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ABSTRACT

This paper applies data selective updating to the Modified
Conjugate Gradient algorithm. In search for a new conjugate-
gradient-like filtering algorithm, two different approaches
are developed: the first one results in the recently proposed
set-membership affine projection (SM-AP) algorithm and
the second one reduces the computational requirements of
the modified congujate gradient algorithm while keeping
approximately the same good results in terms of conver-
gence speed and misadjustment. Simulation results for a
system identification experiment show the claimed perfor-
mance with a considerable reduced number of updates.

1. INTRODUCTION

Fast convergence and low complexity as well as small mis-
adjustment are desired characteristics of adaptive filters al-
ways aimed by design engineers specially when the input
signal is highly correlated. The RLS family of adaptive
filter algorithms is known to have faster convergence than
the LMS-like algorithms but the cost in terms of computa-
tional complexity are sometimes too high [1]. The Conju-
gate Gradient (CG) method applied to adaptive filtering as
in [2] can attain similar fast convergence and small misad-
justment compared to the RLS algorithm without the need
of performing matrix inversion. Inspired by recent develop-
ments in set-membership filtering (SMF), this paper inves-
tigates the possibility of lowering the computation require-
ments of the modified conjugate gradient algorithm [2] by
restricting the number of updates or, in other words, using a
data selective scheme.

In set-membership filtering (SMF) [3] an upper bound
of the output estimation error is specified. The resulting
adaptation algorithms are data-selective which in turn can
reduce the computational complexity of the algorithms con-
siderably. Furthermore, the sparse updating also results in
a low misadjustment because the algorithms does not uti-
lize the input data if it does not imply innovation. The set-
membership NLMS (SM-NLMS) algorithm proposed in [3]

was shown to achieve fast convergence and low misadjust-
ment, and its sparse updating and low computational com-
plexity per update makes it attractive in various applica-
tions. The set-membership affine projection (SM-AP) algo-
rithm [4] generalizes the ideas of the SM-NLMS algorithm
to improve the performance for correlated inputs.

In this paper we recast the ideas of [4] in the framework
of the CG algorithm. This paper is organized as follows.
Section 2 reviews the basic concepts of set-membership fil-
tering. In Section 3, the contrained CG (CCG) [5] applied
to certain contraints is shown to yield the SM-AP algorithm.
Section 4 combines data selectivity with the modified CG
(MCG) [2] algorithm in an attempt to reduce the computa-
tional complexity. Section 5, contains the simulations and
Section 6, the concluding remarks.

2. SET-MEMBERSHIP FILTERING

In set-membership filtering, the filter is designed to upper
bound the output estimation error�� ���

� � with a prede-
fined threshold�. Therefore, all vectors satifying the bound
contraint are considered feasible. Define thefeasibility set
as the set of all filter vectors satifying the error contraint for
all possible input-desired data pairs��� ��, i.e.,
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Adaptive solutions try to find estimates belonging to this
feasibility set. In many application it is impossible to pre-
dict all possible data pairs and, therefore, adaptive meth-
ods work with the membership set constructed from the ob-
served data pairs,
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where�� � �� � �� � ��� � ����� � �� is thecon-
straint set formed by the input data pair at time instant�.



Note that the feasibility set is included in the membership
set and if all possible data pairs are traversed up to time
instant�, the membership becomes equal to the feasibil-
ity set. The simplest adaptive approaches computes a point
estimate provided a subset of the mebershipset, e.g., the in-
formation provided by�� like in the SM-NLMS algorithm
or by utilizing� past contraint sets like in the SM-AP algo-
rithm. Other approaches try to outer bound the membership
set with ellipsiods leading to the family of optimal bounding
ellipsoid (OBE) algorithms [6].

3. CONSTRAINED CONJUGATE GRADIENT
ALGORITHM

For this first formulation, we partition themembership set
�� as�� � ����

�

�
��
� where��

� corresponds to the inter-
section of the� last constraint sets, i.e.,

��
� �
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Our goal is the derivation of an algorithm with Conjugate
Gradient update such that the updated coefficient vector��

belongs to the last� constraint-sets, i.e.,�� � ��
� . For

this, we define	����� as the hyperplane which contains
all vectors� such that������ � �������� � ������

for � � �� 
 
 
 � �. The parameters������ should be any
satisfying the bound constraint or�������� 	 � such that
	����� � ������. For the sake of simplicity, we shall use
these parameters equal to zero, see [4] for a discussion on
particular choices.

When the Conjugate Gradient algorithm is used to solve
�� � � (� being the input signal autocorrelation matrix
and� the cross-correlation between the input vector and the
reference signal), it is also minimizing���

�������. In
our case, we can impose an aditional restriction whenever
���� �� ��

� and state the following optimization criterion

min
�

�
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subject to:��
��� � �� (4)

where
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and
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� being the filter order.
The minimization of this constrained cost function us-

ing the Conugate Gradient metfod may correspond to the

Constrained Conjugate Gradient (CCG) algorithm [5] if we
make the constraint���� � � such that the constraint ma-
trix � is time variant and corresponding to��. Moreover,
the gain vector� should also be time variant and correspond-
ing to��. Table 1 shows the CCG algorithm imposing this
condition.

