, some of the
most widely used adaptation algorithms, alternatives to the direct-form struc-
ture for implementation, such as the generalized sidelobe canceller, a newly
proposed structure based on Householder transformations, reduced-com-
plexity algorithms based on set-membership filtering, and links to key refer-
ences.

1
Introduction

Linearly-constrainted adaptive filters (LCAF) have found application in nu-
merous areas, such as spectrum analysis, spatial-temporal processing, antenna
arrays, and interference suppression in multiple access communications,
among others. LCAF algorithms incorporate into the solution application-
specific requirements translated into a set of linear equations to be satisfied
by the coefficients. By imposing linear constraints on the coefficients one can,
for example, improve robustness of the solution or relax the necessity of a
training signal. This is equivalent to saying that the coefficient vector is
required to belong to a particular hyperplane specified by the constraints. In
general, the constraints are deterministic in nature and are derived from
prior knowledge of the particular system at hand. For example, if direction of
arrival of the signal of interest is known, jammer suppression can take place
through spatial filtering without the need of training signal [8, 13]; or in sys-
tems with constant-envelope modulation (e.g., M-PSK), a constant-modulus
constraint can mitigate multipath propagation effects [12, 20].

When compared to conventional adaptive filtering algorithms, LCAF algo-
rithms require a mechanism to guarantee the imposed constraints are satis-
fied in every iteration. Several structures have been proposed in the past
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decades that setup the framework for LCAF algorithms. The two main ap-
proaches for derivation of LCAF algorithms rely on the direct-form structure
and on the generalized sidelobe canceller (GSC) structure. The former uses the
method of Lagrange multipliers during algorithm derivation such that the
constraints are incorporated into the algorithm itself, explicitly solving a con-
strained optimization problem. The latter transforms the constrained opti-
mization problem into a problem free from constraints to be solved in a sub-
space of reduced dimension, which is orthogonal to the subspace defined by
the constraint equations. One advantage of the direct-form structure is poten-
tial lower computational complexity as compared to the GSC structure. On the
other hand, the GSC structure offers, as advantage, the possibility to use con-
ventional training-based adaptation algorithms. In the following sections
these concepts will be discussed in more detail.

This chapter contains an overview of classical and state-of-the-art material
related to direct-form and GSC structures. In particular, for the direct-form
structure we present low-complexity algorithms and a computationally effi-
cient implementation scheme based on the Householder transformation of the
input signal. We consider equivalence of transient behavior of different algo-
rithms in the direct-form and GSC structures, as well as the set-membership
filtering approach to constrained adaptive filtering.

2
Optimal Constrained FIR Filter

In this section we present the basic concepts of optimal linearly-constrained
filters with respect to the minimum mean squared error (MSE) criterion and
to the (deterministic) least squares (LS) criterion. These criteria are suitable
for adaptive implementation, which will be discussed in the next sections.

The basic setup of a multiple-input-single-output filter is depicted in Fig. 1,
where the signal of each of the M channels is fed to an FIR filter with N taps.
The output of the filter is expressed as y (k) = wh (k) x(k), where

wik)=[wit) wit) - wh] (1)
x(0)=[xTk) xFR) - xL®)] )
x(K) =[xk xtk-1) - xk-N+D]| (3)

The structure can be applied to several applications of interest. In the partic-
ular application of a narrowband beamformer, N is chosen equal to 1 or, equi-
valently, one tap per antenna, and x (k) contains the signals at the sensor out-
puts. A broadband beamformer represents the more general case of having
N > 1, which allows both spatial and temporal filtering.
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Fig. 1. The basic setup of the constrained filter

The coefficient vector in Eq. (1) is chosen to minimize a function &,(k) sub-
jected to a set of linear constraints, C'w = f, i.e.,

Wopt =arg rn“i’néw(k) subjectto CHw=f (4)

where C is the MNx p constraint matrix and f is the px1 gain vector, p being
the number of constraints. In the following subsections we discuss two partic-
ular choices of £, (k).

We will assume hereafter that all signals are zero-mean wide-sense station-
ary processes.

