INFINITE PRECISION ANALYSIS OF THE FAST QR
ALGORITHMS
BASED ON BACKWARD PREDICTION ERRORS

Jos A. Apolinario Jr.*, César A. Medina S**, and Paulo S. R. Diniz

Abstract - The conventional QR Decomposition Recursivee bastante atraente para uma implem@&otaetica. AEm
Least Squares (QRD-RLS) method requires the ordé¥ df disto, uma aalise em preciss finita requer as estimativas
multiplications—OJN 2]—per output sample. Neverthelessgestes valores etlios quadificos. Neste trabalho, apresen-
a number of Fast QRD-RLS algorithms have been propostnos inicialmente uma recapity#sc dos principais algo-
with O[N] of complexity. Particularly the Fast QRD-RLS al-ritmos QR Ripidos, seguida por umaalise em precid in-
gorithms based on backward prediction errors are well knoviimita relativa aos valores adios quadaficos em regime esta-
for their good numerical behaviors and low complexities. Iniondrio das vaadveis internas de quatro destes algoritmos.
such a scenario, considering a case where fixed-point arifRessaltamos que o objetivo deste arggapresentar os resul-
metic is employed, an infinite precision analysis offering theados da aalise em prec&d infinita, as expresgs para 0s
mean square values of the internal variables becomes veryattores nedios quadaficos das vaaveis internas, para todos
tractive for a practical implementation. In addition to this, @s algoritmos FQR baseados em erros de paedietograda.
finite-precision analysis requires the estimates of these mefawalidagao destas expresssS anaticas€ obtida por meio
square values. In this work, we first present an overview de simulades em computador conduzidas num ambiente de
the main Fast QRD-RLS algorithms, followed by an infinitédentifica@o de sistema. Nos apdices, as implemenies
precision analysis concerning the steady state mean squdetalhadas em pseudodigo de cada algoritmas’listadas.
values of the internal variables of four FQR-RLS algorithms, . . , .
We stress the fact that the goal of this paper is the p?esentatsfoz?.lavras-chNave:Slstemas Adaptativos, Algomos Ripidos,
of the infinite precision analysis results, the expressions fglecompos,lao QR.
the mean square values of the internal variables, for all FQR
algorithms based on backward prediction errors. The validit
of these analytical expressions is verified through computer INTRODUCTION
simulations, carried out in a system identification setup. In _. . .
the appendixes, the pseudo-code detailed implementations P§|n_ce the first QR Decompos_mo_n_ (QRD) based Fast RLS
each algorithm are listed. algorithm introduced by John_ Cioffi in 1990 [1], many other
Fast QRD-based RLS algorithms were developed [2, 3, 4,
Keywords: Adaptive systems, Fast Algorithms, QR decom5, 6]. It can be seen on [5] that Fast QRD-RLS algorithms
position. can be classified in terms of the type of triangularization ap-
i i . plied to the input data matrix (upper or lower triangular) and
Resumo - O método convencional dos iMimos Quadra- q e of error vectora( posteriorior a priori) involved in
dos Recursivos usando Decomp@sicQR requer da or- o ;hdating process. It can be seen from the Gram-Schmidt

L ovDS LAl ) .
dem deN* multiplicaddes—O[V~}-—por amostra de sda. ,0qonalization procedure that an upper triangularization

Contudo, -arios algolritmos QRD'RI,‘S ltem sido pmpﬁsmfnotation being the same as in [5]) involves the updating of
com O[N] de complexidade. Particularmente os ¢ aM35rward prediction errors while a lower triangularization in-

dos algoritmos QRD Bpidos baseados em erros de pradic volves the updating of backward prediction errors. Table 1

retrograd,a_ 80 bem conhemdbos_ porseus ll)on_z c(;)mportame&ésems this classification as well as points out how these al-
tos ,n_umanco_sde podr suas amzs compiexidades. Em tGbrithms will be designated hereafter. Also note that only
cerario, considerando o caso onde a aetita eém ponto fixo ¢ e algorithms [2] and [3], a formal demonstration of the

