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Abstract

A new algorithm, the binormalized data-reusing least mean
squares (LMS) algorithm is presented. The new algorithm
has been found to converge faster than other LMS-like al-
gorithms, such as the Normalized LMS algorithm and sev-
eral data-reusing LMS algorithms, when the input signal
is highly correlated. The computational complexity of this
new algorithm is only slightly higher than a recently pro-
posed normalized new data-reusing LMS algorithm.

1 Introduction

The least mean squares (LMS) algorithm is very popular
and has been widely used due to its simplicity. Its conver-
gence speed, however, is highly dependent on the eigenvalue
spread of the input-signal autocorrelation matrix (condi-
tioning number) [1, 2]. Alternative schemes which try to
improve this performance at the cost of minimum addi-
tional computational complexity have been proposed and
extensively discussed in the past [1, 3, 4].

The data-reusing LMS (DR-LMS) algorithm, which
uses current desired and input signals repeatedly within
each iteration is one among such schemes. It can be easily
shown that in the limit of infinite data reuses per iteration
the DR-LMS and the normalized LMS (NLMS) algorithms
yield the same solution [5]. Performance can be further im-
proved with the recently proposed normalized and unnor-
malized new data-reusing LMS (NNDR-LMS and UNDR-
LMS) algorithms [5]. These algorithms reuse the data pair,
namely desired and input signals, from previous iterations
as well.

In reference [5], a graphical description of NNDR-LMS
and UNDR-LMS algorithms was presented and it was shown
that this new class of data-reusing algorithms had prospec-
tive better performance than the NLMS algorithm. The ge-
ometric description also showed why improvement is achieved
when the number of reuses is increased. The new binormal-
ized data-reusing LMS (BNDR-LMS) algorithm introduced
here employs normalization on two orthogonal directions
obtained from consecutive data pairs within each iteration.
In all simulations carried out with colored input signals, the
new algorithm presented faster convergence than all other

algorithms mentioned above (case of two data pairs).

This paper is organized as follows. Section 2 presents
the LMS-like algorithms as well as a graphical illustration
of their coefficient updating. Section 3 introduces the new
BNDR-LMS algorithm. Section 4 contains the simulation
results and Section 5 draws some conclusions.

2 LMS, DR-LMS, NLMS and NDR-LMS
Algorithms

For the LMS algorithm, the coefficient vector w is updated
in the opposite direction of the gradient vector obtained
from instantaneous squared output error, i.e.,

wLMS(k + 1) = wLMS(k) − µ∇w[e2(k)]

where
e(k) = d(k) − xT (k)wLMS(k)

is the output error, d(k) is the desired signal, x(k) is the
input-signal vector containing the N +1 most recent input-
signal samples, and µ is the step size. The coefficient-
updating equation is

wLMS(k + 1) = wLMS(k) + µe(k)x(k)

For the DR-LMS with L data reuses, the coefficients
are updated as

wi+1(k) = wi(k) + µei(k)x(k)

for i = 0, . . . , L;

where
ei(k) = d(k) − xT (k)wi(k),

w0(k) = wDR−LMS(k),

and
wDR−LMS(k + 1) = wL+1(k).

Note that if L = 0 these equations correspond to the
LMS algorithm and that µ is the step-size.

The NLMS algorithm normalizes the step-size such
that the relation xT (k)wNLMS(k + 1) = d(k) is always
satisfied, i.e.,

wNLMS(k + 1) = wNLMS(k) +
e(k)

xT (k)x(k) + ε
x(k)
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where ε is a very small number used to avoid division by
zero.

The NNDR-LMS algorithm is specified by the follow-
ing relations

wi+1(k) = wi(k) +
ei(k)

xT (k − i)x(k − i) + ε
x(k − i)

for i = 0, . . . , L;

where
ei(k) = d(k) − xT (k)wi(k),

w0(k) = wNNDR−LMS(k),

and
wNNDR−LMS(k + 1) = wL+1(k).

For the sake of comparison, our interest is in one sin-
gle reuse such that L = 1. Fig. 1 illustrates geometrically
the updating of the coefficient vector for a two-dimensional
problem for all algorithms discussed above, starting with
an arbitrary w(k).