2.1
The Optimum Constrained MSE filter

Cost functions are usually related to the output error signal, e(k) = d (k) — y (k),
and the most widely used is the MSE, defined as

Ew (k)= E[| e(k) |*] (5)
which gives as optimal solution [6, 19]
Wopt = R-lp+ RIC(CERIC)I(f - CHR!p) (6)

where R is the input-signal autocorrelation matrix defined as

R = E[x(k)x" (k)] (7)
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and p is the cross-correlation vector between the training signal and the input
signal vector, defined as

p=E[d"(k)x(k)] (8)

In the absence of a training signal, d(k) = 0 and consequently p = 0. The cost
function, in this case, is the minimum output energy (MOE), &, (k) = w'Rw.
The solution, known as the linearly-constrained minimum variance (LCMV)
filter, can be obtained from Eq. (6) with p = 0. The rest of the chapter treats the
more general case when a training signal is present; applications without
training signals can be modeled by setting d (k) = 0.

An application where the training signal is present was discussed in [19]
where constraints were used to ensure linear phase filters. In many wireless
systems a training signal is periodically retransmitted to aid time-varying
parameter estimation, for example, multipath channel coefficients. In such
applications we can think of a solution that switches in time between the two
cases, i.e., with and without training signal. In beamforming the constraints
can be used to relax the need of training signal by setting spatial or temporal
(or both) constraints on the filter coefficients. For example, in a narrowband
beamformer, minimization of MOE with unit gain on a specific direction of
arrival can cancel jammer signals impinging the array from other directions
[24]. In a broadband beamformer, constraints can also be imposed in time
[13].

2.2
The Constrained Least Squares Filter

Another possible (deterministic) cost function is the weighted least-squares
(LS) function defined as

Eul)= fa A %D — whx()| ©)

where A is a forgetting factor usually chosen close to one. Equation (9) substi-
tuted in Eq. (4) gives the following constrained LS solution at time instant k

Wopt(k) = R7H{(k)p(k) + R (k)C(CPR ! (k)C) ' [f — CHR ! (k)p(k)] (10)

where the deterministic autocorrelation matrix R (k) and the deterministic
cross-correlation vector p (k) are given by

R(k) = )Ifl‘k-f) x(i) xH (i) (11)

i=0

k
p(k) = 3 A% Dx(i)d” (i) (12)
i=0
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respectively. For d (k) = 0, then p (k) = 0, and Eq. (10) yields the least squares
version of the LCMV filter.

3
Direct-Form Constrained FIR Adaptive Filters

Adaptive filters are useful in cases where the statistics of the signals are un-
known or time-varying and, therefore, optimal filters cannot be directly ob-
tained. When signal statistics are not available but can be estimated recursive-
ly or in batch, the formulas presented in the previous section can be used.
However, in these cases, implementation may be prohibitively expensive in
terms of computational complexity, required memory, and introduced delay.
Adaptation algorithms are usually more efficient as alternative to estimate re-
cursively the optimal solution.

~ Adaptation algorithms differ in terms of speed of convergence towards the
optimal solution, steady-state error,and computational complexity. Computa-
tional complexity is usually tied to their sensitivity to input-signal correlation:
complexity and speed of convergence are usually conflicting performance
measures in correlated scenarios. Therefore, choice of algorithm should be
application dependent, such that acceptable performance is obtained with
minimum complexity. In this section, we discuss three FIR LCAF algorithms
implemented using the direct-form structure: the constrained least mean
square (CLMS) algorithm, the constrained affine-projection (CAP) algorithm,
and the constrained recursive least squares (CRLS) algorithm. These algo-
rithms cover a wide range of applications with different performance require-
ments.

3.1
The Constrained LMS Algorithm

The CLMS algorithm [8] has been widely used due to its simplicity, proven sta-
bility, and low computational complexity.
The coefficient updating equation for the CLMS algorithm solves

min |e(k)|2 subjectto CHw=f (13)

using a gradient approach and the method of Lagrange multipliers, and is
given by [8]

wlk+1)= P[w(k) + e’ (k)x(k)| + F (14)
where (i is a step size controlling stability and speed of convergence,

P=1-C(CHc) cH (15)
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Fig. 2. Illustration of CLMS algorithm

performs a projection onto the hyperplane defined by C'w=0, and
F=C(chc) (16)

is a vector used to move the projected solution back to the constraint hyper-
plane, as illustrated in Fig. 2. Notice in this figure that the CLMS solution corre-
sponds to the LMS solution projected onto the hyperplane defined by Ctw = f.