€ em?regadaé.uma ahdi? em dprecaao”lnflnl.ta oferecendo  merical stability is known; these algorithms are backward
os valores radios quadaticos das vaaveis intermas torma- iapie and minimal in the sense of system theory [2, 7].
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squared value of the internal variables of this class of Fastiori error at instant weighted by\ (¥=9/2 () is the forget-
QRD-based algorithms which are well known for their gooting factor). The vectoe(k) is given by

numerical behavior and low computational complexity. Since

these algorithms present similar performances in finite pre- e(k) = d(k) — X (k)w(k) (2)
cision, specially when using a reasonably large number of

bits of wordlength, they are all currently subject of research) the above equation, the weighted desired or reference sig-
Particularly in the case of fixed-point arithmetic implementdial vectord(k), the coefficient vectow(k), and the input
tions, information about the range of their internal variableslata matrixX (k) are defined as follows.

such as those offered by an infinite precision analysis—is very

interesting for a practical implementation. d(k)

Itis also worth mentioning that finite-precision analysis re- | Ak -1
quires the estimates of the mean square values found in this - : ©)
work, some of them obtained here and others collected from )\k/z'd(o)

the technical literature. The relevance of the infinite preci-
sion analysis can be clearly observed in [9], where the sec-

tion “Quantization Error and Stability Analysisaddressing wogzg
the finite precision analysis of the conventional QRD-RLS () = wl_ 4
algorithm, was only possible with the results of the infinite :
precision analysis carried out in the previous section. wn (k)
Since in an infinite precision environment many variables
are identical for all Fast QR algorithms based on Backward x” (k)
Prediction Errors mentioned in Table 1, the use of results M2zt (k- 1)
from other works was possible. We have used theoretical X (k) = : ®)
expressions for the mean square values of different variables /\’“/Zm.T(O)

from the analysis of the conventional QR—RLS algorithm per-
formed by Diniz and Siqueira i1995 [9]. We have also where N is the filter order (humber of coefficients minus
used results for variables of tleePosterioriFast QR algo- one),z(k) is the input signal vectdw (k) x(k—1) - - (k-
rithm based on Backward Prediction Errors [2] in paper by)]? —samples before instartt are considered equal to
Siqueira, Diniz, and Alwan [10] published i994. Finally, zero—, andw(k) is the coefficient vector. The premultipli-
we have used some expressions derived in a work carrieddation of the above equation by the orthonormal ma@ %)
Miranda, Aguayo, and Gerken 997 [11] concerning the triangularizesX (k) without affecting the cost function.
variables of the Fast QR algorithm basedaoRriori Back-

- K
ward Prediction Errors [3]. . e (k) = Q(k)e(k) = { €q (k) ]

The main contributions of this work, besides the new the- eq () 6)
oretical expressions developed, are concerned to the unified - { dq, (F) ] _ { 0 ] w(k)
framework in which all FQR algorithms based on Backward do, (K) U (k)

Prediction Errors were addressed and all their infinite pre
sion analysis were presented using the same notation.
This paper is organized as follows. In Sectiymve present
an overview of the Fast QR algorithms based on backw
prediction errors. Then, in SectioBg&nd4, the infinite preci- gl
sion analysis concerning the steady state mean square va[ué’s
of each internal variable is presented. In Sectipthe vali- eq (k) d(k)
dation of the analytical results obtained is carried out through [ d. (k) } = Qy(k) { N2, (k= 1) ] (7)
computer simulations. Finally, some conclusions are summa- ” o
rized and the detailed algorithmic implementations are prgere e, is the first element ofe,, and Q,(k)
sented in the appendixes.

“he weighted-square error in (1) is minimized by choosing
w(k) such that the termd » (k) — U (k)w(k) is zero. Equa-
ti8n (6) can be written in a recursive form while avoiding the
ard . . . .

ever increasing order for the vectors and matrices involved

H?:N Q. (k) is a sequence of Givens rotations that anni-
hilates the elements of the input vecitg(i) in the equation

2. THE FQR ALGORITHMS BASED ON 0" 1 _g,m ]| . E®) ®)
U (k) 0 MP2U (k- 1)
BACKWARD PREDICTION ERRORS
The RLS algorithms minimize the following cost functionand’
zk: i . R cosfi(k) 0T  —sinB;(k) 0T
§(k) =) N'e(i) = e (ke(k) =l e(k) I (1) _ 0 Iy 0 0-:0

i=0 Qo, (k) = sinf; (k) gT cosb; (k) o7 ©)

0 0---0 0 I;

where each component of the error veéte(k) is thea pos-

2Note that scalars are represented by italic letters while vectors are weit in bold face italic.
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The following relation which is also used in the con- Mean Square Value ofd ., (k)
ventional QR algorithm is obtained by postmultiplyingThe following result was obtained from [10].

el (k)Q(k) by the pinning vectof1 0 --- 0]7.

