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Abstract—This letter presents a new fast QR algorithm based TABLE |
on Givens rotations usinga priori errors. The principles behind CLASSIFICATION OF THE FAST QR ALGORITHMS
the triangularization of the weighted input data matrix via QR Error Prediction
decomposition and the type of errors used in the updating process T 7 ¥ Backward
are exploited in order to investigate the relationships among ype orwar ackwar
different fast algorithms of the QR family. These algorithms A Posteriori | FQR.POSF [3] | FQR-POSB [4]
are classified according to a general framework and a detailed A Priori FQR_PRIF [new] | FQR_PRIB [5], [6]
description of the new algorithm is presented.

Index Terms—Adaptive filters, fast QR decomposition, recur- f _—

unction:

sive least squares, RLS algorithms.

I. INTRODUCTION

k
E(k) = Z Nl (i) = el (k)e(k) = [le(R)I[* (1)

AST recursive least squares (RLS) algorithms based @amere each component of the vectdik) is the a posteriori
QR decomposition (using Givens rotations) are amongror at instanti weighted by A\(*=9/2 () is the forgetting
those adaptive filtering algorithms with desired characterigactor). The vectok(k) is given by
tics such as numerical robustness and possibility of efficient (N+1)
implementation. e(k) = d(k) - X (B)w(k)- 2)
From the conventionalO[N?]) QR decomposition method | (2), d(k) is the weighted desired signal vectdf N2 (k)
(1], [2], a number of fast algorithmgO[N]) were derived s the weighted input data matri®] is the order (the number of
[3]-[6]. These algorithms can be classified in terms of the tyR@efficients isV + 1), andw(k) is the coefficient vector. The
of triangularization applied to the input data matrix (upper gremultiplication of the above equation by the orthonormal

lower triangular) and type of errors posteriorior a priori)  matrix @~ ) (k) triangularizesx ‘¥ +%) (k) without affecting
involved in the updating process. As will be clear later, aihe cost function.

upper triangularization (in the notation of this work) involves ) eq, (F)
the updating of forward prediction errors, while a lower QWY (k)e(k) = { (“(k)}
(k)

triangularization involves the updating of backward predic- €q

tions errors. The classification is summarized in Table I. This — { q } _ { (V41) }w(/{)_ (3)
table also indicates how these algorithms will be designated dy, () U (k)

hereafter. The weighted-square error in (1) is minimized by choosing

The proposed algorit.hm, referred as FQR_PRI_F, i «(k) such that the termi (k) — UNTV (k)w(k) is zero.
fast QR that updatea priori forward prediction errors. The Equation (3) can be written in a recursive form, as follows,

FQR_PRI_B algorithm was independently developed in [§jhile avoiding ever increasing order for the vectors and
and [6] using different approaches. The approach that wiflatrices involved [1]:

be used here derives from concepts used in the inverse equ (K) . d(k)
QR algorithm [5], [7] (where the inverse Cholesky factor is {d(n . } — 21\ (k) |:)\1/2d E—1 } (4)
updated). =) ! )

where QéNH)(k) is a sequence of Givens rotations that
annihilates the elements of the input vectof¥"t1 (k) =
_ _ _ _ - [z(k)x(k = 1) - z(k — N)]T in the equation
ths sectlcg Rre\lnevv.shthe .basu(:j conceptsbcl)f tr?ehconveqtlonafl 0 . ey +1)T(k)
and inverse algorithms in order to establish the notation o ; = k . . (5
this letter. The RI_gS algorithms minimize the following cost {U(A +1)(k)} ¢ ( )L\I/QU(AH)% - 1)} &
The following relation also used in the conventional QR
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lll. THE NEW FAST QR-RLS ALGORITHM elements of the rotated desired vector of the forward predictor.
The key difference in the development of the fast QRN result is

algorithms is the way that the matrt{(k) is triangularized, TN () = drg, (k) UMD (- 1) (11)

as follows: IR o”
I ] where|le;(k)|* = Alles(k — DI + ¢, (B).

By working with nonincreasing dimensions, it is easy to
0 show that [1]
TN () = N P (N+2) Sk o
_ _ Q) = Qopk) |0 (12)
ef(h(k):| — (N'i'l) k._ 1 |: 37(]{}) :| 13
0 0 {dfqz(k) g ( ) )‘I/Qdf(h(k_ 1) ' 13)
B ' N In the backward prediction problem, the triangular-
N+1 ization is achieved using three matrice@™¥*2 (k)
0 - - - - 0] Q,(k)Q,(H)Q™ Y (k), where@, (k) and@, (k) are two sets
: : of Givens rotations applied to generate, respectivigdy(k)||
and ||e§)0)(k)||. As a result, we have
(N+1) 1y — |- .