The simplification Pw (k) + F = w(k) should be avoided in a finite-precision
environment, for accumulation of round-off errors may cause the solution to
drift away from the constraint hyperplane [8].

In order to guarantee mean-squared stability, the step size should be kept
within the range [8]

O<u <L
3tr(R) (17)

The equations of the CLMS algorithm are presented in Table 1.

Table 1. The CLMS Algorithm

CLMS Algorithm

w(0)=F
for each k
{
e(k) = d(k) - w(k)x(k)
w(k+1) =P[w{k) + pe’(k)x(k)] + F
}
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3.2
The Constrained Affine-Projection Algorithm

The main drawback of the CLMS algorithm is the slow convergence speed for
highly correlated signals. The CAP algorithm balances convergence speed and
computational complexity by using a suitable number of past data pairs in the
coefficient update.

The CAP algorithm can also be viewed as a generalization of the normal-
ized constrained LMS (NCLMS) [1] and binormalized data-reusing con-
strained LMS (BNDRCLMS) [1] algorithms to include an arbitrary number L
of previous data pairs. _

The coefficient updating equation for the CAP algorithm solves

XT(k)w" = d(k)

g (18)

m“i,n “w(k)— w“2 subject to { vt

using the method of Lagrange multipliers, and the updating equation is
given

w(k+1)= P[w(k) + ,uX(k)(XH(k)PX(k) + 51)_1& (k)] +F (19)

where P and F are defined as in Eqgs. (15) and (16), d is a small positive num-
ber used to regularize the inverse, I is the LxL identity matrix,

e(k) = d(k) - XT (k)" (k) (20)
dk)=[d(k) dk-1) - dk-L+D] 1)
X(ky=[x(k) x(k=1) - x(k—L+1)] - (22)

The equations of the CAP algorithm are presented in Table 2.

Table 2. The CAP Algorithm

CAP Algorithm

w(0)=F
for each k

{
e(k) = d(k) - XT(k)w" (k)
t(k) = [XP(R)PX (k) + 1] te* (k)
w(k+1) =P[w(k) + pX(k)t(k)] + F
}
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3.3
The Constrained Recursive Least-Squares Algorithm

Adaptive implementations of the direct-form CRLS algorithm have been con-
sidered in, e.g., [3, 18]. The main advantage of the CRLS algorithm is fast con-
vergence, which is independent of the eigenvalue spread of the input-signal
autocorrelation matrix. The CRLS algorithm in [18] uses recursive updates of
R7!(k) and other internal variables which are based on the matrix inversion
lemma [6]. This algorithm is more prone to diverge due to numerical errors
than its conventional training-based counterpart even for well-behaved input
signals, and its computational complexity is of the order of (MN)? multiplica-
tions per iteration. However, as it will be shown in the next section, transient
and steady-state behavior of the CRLS algorithm in direct-form and in GSC
structures are identical. Therefore, one should consider carefully alternatives
to the CRLS in a direct-form structure, such as stable and efficient RLS algo-
rithm implementations in the GSC structure.

4
Decomposed-Form FIR Adaptive Filters

This section deals with alternative implementations of LCAFs that allow train-
ing-based adaptation algorithms to be applied to linearly-constrained prob-
lems. Firstly, the classical generalized sidelobe canceller (GSC) structure [13]
is reviewed, followed by a discussion on the conditions for transient-equi-
valence of the adaptive implementations of the GSC and the direct-form coun-
terparts. Finally, the Householder-Transform (HT) structure [5] for solving
constrained problems is presented as an alternative to the GSC structure. In
terms of computational complexity, the HT structure compares to the most
efficient implementations of the direct-form and GSC structures.