{ 2} o2 2\ \ Vi
B {ldg 0P} = 125 (125) (19
) = ek Ilmw ) = e (B)1(k) (10) q LA AT+

. _ . Mean Square Value of|| k) ||
wherev(k) is the first element of the first row @@ , (). The following result can be foundfln [10].

Matrix Q, (k) in (7) can be partitioned as
2 i
_[ v —v(R)aT (k) Bl e =5 (55) 19)
am=| 10 T ay  EI® I~ 25 (1o

where, using (11) in (8) and recalling th@, (k) is or- ~ Mean Square Values otost, (k) and sind’. (k)
thonormal, it is possible to prove that, for the case of lowérhe following results were also derived in [10].
triangularization ofU(k) (backward prediction errors up-

date), f(k) = [U(k)]"Tx(k) is the normalizeda posteri- Elcos?0’s. (k)] ~ 2 (20)
ori backward prediction error vector [34(k) = U =7 (k — i 1+A

1) X (k)/+/X is the normalizea priori backward prediction 1.1\
error vector [3], andg (k) = A\/2[U (k)] L [U(k — 1)]7. E[sin®0), (k)] ~ —

The update of the posterioriand thea priori backward ' T+A
prediction error vectorsf(k) and a(k) respectively, leads Mean Square Value ofy(i)(k)
to two different algorithms, the so-called FQFOSB and |t js known from the technical literature that(k) =
FQRPRLB algorithms. The update equations of these veﬁN cosb; (k). If we use (15) and (16), and assume inde-

tors are given by pendence betweewsd; (k) andcosd;(k),i # j, itis easy to

(21)

||éb((lzf1))u Q% (k1) £k ] w2 find the following expression.
bk =Qy,. (k+1 es(k+1)
| f(k+1) ! e r i E {h(i) (k)]Q} ~ N 22)
e (k+1) a(k) The same expression was also obtained in [11] using a differ-
Ve (k)| Qof( ) [ e (k+1) ] (13) ent approach.
| a(k+1) VAR Mean Square Value ofd, (k)

WhereQ’ef(k) is a sequence of Givens rotations that gene-ll——he following result was first introduced in [9].
ates|| es(k) || and can be obtained through the following [ ;

2\

I+

equation. [d22N+1_ (k‘)]
T o2 N 2
0 ’ df (k—l—l) :| [1f>\w§,i+pr—“>\zj:i+1 ww]
= k+1 1 14
lué”w+1n|] Q“(+)[neﬂk+nu () (23)

wherewg ; = E[w;}(k)]. Observe that althougin, ; is not
available, a rough estimate afwg ; can be obtained based
on the power of the reference S|gnal [9].

Mean Square Value ofe.” (k)

The matrix equations of the two implementations of Fagtrom the joint process estimation part of the FRRSB
QR algorithms mentioned before are listed in Tables 4 af@orithm, we take the expressions of! (k + 1) and
5. As can be seen from these tables, several equatlons% .—:(k+1), and use them to derive the expected value of
exactly the same. In this section, we summarize the meﬁmﬁu (k+1)]> 4+ [dg2y 4o, (k+1)]*. By assuming stationarity,
square values of all variables found in both algorithms.  we find the following relation.

Mean Square Values ofost; (k) and sinb; (k)

X

3. MEAN SQUARE VALUES OF
COMMON VARIABLES (FQR _-POS_B
AND FQR_PRI_B ALGORITHMS)

The following results can be found in [9]. i i
/ . 2{le)0E) = B {02
E[cos?0;(k)] ~ A (15) —(1- )\)E[d32N+2_ (k)]
E[sin0;(k)] ~ 1 — X (16) (24)
Mean Square Value ofe'” (k) (0) (1. 2 5N 2 2
here E = = ) . th
The following result was first dé?ilved in [10]. where {[eql Qly } Ti = Ox LinoWos T 0n 1S the

. variance of the reference signal amfl is the variance of the
(i) o [ 22 ' measurement noise (it is assumed here that the algorithm is
E{[ef) 0P} ~ o (1 (A7) aoofind ont-order Mentficat .
1+ A\ applied in a sufficient-order identification problem, i.e., the
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unknown FIR system has the same order as the adaptive fidalize thatE[auz?] + E[f3 ., ;(k + 1)] = Elauz}_|] +

ter). E[fiyi—1(k)]. Sincefyii(k + 1) = auw, it is easy to
Finally, from the last equation of the algorithm and asfigure out that[auz}] = E[f},,_;(k)]; then, the following

suming thate,, (k) and v(k) are uncorrelated, we haveexpression results.