. UND®E)  dyg, (R)
0 _[ e )l
j | = { R 0 (14)

N+l where @, (k) is a submatrix of@; (k) and ||e£0)(k)|| is the

In both types of triangularization, the matrQéNJrl)(k) norm of the backwgrd error of a zero-coefficient predicto.r.
can be partitioned as If we take the inverse of (11) and (14), the following
relations result:

, (gD
éA'H)(k) — f(A74('If))(k) ’Y(/ﬂ)%(k) (k) (8) [U(N+2)(/€)]_l 1
OT
where, using (8) in (5) and recalling tha@{" ™ (k) is _ e (R
orthonormal, it is possible to prove thaf™¥+Y(k) = U ) U (k= D)y, (k)
UMD (E)]~TeN+D(k) is the normalizeda posteriori L |les ()|
forward (upper triangularization)/backward (lower trian- [0 -
gularization) prediction error vector [6]laNTU(k) = = 1 —2'R™ | (15)
Utk — Dx(k)/v/X is the normalizeda priori forward IEKOIRIEO]
(upper triangularization)/backward (lower triangularization) i .
prediction error vector [6], and(k) = AV2[U(k)]"C[U(k—  The expressions gU‘"*? (k)] ~* given in (15) can be used
]E. to obtain the vectorg™™ 2 (k 4 1) anda™+2(k + 1). The

In the derivation of fast QR algorithms, we start by applyinghoice of one 10f these vectors will determine the algorithm:
the QR decomposition to the forward and backward predictistpdating fN+1 (k) (a posteriori errors) will lead to the

problems whose prediction errors are, respectively, defined”@R_POS_F algorithm [3] and updatiudf¥*+1)(k) (a priori
errors) will lead to the new FQR_PRI_F algorithm.
® X(k— 1)] [ 1 } Expressinga™ 2 (k + 1) = [UN D (k)" TgWN+2 (% 4
Cf =

dy (k) —w (k) (9) 1)/v/X in terms of the matrices in (15) and premultiplying

o7 the one that comes from the backward prediction problem by
—wy(k L (RQUE (k) yields
es(k) =[X (k) d,,(/f)]{ “’f( )} 10) 9 (h)Q, (k) y

ek +1) a™N+U (k)
It is fundamental to note that the partitoned matrices | v/Ales(k)|] | = @3, (F) ey (k) . (16)
in the last two equations correspond &N *+2)(k + 1) aNHD (k4 1) Ve (k= 1)

(weighted input data matrix of orde¥ + 1). Our aim is to (V1) (N+1)
triangularize X 2 (k) such thatQ V2 (k)X V2 (k) =  Once we hava™ T (k + 1), the angles oy " ' (k + 1)
[U(N22>(k)]' The upper triangularization ofU(N”)(k) are found through the following relation obtained by postmul-

= o i
is implemented by premultiplyinge;(k) by the product tiplying [Q,(k + 1)]* [see (8)] by the pinning vector.

(N+1) . ] ]
Q(k)[@ %Y 9], where Q,(k) is a set of Givens {1/’7(/“”)} :Q§A+1)(k+1)[ (N+11) } (17)
rotations generatingje,(k)|| by eliminating the firstt — ¥ 0 —a (k+1)
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TABLE 1l Mean Square Eror
FQR_PRI_F AGORITHM 0 T y "
FQR_PRI_F -10}f
for each &
{ Obtaining €} (k + 1): 2
efq (k+1) =Q(N+1)(k) z(k+1) g -3}
dfq2 (k + 1) o ’\1/2dfqz (k) \ﬁ
(7}
=

ef(k+1) = esq (k+1)/7(k)
Obtaining a(M+1 (k 4 1):
l: el (k+1) :I r a(N+1)(k)
VAles (k)] =Qp (k)| e (k+1)
a Dk +1) VATHGT
Obtaining Qg (k + 1):
les(k+1) 1= /el (k+ 1)+ Xl e (k) 2

cos(k+1) = A2 || es(k) || / | e;(k+1) | P e w we ae T 2w aw
sinfp(k+1) = ez, (k+1)/ [ ef(k+1) || '
Obtaining c(k + 1): Fig. 1. Learning curve of the new algorithm.
(N+1) k) 0

QI (k+1) = Qoslk +1 [Qo ( ] i i :

"N (k+1) = Qoplk+1) o7 1 is used to obtai), (k+ 1) and the angles o™ ™ (k +1)
> 2 . . 7
Q5 (k+1) = last (N +2) x (N +2) can be calculated if we postmultip@{"~ ™ (k + 1) by the

elements of QgN”)(Ic +1) pinning vector.

A (N+2) , 1 It is worth mentioning that, following similar steps as
ck+1)=Qy (k+1)Qu(k) | in the upper triangularization, it is possible to obtain the
Obtaining Q% (k + 1): lower triangular matrixU*+? (k) from the forward and
[ 5 T backward prediction problems and, after obtaining the inverse

0 ] =Qp (k+1)e(k+1) [UN*2(E)]~1, we can updatea™+1) (k) (FQR_PRI_B) or
L (N+1)
Obtaining Q"9 (k +1): FUT(k) (FQR_POS_B).
1/v(k+1) (N+1) 1
= k+1
| o Q" (k+D) —aWH) (& + 1) IV. SIMULATION RESULTS
Elomt Process Estimation: In order to test the new algorithm, simulations were carried
€q (k +1) ] =Q§N+1)(k+1) [ ‘f%“”) ] out in a system identification problem. The system order
| dop(k+1) A %dy, (k) was N = 10, the input signal was a colored noise with a
e(k+1)=eq(k+1)y(k+1) conditioning number around 55, a forgetting factor= 0.98,
} the SNR= 40 dB, and the initialization factgr = 0.1.

The learning curve (MSE in dB) is depicted in Fig. 1,

. . corresponding to an average of 100 realizations.
The quantltles requwed to compute _the angleQ@f(kJrl_) Although finite precision analysis is under investigation, the
are not available at instaht and a special strategy is required,

The updated, (k + 1) is obtained [1] with the use of the hew algorr_[hm s_howe(_j no sign pf instability when S|r_nulated
b in fixed-point arithmetic—all variables represented with 16 b
vector ¢(k + 1) defined as

and 12 b in the fractional part.

~(N+2) / 1
kE+1)= E+1 k
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