4.1
Generalized Sidelobe Canceller

The GSC structure in Fig. 3 solves the linearly-constrained problem given in
Eq. (4) by dividing the filter vector, w, into two orthogonal components

W= F_BWGSC’ (23)

where: the component in the upper branch, F, as given in Eq. (16), alone satis-
fies the constraints,i.e., CEF = f; the MN x (MN - P) matrix B, referred to as the
blocking matrix, is in the left nullspace of C,i.e., BEC = 0; and wgg is the solu-
tion to the unconstrained optimization problem

Wasc.opt = arg min&,, (k) (24)

Wgsc
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Fig. 3. The GSC structure

with w given by Eq. (23). Figure 3 shows the schematic of the GSC structure
where wggc is updated using a training-based adaptation algorithm. The de-
sired signal, as defined in the figure, incorporates an external reference signal
d(k) such that the resulting desired signal fed back to the adaptation algo-
rithm in the GSC structure becomes dggc (k) = Fix (k) — d (k). This more gen-
eral case includes common applications where d (k) = 0, e.g., blind beamform-
ing [8] and blind multiuser detection [15]. If we choose to minimize the MSE,
i.e., &, (k) = E[|d(k) - w'x (k)|*], the optimal solution is given by

Wascopt = RGcPasc (25)

where Rggc and pggc are the autocorrelation matrix and the cross-correlation
vector, given by

RGSC = BHRB (26)
Pasc = —BHp +BHRF (27)

respectively. Choosing the LS objective function instead of the MSE, implies
that Rggc and pggc are substituted by their deterministic versions Rgg (k) and
Pasc (k), respectively. Since wggc is the solution to an unconstrained optimiza-
tion problem, as indicated in Eq. (24), several training-based algorithms avail-
able in literature can be applied for the recursive update of the filter coeffi-
cients.

4.1.1
Choice of blocking matrix B

The only requirement put on the blocking matrix B is that it spans the left
nullspace of C, i.e., CHiB=0.Asa consequence, implementation allows several
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possible choices of B. However, matrix B affects the overall computational
complexity and the stability of the implementation. If a unitary blocking ma-
trix is to be chosen, e.g., to minimize problems in a finite precision environ-
ment [15], singular-value decomposition or any other unitary decomposition
of C could be used. In such cases, B may not have any special structure that can
reduce the computational complexity of the matrix-vector multiplication
Bx (k) performed at each iteration. As a consequence, computational complex-
ity of the filtering operation may be up to an order of magnitude higher than
that of the adaptation algorithm. This observation is particularly important if
low-complexity algorithms, such as the LMS or affine-projection algorithms
[6] are used. In case the RLS algorithm is used, the computational complexity
of the coefficient update is at least of the same order of magnitude as that of
the product Bx (k).

A non-unitary blocking matrix is suggested in [21] and is implemented
as a sequence of sparse blocking matrices B = B,-:-B, ;B, where B, is a
(MN-i+1)x (MN - i) matrix of full rank. In beamforming with presteering,
the requirement for spatial blocking of the look direction is that the rows of B
sum up to zero [13]. A commonly used blocking matrix fulfilling this require-
ment contains +1 in the main diagonal and -1 in the upper diagonal. If the
number of antennas is such that M = 2", n > 0, an orthogonal blocking matrix
can be constructed using Walsh functions [13].

4.1.2
Equivalence of direct-form and GSC structures

Analysis of the CLMS algorithm in the direct-form structure and the LMS
algorithm in the GSC structure reveals that the transients of both algorithms
become equal only if B is unitary, i.e., B'B = I [13]. As discussed above, a
requirement of a unitary blocking matrix can lead to a computationally com-
plex implementation of the GSC structure, making it hard to motivate the
use of simple algorithms from the computational complexity point-of-view.
Non-unitary matrices can render computational complexity of the order of
magnitude comparable to that of simple algorithms. However, transient, or
equivalently, convergence speed, may depend on the step size and the par-
ticular blocking matrix chosen. In other words, if the blocking matrix
changes, the step size changes, including the limits for stability. With respect to
the RLS algorithm, the transients of the RLS algorithm in the GSC structure
and that of the CRLS algorithm are identical regardless of the blocking matrix
chosen in the GSC structure [28]. This result is formalized in the following
lemma:

Lemma {28]: For BYC = 0, if R (k) exists and is symmetric, if rank (B) = MN-p, and if
rank (C) = p, the GSC-RLS and the CRLS algorithms have identical solutions for all k.

For a proof of the lemma, the reader is referred to [28]. This is a looser re-
quirement than the transient equivalence of the CLMS algorithm and the GSC
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I

structure using the LMS algorithm, which in addition to BXC = 0, requires B to
be unitary.