Ele*(k)] ~ ANt E[e2 (k)]. Since from (24) and (23), as-

suming\ ~ 1, we have that[e? (k)] ~ o}, the following , ,
expression results. Elaua;i] = A'(1 - A) (28)
Ele2(k)] = AN+152 (25) For th_esecond versiorof this algorithm, since we use the
expressions fof;_; (k+1) andaux; to calculateZ[ 2 | (k+

1)]+ E[auz?], it is straightforward to show thd[auz? ;] —
E[f2 , (k+1)] = Elaua?) ~E[f2 (k)]. Sincefy.41(k+1) =

4. MEAN SQUARE VALUES OF auz 41, it follows thatE[auz?] = E[f?(k)]; therefore:

SPECIFIC VARIABLES OF EACH

ALGORITHM '
Elauz?] =~ A\NF17H1 = )) |, (29)
4.1 MEAN SQUARE VALUES OF INTERNAL
VARIABLES OF THE FQR POS B 4.2 MEAN SQUARE VALUES OF INTERNAL
ALGORITHM VARIABLES OF THE FQR PRI B
ALGORITHM

For this algorithm, from the derivation of (12), it can be ob- _ o
served that the last elementpfk + 1), given by ?0()k+1) , Fpr Fhe FQRPRIB algorithm, it is observed from the
, , C 7 lleg (k1)1 derivation of (13) that the last element@fk + 1) had been
was precalculated in a previous step. This fact leads to tWoa\iously calculated. This observation led to two slightly
slightly different versions of the same algorithm. The firS§jtterent versions of the same algorithm. The first version of

Opt}(iz bals)ed r?? tthris prior korl]qwfdged of ”:ﬁ Ia?t ?'irtrf‘emis algorithm is based on the prior knowledge of the last el-
0 + 1) while the second is based on the straightfor "¢\ 1) (or Et1) = 2Dy aod was
ward computation off (k + 1) and requires the calculation a(k +1) Orani(k+1) \/X\\eﬁf’)(k)\\)

of s (k+1) first presented in [4]. The second version of the FRRI B

€ (k+1)] ]algorithm is based on the straightforward computation of

The first version of this algorithm was introduced in [6 k + 1) according to (13) and requires the calculation of
and its detailed description is presented in Appendix A. Th%( +1) 9 q

e’ (k+1
secqnd versiop qf thi_s al_gorit_hm was in_troduced in [2] and itﬁf”(e f(k))” . . _ '
detailed description is given is Appendix B. The first version of the FQRPRI_B algorithm was intro-

For the infinite precision results of the FQROSB Algo-  duced in [4] and its detailed description is presented in Ap-
rithm, all variables have the same notation used in its detailpdndix C. The second version of this algorithm was intro-

description. duced in [3] and its detailed description is given is Appendix
Mean Square Value off; (k) D.

From the implementation of the step “Obtaini@g, (k + 1)” For the infinite precision results of the FQRRI_B Algo-

(see Table 4 and Appendix A or B) we obtain the followingithm, all variables have the same notation used in its detailed

expression. description.

- _ Mean Square Value ofa; (k)
Fyo—i(k+1) =" (k + 1)sin;_1(k+1)  (26) From the implementation of the step “Obtaini@y (k + 1)”

) . (see Table 5 and appendix C or D), we obtain the following
By taking the expected value of (26) squared and using t'%?pression.

approximations (16) and (22), we obtain the following ex-
pression. Aok +1) = D (k1)) = [V (k+1) 7 (30)

X Nl By taking the expected value of (30), using the approxima-
B[ff (k)] = ANTITH(1 = ) (27)  tion of (22), and employing the averaging principle [12, 13],
it is possible to obtain

Mean Square Value ofaux; E[a2(k)] ~ A~(NF2=0 (1 - )). (31)
The implementation of the step “Obtainifigk + 1)” can be
carried out in two different ways, as mentioned in the begir-his expression is also available in [11].
ning of this section. These implementations can be found inMean Square Value ofauz;
Appendixes A and B, respectively. The implementation of the step “Obtainingk + 1)” can

In the first version of this algorithm, since we take thebe carried out in two distinct ways, as also discussed in the
expressions foify2—;(k + 1) andauz; and use them to beginning of this section. These implementations are detailed
calculateE[f3 ., ;(k)] + Elaua?], it is straightforward to in Appendixes C and D, respectively.

