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José A. Apolinário Jr.† and Marcello L. R. de Campos‡

†Military Institute of Engineering – Department of Electrical Engineering
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ABSTRACT

This paper introduces a constrained version of a recently pro-

posed generalized data windowing scheme applied to the Con-

jugate Gradient algorithm. This scheme combines two types

of data windowing, the finite-data sliding window and the ex-

ponentially weighted data window, in an attempt to attain the

best of both methods in a linearly constrained scenario. The

proposed algorithm was tested in a simple adaptive beam-

forming application, where the expected better performance

was demonstrated.

1. INTRODUCTION

The Conjugate Gradient (CG) method has been successfully

employed in adaptive filtering [1]–[5] in an attempt to attain

fast speed of convergence with low computational complex-

ity. The CG method, solving the equation Rw = p for

w, when used in adaptive filtering, needs the estimation of

the input-signal correlation matrix R(k) = E
[
x(k)xT (k)

]

and the cross-correlation vector p = E [d(k)x(k)], x(k) be-
ing the input-signal vector and d(k) the reference or desired
signal [6]. This estimation may be carried out in different

ways, e.g., the finite-data sliding window and the exponen-

tially weighted data window. A recently proposed algorithm

combining both schemes was presented in [7], which we refer

to in this work as the Generalized Data Windowing Conjugate

Gradient (GDWCG) algorithm.

Linearly constrained adaptive filters (LCAF) have found

applications in a number of practical problems, including adap-

tive beamforming with sensor arrays and multi-user detection

in mobile communication systems. The CG method was also

employed in linearly constrained adaptive filtering. A con-

strained version of the Modified Conjugate Gradient (MCG)
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algorithm from [3] was introduced in [8]. The constrained

version was equivalent, in infinite precision environment, to

the MCG algorithm used within the so-called Generalized

Sidelobe Canceler (GSC) structure [9, 10]. This structure is

well-known to be able to transform the linearly constrained

minimization problem into an unconstrained minimization

problem.

In order to minimize the Mean Squared-Error (MSE) with

respect tow, subject toCTw = f , the GSC structure decom-

poses the coefficient vector using a transformation matrix that

can be represented by [C −B], where C is the constraint

matrix, w is the coefficient vector, f is the gain vector, and

B is the blocking matrix which spans the null space of the

constraint matrix C, i.e., BTC = 0. The transformed coef-

ficient vector is intrinsically partitioned yielding and overall

filter w(k) = F − BwGSC(k), where F = C(CTC)−1f and

wGSC is the reduced-dimension coefficient vector that operates

on the input-signal vector modified by the blocking matrixB.

Given a projection matrix P = I −C(CTC)−1CT, then

any constrained adaptive filter w(k) can be decomposed in
two parts: A projection onto the subspace orthogonal to the

space spanned by the constraint matrix C, i.e., w(k) pre-
multiplied by the projection matrix P, and a translation that

brings the projected vector back to the hyperplaneCTw = f ,

i.e.,

w(k) = Pw(k) + F (1)

where F is as given above and P is the projection matrix,

which can also be written as P = B(BTB)−1BT.

This paper introduces a constrained version of the

GDWCG algorithm, namely the CGDWCG algorithm, and is

organized as follows: After Section 2 presents the equations

of the GDWCG algorithm, Section 3 presents a step-by-step

derivation of the new algorithm, and Section 4 presents the

simulation results. Finally, Section 5 concludes this work.
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2. THE GENERALIZED DATAWINDOWING

CONJUGATE GRADIENT (GDWCG) ALGORITHM

The objective function used for the conjugate gradientmethod

is usually represented by Jw = 1
2w

T(k)Rw(k) − pTw(k)
such that its gradient with respect to w(k), when set to zero,
yields Rw(k) = p. A residual vector is defined as g(k) =
p−Rw(k) and we update w(k) in the direction of c(k), an
R-conjugate direction to c(k−1), such that the squared norm
of the residual vector, ‖g(k)‖2, is reduced at each iteration:

w(k) = w(k − 1) + α(k)c(k) (2)

where α(k) is a step-size computed to minimize Jw.