Table 1: The Constrained Conjugate Gradient Algorithm.

Initialization:
�,  with ��� 
��� �  � �

� is the number of constraint sets
Æ small number
�� � ������� � �� ��
�� � 	
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From the above table, we see that the CCG algorithm is
updated according to�� � ����� �� ���� where for
this particular application we have� � 	�����

�
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�

and � ����
�
����

����.

Nevertheless,� is actually the projection matrix onto
to the subspace spanned by the constraint matrix which in
our case corresponds to�� defined in (5). It means that
�� � ��� is a null vector because�� is the first column
of ��. Since the computation of the last right-sided term
of the coefficient vector update (�����) is based on��, its
value will be zero (or close to zero due toÆ).



By considering���� � 
 and replacing� and, the
coefficient vector update becomes
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where�� � �� ���
�����.

The last equation corresponds to the affine projection
algorithm update and the corresponding set-membership al-
gorithm is actually the SM-AP of [4].

4. THE POINT-WISE APPROACH

In this second formulation, we are interested in testing if
the previous coefficient vector belongs to the membership
subset��

� and make a decision of update. This procedure
shall decrease the number of updates and consequently the
computational burden of the Conjugate Gradient algorithm.
To verify if ���� � ��

� we need to test if all elements
of vector�� defined above have absolute values lower than
�. Tabel 2 shows this Selective Updating Conjugate Gradi-
ent algorithm. As mentioned before, this version is based
on the Modified Conjugate Gradient (MCG) algorithm pre-
sented in [2] which uses a degenerated scheme in order to
have only one iteration per coefficient-vector update. More-
over, it uses an exponentially decaying data window to esti-
mate the input signal autocorrelation matrix. Although, the
MCG does not in itself guarantee that the updates will end
up in the subset��

� like the CCG in the previous section, it
will only perform updates whenever���� �� ��

� resulting
in a lower computational complexity than the conventional
MCG.

5. SIMULATION RESULTS

In this section we consider a system identification setup
where the input signal consists of white Gaussian noise fil-
tered through an IIR filter defined by�� � 
� � ������� �

�������. The additional noise was such that its variance
corresponds to��

� � �
�� and the unknown plant has�

coefficients (� � ��). We also used� � 
���,  � 
��,
andÆ � �
��. The bound on the estimation error was cho-
sen to� �

�
����.

For this experiment we have used the number of con-
straint sets equal to� � �. Fig. 1 depicts the learning curve
obtained from an average of�


 independent runs. We
observe that the performance of the proposed algorithm is
quite similar to the original Conjugate Gradient algorithm.
Moreover, for comparison reasons, we present the results
for the NLMS and RLS algorithms.

Table 2: The MCG Algorithm with selective updating.

Initialization:
�,  with ��� 
��� �  � �

� is the number of constraint sets
� upper bound of the estimation error
Æ small number

� � �� � Æ
ones�� � �� ��
�� � zeros�� � �� ��
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Running the algorithm:
for �=�:�MAX
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�
�� � ����

�
else
�
�� � ����� � ���

�
�

�� � 
��
�
����

���
�
�����Æ



� � �
��� � ������ � �������
�� � ���� � ����

�� �
��������


���

���
���

�����Æ


���� � 
� � ����
�

�

Fig. 2 shows the norm of the coefficient-error vector
(����Opt) for the same experiment. It is worth mentioning
that the iterations without updating of the coefficient vec-
tor corresponds, for this experiment, to������ of the total
number of iterations. This value could increase by increas-
ing the� at the expense of a higher misadjustment or with
more practical situations where we have lower SNR and,
therefore, can allow larger�. As an example, we have sim-
ulated the same experiment for��

� � �
� and obtained
near�
� of non-updating iterations with a slight decrease
in performance.

6. CONCLUSIONS

In this paper, data selective conjugate-gradient algorithms
were discussed. It was shown that the constrained conjugate
gradient algorithm in a set-membership filtering framework
resulted in the recently proposed set-membership affine pro-
jection algorithm (SM-AP). Furthermore, data selectivity
was applied to the modified conjugate gradient algorithm
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Figure 1:Learning curves for the data selective MCG algorithm
with � � � (� �

�
���

�
), the MCG algorithm (� � ���), the RLS

algorithm (� � ����), ��
�
� ��

��, and colored input signal.

(MCG) in an attempt to reduce its the computational com-
plexity. Simulations confirmed that the proposed data selec-
tive MCG (SMCG) algorithm indeed presents good perfor-
mance (similar to the original MCG algorithm) with a con-
siderable decrease in the number of updates, consequently,
lowering the computational load.
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