5
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In the first version of this algorithm we use the expres-

sions foran yo; (k+1) andauz, to calculateE[a% . ,_, (k+ Table 3. Mean Square Values qf Internal Variables.
: : : N2 (* represents common variables)
1)] + Elauz?]. It is then straightforward to infer that . : :

5 5 9 9 | Simulation | Theoretical |
Elauz;]+ Elay »_;(k+1)] = Elauzi_ ]+ Elay ,_;(k)]. D % o0 (&
Sinceany1(k + 1) = auxy, it is possible to conclude that _ g, (k) . €1g, )72

5 9 . i=0  0.1001463 10 0.1000000 10
E[auxi] = Elaj,,_;(k)] leading—see (31)—to the follow- =1 0.0977555 10-2 0.0974359 10—2
ing result. =2 0.0954073 102 0.0949375 10~2

=3 0.0931882 102 0.0925032 102
) i=4  0.0909946 102 0.0901314 102
Elauz?] = A~ (1 - )) (32) =5 0.0888874 102 0.0878203 102
dfq2; (k) “dyg2, (k)
- - ) i=1  0.421465504 103 0.462212139 103
For thesecond versionof this algorithm we use the ex- i=2  0.438696191 10—3 0.474375616 10—3
pressions fou;_; (k + 1) andauz; to calculateE[a?_, (k + =3 0.443879956 1073 | 0.486859185 1072
2 ; 2 2 _ i=4  0.469505010 10~ 0.499671269 10~
D] + Elauz;]. - This leads toBauz; ] + Ela; (k)] = =5 0.477679154 10~3 0.512820513 10~3

Elauz?] + E[a? | (k + 1)]. Sincean 1 (k + 1) = auzn 1,

@) * ()
it is easy to conclude that[auz?] = Ela2(k)]; as a conse- ey () ey (&) I

) _ =0 0.020026731 0.02
guence, from (31), the following expression results. i1 0.019549052 0.019487179
i=2  0.019079547 0.018987508
) (N42-i) i=3  0.018635667 0.018500649
Elauzi] ~ A (1-2) (33) =4 0.018196971 0.018026273
i=5  0.017775505 0.017564061
7 (k) (k)
=0 1.001001001 1
i=1  0.953151588 0.95
=2 0.907438523 0.9025
5. SIMULATION RESULTS =3 0.863791227 0.857375
i=4  0.822138408 0.81450625
In this section we consider a system identification exam- =5 %212‘2)‘2/7199 }g~;713;839138 5
. . . ~ . aux; _BV. aux; _BV.1eq.
ple where .the mput sugnal |s_a}3 zero-mean random Ggusgan =0 0055149107 0059631579
proceS.S W|th Va”a.nceac A: 10—°, the meas-urem-ent nplse IS i=1  0.058259792 0.055401662
Gaussian with variance? = 10~ 7, the desired signal is ob- =2 0.061240975 0.058317539
tained through a fourth-order filter. In an ensembld @f0 =3 0.064403535 0.061386883
i=4  0.067740128 0.064617772

runs, each witt5000 samples, only the000 last output sam-
ples were used to calculate the mean square value. The cho-
senA was0.95.

The four algorithms were used in the simulation in ordegzed in infinite precision environment. These algorithms are
to compare the simulated with the theoretical results. Frogenerally good choices among the Fast RLS algorithms due
these results, Table 2 shows the total errors between the tfietheir low computational complexity and proved stability
oretical and simulated values for the non-common variableghen implemented with finite precision arithmetic.