Taking the partial derivative of Jw with respect to α(k)
and setting the result equal to zero, we obtain an expression

for α(k) which leads to α(k) = g
T(k−1)c(k)
cT(k)Rc(k) . A very simple

updating expression for the direction vector is obtained by

assuming

c(k + 1) = g(k) + β(k)c(k), (3)

β(k) being obtained from imposing cT(k + 1)Rc(k) = 0:

β(k) = −
cT(k)Rg(k)

cT(k)Rc(k)
. (4)

When applying this method to adaptive filters, the corre-

lation matrix R as well as the cross-correlation vector p are

to be estimated iteratively. This estimation can be carried out

according to different windowing schemes, e.g., the ones pre-

sented in [3] for the MCG algorithm:

1. Finite-data sliding window: Only the data with a finite

length (M ) window are used to estimate the correlation

matrixR(k) and the cross-correlation vector p(k), i.e.,

R(k) =
1

M

M−1∑

j=0

x(k − j)xT(k − j) (5)

p(k) =
1

M

M−1∑

j=0

d(k − j)x(k − j) (6)

2. Exponentiallyweighted data window: The resulting cor-

relation matrix and the cross-correlation vector are the

same as the ones used by the conventional exponentially-

weighted RLS algorithm, i.e.,

R(k) = λR(k − 1) + x(k)xT(k) (7)

p(k) = λp(k − 1) + d(k)x(k) (8)

where λ is a forgetting factor.

As seen in [3] and [7], the use of finite-data sliding win-

dowing, depending on the value of M , may result in high

misadjustment and slow convergence (low values ofM ). On

the other hand, the exponentially weighted windowing leads

to RLS-compatible misadjustment but the algorithm may suf-

fer from slow convergence in the degenerated scheme of the

MCG algorithmhaving a single iteration per coefficient-vector

update. In an attempt to combine fast convergence and RLS-

like misadjustment with low computational complexity, a gen-

eralized data windowing scheme was proposed in [7], which

is given below:

R(k) =λR(k − 1) +
1

M

M−1∑

j=0

x(k − j)xT(k − j) (9)

p(k) =λp(k − 1) +
1

M

M−1∑

j=0

d(k − j)x(k − j) (10)

In order to reduce the computational complexity, the data

correlation matrix can be computed as

R(k) = λR(k − 1) + R̃(k), (11)

where

R̃(k) = R̃(k− 1) +
1

M

[
x(k)xT(k)− x(k−M)xT(k−M)

]
.

(12)

Similarly, the cross-correlation vector is more efficiently

computed with

p(k) = λp(k − 1) + p̃(k), (13)

where

p̃(k) = p̃(k − 1) +
1

M
[d(k)x(k)− d(k −M)x(k −M)] .

(14)

This scheme resulted in the Generalized Data Windowing

Conjugate Gradient (GDWCG) algorithm introduced in [7].

The residual vector g(k) = p(k)−R(k)w(k), after replacing
p(k) andR(k) using (11) and (13), takes the form

g(k) = λg(k − 1)− αR(k)c(k) + p̃(k)− R̃(k)w(k − 1).
(15)

For the computation of the step-size α(k), the multiplica-
tive parameter η in [3] was made equal to λ for its proved

optimality, as shown in [4] (with correction in [5]). The result

is as follows:

α(k) = λ
cT(k)g(k − 1)

cT(k)R(k)c(k)
. (16)

Finally, completing the equations of the GDWCG algo-

rithm, the (non-reset) Polak-Ribiere method is employed for

improved performance [3] in the computation of parameter

β(k):

β(k) =
[g(k)− g(k − 1)]

T
g(k)

gT(k − 1)g(k − 1)
. (17)
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3. THE CONSTRAINED GDW CONJUGATE

GRADIENT ALGORITHM

Based on the general data windowing scheme from [7] and

following the same approach used in [8], we start the deriva-

tion of a constrained version of this algorithm by employing

this windowing strategy in a GSC structure (with orthogonal

blocking matrix). The data correlation matrix becomes

RGSC(k) = λRGSC(k − 1) +
1

M

M−1∑

j=0

xGSC(k − j)xTGSC(k − j)

= B
T
R(k)B, (18)

whereR(k) is the data-correlation of the overall adaptive fil-
ter, as in (9).