Let S(k) denote the hyperplane which contains all vec-
tors w such that xT (k)w = d(k). In a noise-free perfect-
modeling situation, S(k) contains the optimal coefficient
vector, wo. Furthermore, it can be easily shown that x(k)
and, consequently, ∇w[e2(k)] are orthogonal to the hyper-
plane S(k).

The solution given by the DR-LMS algorithm, w(k +
1), iteratively approaches S(k) by following the direction
given by x(k) (see 3 in Fig. 1). This solution would reach
S(k) in the limit, as the number of data reuses goes to
infinity [5]. The NLMS algorithm performs a line search to
yield the solution w(k + 1) ∈ S(k) in a single step (see 4
in Fig. 1). The algorithms presented in [5] use more than
one hyperplane, i.e., data pair (x, d), in order to produce a
solution w(k+1) (see 5 and 6 in Fig. 1) that is closer to wo

than the solution obtained with only the current data pair
(x(k), d(k)). For a noise-free perfect-modeling situation,
wo is at the intersection of N + 1 hyperplanes constructed
with linearly independent input-signal vectors. In this case,
the orthogonal-projections algorithm [6] yields the solution
wo in N + 1 iterations. This algorithm may be viewed
as a normalized data-reusing orthogonal algorithm which
utilizes N + 1 data pairs (x, d).

In the next section, the new binormalized data-reusing
LMS algorithm will be described. This algorithm com-
bines data reusing, orthogonal projections of two consec-
utive gradient directions, and normalization in order to
achieve faster convergence when compared to other LMS-
like algorithms. At each iteration, the BNDR-LMS yields
the solution w(k + 1) which is at the intersection of hyper-
planes S(k) and S(k − 1) and at a minimum distance from
w(k) (see 7 in Fig. 1). The algorithm can also be viewed as
a simplified version of the orthogonal projections algorithm
which utilizes just two previous consecutive directions.

3 The BNDR-LMS Algorithm

In order to state the problem, we recall that the solution
which belongs to S(k) and S(k−1) at a minimum distance
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Figure 1: Updating the coefficient vector:
1. w(k);
2. wLMS(k + 1) (first step of DR-LMS and UNDR-LMS);
3. wDR−LMS(k + 1);
4. wNLMS(k + 1) (first step of NNDR-LMS);
5. wUNDR−LMS(k + 1);
6. wNNDR−LMS(k + 1);
7. wBNDR−LMS(k + 1).

from w(k) is the one that solves

min
w(k+1)

‖w(k + 1) − w(k)‖2

subjected to
xT (k)w(k + 1) = d(k)

and
xT (k − 1)w(k + 1) = d(k − 1)

The functional to be minimized is, therefore,

f [w(k + 1)] = [w(k + 1) − w(k)]T [w(k + 1) − w(k)]

+λ1[xT (k)w(k + 1) − d(k)]

+λ2[xT (k − 1)w(k + 1) − d(k − 1)]

which, for linearly independent input-signal vectors x(k)
and x(k − 1), has the unique solution

w(k + 1) = w(k) + (−λ1/2)x(k) + (−λ2/2)x(k − 1)

where
−λ1/2 =

num1
den

and
−λ2/2 =

num2
den

with:

num1 = [d(k) − xT (k)w(k)]xT (k − 1)x(k − 1)

−[d(k − 1) − xT (k − 1)w(k)]xT (k)x(k − 1)

num2 = [d(k − 1) − xT (k − 1)w(k)]xT (k)x(k)

−[d(k) − xT (k)w(k)]xT (k − 1)x(k)

den = xT (k)x(k)xT (k − 1)x(k − 1)

−[xT (k)x(k − 1)]2 + ε

where ε is a small number used to avoid division by zero.



The BNDR-LMS algorithm is summarized in Table 1.
This algorithm can be alternatively derived from a purely
geometric reasoning. The first step is to reach a preliminary
solution, w1(k), which belongs to S(k) and is at a minimum
distance from w(k). This is achieved by the NLMS algo-
rithm starting from w(k), i.e.,

w1(k) = w(k) +
e(k)

xT (k)x(k)
x(k)

In the second step, w1(k) is updated in a direction orthog-
onal to the previous one, therefore belonging to S(k), until
the intersection with S(k − 1) is reached. This is achieved
by the NLMS algorithm starting from w1(k) and following
the direction x⊥

1 (k) which is the projection of x(k−1) onto
S(k).

w(k + 1) = w1(k) +
e1(k)

x⊥
1

T (k)x⊥
1 (k)

x⊥
1 (k)

where

x⊥
1 (k) =

[
I − x(k)xT (k)

xT (k)x(k)

]
x(k − 1)

and
e1(k) = d(k − 1) − xT (k − 1)w1(k)

The use of x⊥
1 (k) obtained from x(k − 1) assures that the

minimum-distance path is chosen.