This error was computed, for each algorithm, as the sum ofClosed-form formulae for the estimation of the mean
the absolute value of the difference between the simulatgguare values of the internal variables were obtained and the-
values (indB) and the theoretical values (ih3). As can oretical results were compared with computer simulations,
be seen from this table, the lowest error corresponds to thenfirming the accuracy of the analysis.
FQRPOSB Version 1 algorithm. This only means that we These expressions are keys for a proper implementation
can predict the mean squared values slightly better for thi$ these algorithms using fixed-point arithmetic processors,
algorithm than for the others. All detailed results are showgince the number of bits for each internal variable could be
in Table 3. As can be observed from this table, the predicte@termined by its estimated mean squared value. In addi-
mean square values for all internal variables are very closetten, they are required in the finite-precision analysis of the
their measured values. FQRPRLB and FQRPOSB algorithms which, so far, is not
available in the literature.

Continues on pp. 8

Table 2. Total error for non-common variables.

Algorithm Error
FORPRLB Version 1 | 2.3415281914 REFERENCES
FQRPRLB Version 2 | 2.5444828614
FQRPOSB Version 1 | 1.5464361322 [1] J. M. Cioffi, “The Fast Adaptive ROTOR’s RLS Algo-
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nal Processingvol. ASSP-38, pp. 631-653, Apr. 1990.
[2] P. A. Regalia and M. G. Bellanger, “On the Duality be-
6. CONCLUSIONS tween Fast QR Methods and Lattice Methods in Least
Squares Adaptive Filtering/EEE Transactions on Sig-
In this paper, four versions of Fast QR Decomposition al- nal Processingvol. SP-39, pp. 879-891, Apr. 1991.
gorithms based on backward prediction errors have been af@é}- M. D. Miranda and M. Gerken, “A Hybrid QR-Lattice
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Table 3. Mean Square Values of Internal Variables (Cont.).

| Simulation [

aur; PRI_BV.2

0.071272803
0.067740128
0.064403535
0.061240975
0.058259792
0.055449104
aux; POS_BV.2

Theoretical |

aux; PRI_BV.2 eq.(33)
0.068018707
0.064617772
0.061386883
0.058317539
0.055401662
0.052631579

auxr; POS_BV.2 eq.(29)

b wWNEFEO

i=0  0.037887263 0.038689047
i=1  0.039734548 0.040725313
=2 0.041652272 0.04286875
i=3  0.043648002 0.045125
i=4  0.045713712 0.0475
i=5  0.047849413 0.05
d(ﬂi (k) ¥ d(ﬂi (k)
i=0  0.000182101 0.000180263
i=1  0.000749849 0.000744770
i=2  0.000213413 0.000214218
i=3  0.015857762 0.015814596
i=4  0.000616829 0.000646154
ef) (k+1) “ el (k+ 1)
i=0  0.881162016 10~ > 0.8810 7
i=1  0.850300906 10—3 0.847692308 10—3
i=2  0.057352799 103 0.056962525 103
i=3  0.046681956 103 0.046251623 103
i=4  0.009183574 103 0.009013137 10~3
i=5  0.000077200 0
cost’; (k) * cost (k)
i=0 0.977811931 0.974358974
i=1  0.977604023 0.974358974
i=2  0.978317517 0.974358974
i=3  0.978072023 0.974358974
i=4  0.978399190 0.974358974
sind; (k) * sind (k)
i=0  0.023189070 0.025641026
i=1  0.023396978 0.025641026
i=2  0.022683484 0.025641026
i=3  0.022928978 0.025641026
i=4  0.022601811 0.025641026

a;(k)PRI_B
0.071273163
0.067741817
0.064404320
0.061240011
0.058259075
0.055449104

fi(k)yPOS_B

ai(k)PRI_B eq.(31)
0.068018707
0.064617772
0.061386883
0.058317539
0.055401662
0.052631579

7:(k)POS_B eq.(27)

T
AR WNPFO

i=0  0.037887517 0.038689047
i=1  0.039735609 0.040725313
i=2  0.041652819 0.04286875
i=3  0.043647296 0.045125
i=4  0.045713065 0.0475
i=5  0.047849413 0.05
aux; POS_BV.1 auzr; POS_BV.1 eq.(28)
i=0  0.047849413 0.0475
i=1  0.045713712 0.045125
i=2  0.043648002 0.04286875
i=3  0.041652272 0.040725313
i=4  0.039734548 0.038689047
cost;(k) * cos;(k)
0.953151588 0.95
sinb; (k) * sinb; (k)
0.047849413 0.05
e(k) *e(k)
6.0910°° 7.74107°

Table 4. The FQRPOSB equations.