The overall coefficient vector is obtained from the GSC

structure using the updating expression of the unconstrained

GDWCG algorithm:

w(k) = F−BwGSC(k)

= F−B [wGSC(k − 1) + αGSC(k)cGSC(k)]

= Pw(k − 1) + F− αGSC(k)BcGSC(k). (19)

Notice, in the previous expression, that the possible sim-

plificationPw(k−1)+F = w(k−1) is not used in order to
avoid drift from the constraint hyperplaneCTw = f in finite

precision implementations [11].

Also in the above expression, the step-size αGSC(k) and the
direction vector cGSC(k) are given as

αGSC(k) = λ
cT
GSC

(k)gGSC(k − 1)

cT
GSC

(k)RGSC(k)cGSC(k)
(20)

and

cGSC(k + 1) = gGSC(k) + βGSC(k)cGSC(k). (21)

Completing the equations of the GSC-GDWCG algorithm,

we have the following expressions for the residual vector and

the parameter β(k):

gGSC(k) = λgGSC(k − 1)− αGSC(k)RGSC(k)cGSC(k)

+ p̃GSC(k)− R̃GSC(k)wGSC(k − 1) (22)

and

βGSC(k) =
[gGSC(k)− gGSC(k − 1)]

T
gGSC(k)

gT
GSC

(k − 1)gGSC(k − 1)
. (23)

For the constrained version of this algorithm, we make

c(k) = BcGSC(k) and g(k) = BgGSC(k), such that the two
variables α(k) and β(k) will be given by the following ex-
pressions:

α(k) = αGSC(k) = λ
cT(k)g(k − 1)

cT(k)R(k)c(k)
(24)

and

β(k) = βGSC(k) =
[g(k)− g(k − 1)]

T
g(k)

gT(k − 1)g(k − 1)
(25)

where R(k) = BRGSC(k)BT = PR(k)P, for in our case
BTB = I and henceP = BBT.

The equation of the updated search direction c(k + 1) is
then easily found as the productBcGSC(k + 1), given by

c(k + 1) = g(k) + β(k)c(k). (26)

With the new definitions of c(k) and g(k), the updating
equation of the constrained algorithm becomes

w(k) = Pw(k − 1) + F− α(k)c(k). (27)

From (22) and making g(k) = BgGSC(k), after some alge-
braic manipulation, the recursive formulation for the residual

vector is given as

g(k) = λg(k−1)−α(k)R(k)c(k)+ p̃(k)+ R̃(k)w(k−1)
(28)

where, from (18) and the previous definition of R(k), we
have:

R(k) = λR(k − 1) + R̃(k) (29)

and

R̃(k) = R̃(k − 1) +
1

M

[
x(k)xT(k)− x(k −M)xT(k −M)

]
.

(30)

Similarly, defining p̃(k) = Bp̃GSC(k), recalling the def-
inition of p̃(k), taking into account that in a GSC structure
we define dGSC(k) = FTx(k) − d(k), the following update
expression for p̃(k) is obtained:

p̃(k) = p̃(k − 1) +
1

M

[
d̄(k)x(k)− d̄(k −M)x(k −M)

]

(31)

with d̄(k) = FTx(k)− d(k).
All expressions for the new algorithm, the CGDWCG al-

gorithm in its complex version, are shown in Table 1. Notice

that a small positive number δ was introduced in all denomi-

nators to avoid division by zero.

4. SIMULATION RESULTS

We evaluated the new CGDWCG algorithm and compared

its performance with the CCG algorithm, applying both al-

gorithms to adaptive beamforming. We intended to show im-

provement in speed of convergence as a consequence of us-

ing the combination of sliding windowing and exponentially

weighting windowing in the constrained conjugate-gradient

algorithm. The CCG algorithm chosen was the one presented

in [8] with exponentially weighted estimates of matrices R

and p, which is equivalent to the new CGDWCG algorithm
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Table 1. Constrained GDW Conjugate Gradient Algorithm

Initialization:

0 ≪ λ ≤ 1, δ small positive number

w(0) = F = C
(
CTC

)
−1

f

R̃(0) = 0

R(0) = P = I−C
(
CTC

)
−1

CT

p̃(0) = g(0) = c(0) = 0

for each k

{ x(k) = Px(k)