For reasons of computational complexity and robustness, the result just
presented serves as an indication that implementing the unconstrained form
of the RLS algorithm may be preferable, either using the Householder trans-
form structure to be discussed in-the following section, or using the GSC
structure. Based on the previous section, one may argue that the choice of a
non-unitary blocking matrix is of less importance with respect to computa-
tional complexity due to the complexity of the coefficient updating of the RLS
algorithm itself. However, at least for the particular case of a broadband beam-
former where only spatial constraints are imposed and M- p FIR filters are
placed after the blocking operation [13], multichannel implementations of the
fast RLS algorithm may be used for each filter [16]. In this case, computation-
al complexity can be reduced by using non-unitary matrices, like the one pro-
posed in [21] and mentioned in the previous section.

4.2
Householder-Transform Constrained Filters

In this subsection we consider an alternative implementation of the GSC
structure, which applies a unitary transformation to the input-signal vector.
The basic idea to be presented below can be seen as a particularly efficient im-
plementation of a GSC structure with a unitary blocking matrix. This is illus-
trated in Fig. 4.

Let the unitary matrix Q transform the adaptive filter-coefficient vector in
order to generate a modified vector w(k) = Qw (k). If the same transformation
is applied to the input-signal vector x(k), i.e., X(k) = Qx (k) the output signal
from the transformed filter will be the same as that of the original filter, i.e.,

y(k) = wH(k)x(k) = wH(k)Q" Qx (k) = wh (k)x(k) (28)

If matrix Q is chosen such that it triangularizes matrix C(CHC)~'? through a
sequence of Householder transformations, as proposed in [5], then vector
Wy (0), which constitutes the px 1 upper part of the transformed vector w(k),
is constant, whereas vector w; (0), which constitutes its (MN ~ p) X 1 lower part,
can be updated using one of several conventional training-based adaptation
algorithms. The advantage of such transformation approach, as compared to
the GSC structure, lies in the efficient implementation of Qx (k) that can be
carried out through the following product of p matrices

x(k) = Qp--- QQix(k) (29)

where

_|Licixia O
oo 2]
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Fig. 4. (1) Untransformed adaptive filter. (2) Applying the transformation as in Eq. (29).
(3). Splitting the transformed vector w(k) into a constant px1 vector W;(0) and an
MN - px1 vector Wy (k) to be updated adaptively

and matrix Q; = I - 2¥" is an ordinary (MN - i+ 1) x (MN - i+ 1) House-
holder transformation.

As an example of the utilization of the scheme presented above, the equa-
tions of the Householder-based CLMS (HCLMS) algorithm [5] are presented
in Table 3.

In order to relate the HT structure to the GSC structure, it was shown in [5]
that if a Householder transformation matrix Q is constructed to triangularize

Table 3. The HCLMS Algorithm

HCLMS Algorithm

Wy(0) = first p elements of QF
for each k

{ T
x(k) = Qx(k) =[x (k) ZT(K)]
w(k)= [who) wik)]

e(k) = d(k)—wH(k)x(k)
W)= Wy (k) + e’ (R)ZL (k)
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matrix C(CC)™"2, the following is true

QC(CHC)—ICHQH = E(EHC)'IEH = {IP(’;P g] (31)

where C = QC. Let the transformation matrix Q and the adaptive filter vector
w (k) be partitioned as follows

wy(0
Q w (k) (32)
where Q;; has dimension p x MN and Q; has dimension (MN - p) x MN. It will
be shown that using this partitioning of Q, the upper part Q; can be related to
the upper part of the GSC structure, which consists of the filter F, and Q; can

be regarded as a valid blocking matrix. We first show that Qf'w; (0) = F by pre-
multiplying Eq. (31) with Q" and post-multiplying with w(k)

QIT(CHC)” THw(k) = F
(33)
=[Qf o] =|a 0][ ————— } QA0

which is the upper part in the GSC structure. In other words, given Fand Q, the
constant part Wy (0) is given by the first p elements of the vector QF. In order
to show that Q; constitutes a valid blocking matrix, notice that

_| Wl | _ mnm e | I 0] e | QC
QC [QLC} c(c c) CHC [0 O}QC {0} (34)

and, therefore, Q; C = 0. Together with the fact that Q; has full rank, we can con-
clude that Q; fulfills the requirement for a valid blocking matrix.