Note that the requirement of linear independence of
consecutive input-signal vectors x(k) and x(k − 1), neces-
sary to ensure existence and uniqueness of the solution, is
also manifested here. If x(k) and x(k − 1) are linearly de-
pendent, then we cannot find x⊥

1 (k) ∈ S(k). This situation
is avoided with ε (we used 10−5 in our experiments) in the
algorithm.

Table 1: The Binormalized Data-Reusing LMS Algorithm.

BNDR-LMS

ε = small value
for each k
{ x1 = x(k)

x2 = x(k − 1)
d1 = d(k)
d2 = d(k − 1)
a = xT

1 x2

b = xT
1 x1

c = xT
2 x2

d = xT
1 w(k)

e = xT
2 w(k)

den = bc − a2 + ε
A = (d1c + ea − dc − d2a)/den
B = (d2b + da − eb − d1a)/den
w(k + 1) = w(k) + Ax1 + Bx2

}

4 Simulation Results

In order to test the BNDR-LMS algorithm, simulations
were carried out for a system identification problem. The

system order was N = 10, the input signal was correlated
noise with a conditioning number around 55 and a input
signal to observation noise ratio SNR = 150dB. The learn-
ing curves (MSE in dB) for the NLMS, the NNDR-LMS
(one reuse) and the BNDR-LMS are depicted in Fig. 2,
corresponding to an average of 200 realizations.

In this example we can clearly verify the superior per-
formance of the BNDR-LMS algorithm in terms of speed of
convergence when compared to the NLMS and the NNDR-
LMS (with one single reuse) algorithms. Simulations for
the conventional LMS algorithm and for the DR-LMS al-
gorithm were also carried out for the same setup, but their
performances were, as expected, inferior than that of the
NLMS algorithm and the results were omitted from Fig. 2.
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Figure 2: Learning curves of the following algorithms:
NLMS, NNDR-LMS and BNDR-LMS.

In order to test the performance of the algorithms in
terms of mean-square error after convergence, we measured
the excess of MSE (MSE - MSEmin) in dB. The MSEmin

is the variance of the observation noise set equal to 10−6

in this experiment. The results are summarized in Table 2
where we can also observe the excess of MSE in dB for
a nonstationary environment. In this case, the observation
noise was set to zero and the system (plant) coefficients var-
ied according to w(k) = w(k−1)+v, where v is a random
vector with zero mean and variance equal to 10−6. As we
can see from Table 2, in both stationary and nonstationary
environment, the BNDR-LMS algorithm performed closely
to NLMS and NNDR-LMS algorithms.

Table 2: Excess Mean-Square Error.

Algorithm (MSE - MSEmin)dB

Type Stationary Nonstationary
NLMS -59.09 -39.15

NNDR-LMS -59.40 -39.42
BNDR-LMS -58.60 -39.45

In terms of computational complexity, Table 3 shows
the comparisons among these three algorithms. Note that
p = N + 1 is the number of coefficients.



Table 3: Comparison of computational complexity.

ALG. ADD MULT. DIV.
NLMS 3p-1 3p 1

NNDR-LMS 6p-2 6p 2
BNDR-LMS 7p+3 7p+2 2

5 Conclusions

This paper introduced the BNDR-LMS algorithm which
has a faster convergence than a number of other LMS-like
algorithms when the input signal is highly correlated. A ge-
ometric interpretation of the algorithm was also provided
showing that the coefficients are updated in two normal-
ized steps following orthogonal directions. The relationship
between the BNDR-LMS algorithm and the orthogonal-
projections algorithm was clarified. Simulations carried
out in a system identification application showed that the
BNDR-LMS algorithm compared favorably with other LMS-
like algorithms in terms of speed of convergence. Moreover,
the more correlated is the input signal, the better the new
algorithm performs. This improvement is clearly verified in
cases of high signal to noise ratio.
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