R̃(k) = R̃(k − 1)+ 1

M

[
x(k)xH(k)− x(k −M)xH(k −M)

]

d̄∗(k)x(k) =
[
FHx(k)− d(k)

]
∗

x(k)

p̃(k) = p̃(k − 1)+ 1

M

[
d̄∗(k)x(k)− d̄∗(k −M)x(k −M)

]

R(k) = λR(k − 1) + R̃(k)

α(k) = λ
cH(k)g(k−1)

cH(k)R(k)c(k)+δ

g(k) = λg(k − 1)− α(k)R(k)c(k) + p̃(k) + R̃(k)w(k − 1)

w(k) = Pw(k − 1) + F− α(k)c(k)

β(k) = [g(k)−g(k−1)]Hg(k)
gH(k−1)g(k−1)+δ

c(k + 1) = g(k) + β(k)c(k)
}

presented here whenM = 1. For both algorithms, the value
of λ in the experiment was set to λ = 0.98, and the exper-
iments were run for ensembles of 10,000 tests. The results

shown in the figures are the averages for all tests in the en-

semble.

The system setup was that of a typical uniform linear array

(ULA) with 7 antennas spaced at half of the wavelength. The

received discrete-time input signal was formed by a user of

interest with look-direction set as 0o and three interferers (or

jammers) whose impinging angles were 35o, 45o, and 50o.

The input-signal model used was

x(k) = SAu(k) + n(k) (32)

where S = [s(θ1) · · · s(θ4)] is the steering matrix containing
the steering vectors of the users, θi is the direction of arrival

(DoA) for user i,A = diag[A1 · · · A4] contains the user am-
plitudes, u(k) = [u1(k) · · · u4(k)] contains the transmitted
user information, and n(k) is the sampled noise vector. The
signal-to-noise ratio was 0dB and the jammer-to-noise ratios
were equal to 30dB for all interferers.
Figures 1 and 2 show a comparison ofMSE and coefficient-

error vector between the two algorithms: CCG algorithm and

CGDWCG algorithm. The curves show the performances of

the CGDWCG algorithm for 4 different values ofM , i.e., dif-

ferent values of the length of the sliding window: M = 1,
M = 5,M = 10, andM = 20. The curves for the CCG and
CGDWCG algorithms are coincident forM = 1, as expected.

We can clearly see that for this application the use of

a sliding window combined with an exponentially weighted

window helps improving the speed of convergence. Figure

3 compares the beampattern obtained by the two algorithms

after 25 samples. It is clear that the slight gain in speed of

convergence is a powerful asset if one needs superior per-

formance after only few iterations, for one may see clearly

that the beampattern achieved with the CGDWCG algorithm

is closer to the optimal beampattern after very few iterations.
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Superior performance of the CGDWCG algorithm when

compared to the CCG algorithm was more pronounced in this

application when interferers were close to each other. For

other values of JNR even more significant results could be

obtained.

Similar results are also expected in other applications of

constrained adaptive filters, such as, e.g., multi-user detection

in CDMA mobile communications systems and linear-phase

system identification.

The increase in computational complexity due to the in-

troduction of the sliding window is marginal, as can be seen

in Table 1 when the value of M is increased from M = 1.
Besides, computational complexity is not a function ofM for

M > 1, although we have noticed that improvement in per-
formance is marginal asM is further increased. For the sim-

ulations shown here, performance improvements ceased for

M > 10.

5. CONCLUSION

In this article we present the constrained version of the

conjugate-gradient algorithm which employs a combination

of exponential and sliding windowing for estimating the auto-

correlationmatrix of the input signal and the cross-correlation

vector between the input signal and the desired signal. Algo-

rithm derivation follows closely that of the constrained

conjugate-gradient algorithm presented in [8]. The simula-

tion results from an experiment carried out on adaptive beam-

forming have shown a superior performance of the proposed

algorithm in this application when signals from the jammers

come form directions having a small difference of DOA. This

algorithm, due to its small sample support requirement, can

be successfully applied to the field of smart antennas.
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