For a large number of constraints (p > MN/2) it may be more economxcal to
implement the upper and lower parts of the GSC structure separately. How-
ever, for small to moderate (or practical) values of p, implementation as dis-
cussed above will be more efficient with the additional advantage that the
transformation is guaranteed to be unitary.
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5
Reduced-Complexity Constrained Filters

Demanding applications of LCAF, e.g., wireless communications or smart an-
tennas, may require long filters for an acceptable performance on one hand,
and cheap or low-power hardware on the other hand. An acceptable compro-
mise solution to these conflicting requirements must also take into account
that constrained versions of adaptive filters are usually more complex than
their unconstrained counterparts. This is the case even when low-complexity
implementations are favored, such as the Householder-based implementation
or the GSC stucture, with trivial or sparse blocking matrices, discussed in the
previous sections. In such cases, reducing computational complexity of the
LCAF may mean cheaper hardware, simpler software, or may even render the
application viable.

In this section we discuss two reduced-complexity strategies for LCAF
implementation: Set-membership filtering, which acts on the algorithm limit-
ing the frequency of updates, and partial adaptation, which acts on the
LCAF structure limiting the degrees of freedom (or number of parameters)
to adapt.

5.1
Set-Membership Affine-Projection Algorithm

Set-membership filtering (SMF) [11, 26] is a recent approach to adaptive fil-
tering, where a specification on the filter parameters is achieved by constrain-
ing the output estimation error to be smaller than a deterministic threshold.
For a properly chosen bound yon the estimation error e(k), there are infinite-
ly many valid estimates for w. As a result of the bounded error specification,
adaptive filters derived within the SMF framework will not perform update for
all incoming samples, in other words they are data selective, and can reduce
the overall complexity considerably as compared to their conventional coun-
terparts. Set-membership CAF has been considered in [17,27].

Adaptive SMF algorithms work with the so-called exact membership set
w (k) constructed from the observed data pairs,

k .
w(k)=H@) (35)

i=1

' The optimal set-membership filter seek solutions that belong to the feasibility set
0 =Ny gesfwe RMV:|d-w'x| < y} with S being the set of all possible data-pairs (x, d).
In practice, it may be difficult to predict all possible data pairs making y (k) more suit-
able for adaptive methods. Notice that @ is a subset of p (k) and also the limiting set of
p(k), i.e., the two sets will be equal if the training signal traverses all pairs belonging
toJ.
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where # (k) is referred to as the constraint set containing all the vectors w
for which the associated output error at time instant k is upper bounded by

y(k),i.e.,
Hk) = { w € RMNJd(k) — wHx(k)| < y(k)} (36)

Simple training-based adaptive SMF algorithms compute a point estimate
provided part of the information in y (k), e.g., the information provided by
J{ (k) [11] or several past constraint sets [7,29].

In the SMF formulation applicable to linearly-constrained problems con-
sidered here, the membership set is expressed as y (k) = p,_, (k) N p, (k), where
p, (k) corresponds to the intersection of the L past constraint sets, i.e.,

k

yik)= N HG) (37)
i=k—L+1

Next we consider an adaptive SMF algorithm whose coefficient vector after

updating belongs to the hyperplane defined by C'w = f and also to the L

past constraint sets y, (k). The set-membership constrained affine projection

(SM-CAP) algorithm [27] solves the following optimization criterion when-
ever w(k) ey, (k)

wik+1)=argmin|w-wi|" s.t. Chw=f and d(k)-XT(K)w" (k) =g(k) (38)

where g(k) = [g,(k) g, (k) ... gL(k)]T with g;(k) chosen such that w(k+1)
ey, (k) or, equivalently, |g,(k)| < y(k-i) fori=1 ... L, and the most general
version has the recursions given by

P[w(k) % X(k)(XH(k)PX(k))—I(e‘ (k) — g*(k))} +F, if [e(0)]> y(k)
w(k), otherwise
(39)
Choice of g;(k) can vary for different problems. A particularly simple SM-CAP
version shown in Table 4 is obtained for fixed thresholds, y(k) = y, if

g(k) for i#1 is chosen equal to the a posteriori error g(k) =d(k-i+1)
~x (k-i+1)w'(k),and g, (k) =e(k)/| e(k)| [27].