FQR_POSB

for eachk
{ 1. Obtainingdy,, (k +1):
efa(k+1) | _ z(k+1)
e [=em | LG
2. Obtaining|| es(k + 1) ||:
les(k+1) [I= \/E?ql (k+1) +Alles(k) [
3. ObtainingQy ; (k +1):

0 - dyor (k+1)
e+ 1) ] = Qos(k+1) { lerti+1) |

4. Obtainingf(k + 1):
- [ ok +1) R

b (k =Qy;(k+1 ey (k+1)
| flk+1) " e GFDT
5. ObtainingQ, (k + 1):

1] 7 ~v(k +1)

6. Joint Process Estimation:

(e (k+1) ] d(k+1)
| dik+1) | T PEFD| g,
7. Updating the output error:
e(k+1)=eq (k+1)y(k+1)

|

Table 5. The FQRPRI_B equations.

FQR-PRI_B

for eachk
{ 1. Obtainingdy,, (k +1):
z(k+1) ]

efa(k+1) | _
[ d];% (k+1) :| B Qe(k) [ )‘I/Qdftm (k)
2. Obtaininga(k + 1):
k
el ]

_eb (kD)
Ales, ol | = Qg (k)

a(k+1) VAR
3. Obtaining|| es(k + 1) ||:
les(k+1) = \/eiql (k+1)+ Xl esk) I
4. Obtaining@y ;(k + 1):

0 , dy (k' + 1)
= E+1 2
e (k+1) | ] o ){ les(k+1) I
5. Obtaining@, (k + 1):
[ 1/vk+1) | _ 1
Lo =@+ D] gkt
6. Joint Process Estimation:
(e (k+1) ] d(k+1)
D | = |
7. Updating the output error:
e(k+1)=eq (k+1)y(k+1)
}

|
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Appendix A: The Detailed FQR_POS B Version 1 Algorithm

FQR_POSB - Version 1 [6]

Initialization:
e = small positive value;
les(k) ||I= &
dsqo(k) = zeros(N + 1,1);
dgo (k) = zeros(V + 1, 1);
cosB(k) = ones(N + 1,1);
sin@(k) = zeros(N + 1,1);
f(k) = zeros(N + 1,1);
fork=1,2,...
{ e (k+1)=a(k+1);
fori=1:N+1
{ ¥ (k+1) = costir (k)eli, (ke + 1) — sinfi—1 ()X ?dgg2y o, (K);
dfor gami(k+1) = sinbi1(k)efy, V) (k+1) +cosbis ()N a2y, (R):

efqr (k+1) =iV (k +1);

I es(k+1) ||I= mn (k+1) + X ef(k) |17

ek +1) 1=l er(k+1) II;

fortr=1: N+1

{100+ 1) 1= /Il 20k + 1) |12+, (k + 1);
costly (k1) = N0 4 DI/ Ney™ k4 1) )
sine’fN+17i(k+1) dfqz (k+1)/ | e; i (k+1)|;

}

auzo = z(k+1)/ || e(o)(k +1) II;

fN+1(k + 1) = auxo,

fortr=1: N

fN+2,i(k)—sin9}i71 (k+)aua;_1
{ fvyi—i(k+1) = cost_ (T D) ;

aur; = —sinby,_ (k+1)fxr1-i(k+ 1)+ cosb},_ (k+ L)aux; 1;

YOk +1) =1;
fori=1:N+1
{ sinfi1(k+1) = fyre-i(k+1)//" V(k+1);
cosfi—1(k + 1) = /1 —sin?0;_1(k + 1);
YO (k+1) = costi_1(k + 1)y (k +1);
}
vk +1) =yF (k4 1);
e (k+1) =d(k +1);
fori=1:N+1
{ e (k+1) = costimr(k + el (k+1) — sinbi—1 (k + )N 2dgay,, (k)
dyzn o i (b +1) = sinf;1 (k + e, (k +1) + cosfi1 (k + DA 2dyay 5, (k);

eq (k+1) = el ™ (k +1);
e(k+1)=eq (k+1)y(k+1);
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Appendix B: The Detailed FQR.POSB Version 2 Algorithm

10

FQR_POSB — Version 2 [2]