wik+1)=

5.2
Partially-Adaptive Filters

Partial adaptation will be presented here in the context of the GSC structure,
whereby only a subset of the MN - p degrees of freedom is used. A modifica-
tion in the structure of Fig. 3 is necessary to represent the reduction to
MN - p - L in the number of degrees of freedom (or parameters to be adapted),
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Table 4. The SM-CAP Algorithm

SM-CAP with constant a posteriori errors

w(0)=F
w,={10...0]T
for each k
{
e(k) = d(k) - w(k)x (k)
ifle(k)| >y
a(k) = 1-ylle(k)|
t(k) = [XH(k)PX(k)+I1] a(k)e(k)u,
wlk+1)=P[wk)+X (k) t(k)]+F
else
wik+1) =w(k)

originally equal to MN - p. This reduction in dimension is carried out via an
LXx(MN - p) matrix T, to be placed after the blocking matrix B. The operation
performed by matrix T can be incorporated in Fig. 3 as a modification in the
blocking matrix, to be represented as B’ =BT. This operation can also be al-
ternatively viewed as a modification introduced in the set of constraints
[22-25], represented by an auxiliary constraint matrix C,, such that:

® C, is in the null space of C, i.e., CHCA =0

¢ the new composite blocking matrix B’ = BT spans the null space of the new
modified constraint matrix C'={C C,]; and

¢ the rank of matrix [C C, BT] is equal to MN.

This new formulation of the minimization problem can be stated as follows:

Wopt =argminé, (k) subject to C'Hw =f’ (40)

where f* = [f! £,[]7. The optimal solution to the new modified minimization
problem with reduced dimension is

-1 -1
Wiy =(THBPRBT) THBHRF+(THBHRBT) THBHp (41)

This presentation of the partial adaptation of LCAF suggests that an efficient
implementation is possible via the Householder method presented in Sect. 4.2.

A judicious choice of matrix T may influence positively performance of the
system. The additional information may improve performance at the same
time that it reduces the number of degrees of freedom, and consequently the
computational complexity. In a beamforming application where some knowl-
edge of interference is available, the extra L constraints can be used to mini-
mize the output interference power [22-25].
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Even in situations where no prior knowledge is available and extra con-
straints cannot be used, partial adaptation will still reduce computational
complexity. An optimal approach to the selection of matrix T, in a sense that it
provides the lowest MSE out of all possible matrices formed as a combination
of L eigenvectors of matrix B¥RB, is the one that selects the L eigenvectors that
maximize the cross-spectral metric (CSM), defined as [9, 14]

A (42)

where (A;,v)) is the ith eigenvalue-eigenvector pair of B*RB, and p is the cross-
correlation vector between Bx and d,=F'x - d.

6
Discussions

Research on LCAF has targeted different optimization criteria yielding algo-
rithms tailored to specific applications. Objective functions like the MOE may
suffer from signal cancellation if interreference is correlated with the signal of
interest. We can overcome this by changing the objective function, or by care-
fully designing the constraint equations, or by spatial smoothing. For example,
the linearly-constrained constant-modulus algorithm [12, 20] has been used
for blind equalization in multipath environments. Algorithms with fast con-
vergence even for highly correlated input signals that compromise computa-
tional complexity with better robustness in finite-precision arithmetic have
also been developed recently [2-4].

The multistage Wiener filter (MWF) [9] is an alternative implementation of
the Wiener filter where partial adaptation via reduction of the number of de-
grees of freedom can be easily done [10]. In linearly-constrained problems the
MWF can be used in the lower branch of the GSC structure. Contrary to other
decompositions of the Wiener filter that aim at the best approximation to the
covariance matrix (e.g., principal components analysis), the MWF acts on
affine directions defined by cross-correlations and precise knowledge of sig-
nal-subspace dimension is not required for good performance.

Performance of LCAF is directly tied to a proper design of the constraints,
which are application dependent and based on system knowledge. This chap-
ter presented algorithms and structures that can be used directly in general
problems, as well as tools for the development of more refined solutions.
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