Initialization:
e = small positive value;
| er(F) ll=e
dyrg2(k) = zeros(N + 1,1);
dg2 (k) = zeros(N +1,1);
cosO(k) = ones(N + 1,1);
sin@(k) = zeros(N + 1, 1);
f(k) = zeros(N + 1, 1);
fork=1,2,...
{ e (k+1)=a(k+1);
forz =1:N+1
{ el (k+1) = costy 1 (k)el ) (k + 1) — sinb 1 (k)N 2dggny o, (K);
dmm_i (k +1) = sinfli_y (k)eli, ) (k +1) + costl1 ()N 2dpga ., (R);

efp(k+1)= eSfZH)(k +1);
ler(k+1) [I= \/efql(k+ D+ Xl es(k) [1%

N .
ek +1) ||=ll ek +1) ||
forz =1:N+1

{ lle} (N+1—i) (k+1)||= \/H (N+2— z) (k+1) |12 +dfq2 (k+1);

cose;w (k+1) =] e“V“ e+ 1/ 11k + 1) Il
sinfl (k+1) = Ay (k+ 1)/ | eV 4+ 1) ||
aupy = LEern bt

lles(k+1)[

fori=1: N+1

{ fisr(k+1) =costy, . (k+1)fi(k) —sinby ,  (k+1)auz;_i;
aux; = sinb’

Ty (B + 1)f (k) +cosby, . (k+ l)aua:l_l,

ep(k+1
ey = fo(k +1);

Inii(k+1) = auzyyg;

YO (k+1) =1;

fori=1: N+1

{ sm@z_l(k + 1) = fN+2—i(k + 1)/’)/(1_1)(16 + 1),
costi_1(k + 1) = /1 — sin6;_1 (k + 1);
YO (k+1) = cost;_1 (k + 1)y D (k +1);

vk +1) = yNHD (k4 1);

ek +1) = d(k +1);

fori=1: N+1

{ el (k+1) = cosby_1(k+ 1)l (k+1) — sinb;_1(k + DAY 2dgy,, (k)
Ayon oo (k+1) = sinfi_y (k + 1)els ™ (k + 1) + cosbi_1 (k + 1)\ 2dyay ., (K);

e (k+1) = eq]1V+1 (k +1);
e(k+1)=eq(k+1)y(k+1);
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Appendix C: The Detailed FQR PRI_B Version 1 Algorithm

FQR_PRI_B — Version 1 [4]

Initialization:
e = small positive value;
el (k) lI=
les(k) =€
dygo (k) = zeros(N + 1,1);
dg2 (k) = zeros(V + 1, 1);
cos@(k) = onesN + 1, 1);
cosfs (k) = ones(V + 1, 1);
sin@(k) = zeros(N + 1, 1);
sin@'y (k) = zerosV + 1,1);
a(k) = zeros(N + 1, 1);
fork=1,2,...
{ e (k+1)=a(k+1);
fori=1:N+1
{ ef), (k+1) = cosbiy (K)efy ) (k + 1) = sinbiy ()N 2dpgon o (R);

dfq2N+2—i(k + 1) = Sinalfl( ) (Z 1) (k + 1) + cost); 1( ))‘1/2dfq2N+2—i(k);

}

N+1
erg(k+1) = eE‘Q1+ )(k +1);
auzn — z(k+1)

0

IRSR G
an+1(k + 1) = auxo;

fori=1:N
a _i(k)—sinb’s. k)auz;_
{ anp1i(k+1) = —2 ( )coso',,ff?kl)( ) =
auz; = —sinfly_ (k)anyi—i(k + 1) + costy,_ (k)auw;_1;
}

| es(k+1) = \/e?«ql(lﬁ D+ Al er(k) (1%
| e N“ Yk +1) [|=l ef(k+1) I
forz =1:N+1

{1 0Ek+1) 1= Il 0k + 1) |2+, (K + 1)

cos%ﬂ <k+1>—|| (- Y+ 1)1/ 11eN "k +1)
sinfly, _(k+1) = dm (k+1)/ || efN ™ ”(k +1) |;

1/7(0)(k +1)=1;

fori=1:N+1

{ 1700k +1) = \[I/7E Dk + DP + %y (b +1);
cosfi_1(k+1) = %;
sinf;_(k+1) = aff:,? )l(i—lf:_l;),

}(k +1) =1/[1/yW I (k + 1)];

ek +1) =d(k +1);

fori=1:N+1

{ ek +1) = cosbi_y (k + 1)eli™ (k + 1) — sinf_y (k + DAY 2dysy ., (k)
Ayon oo (k+ 1) = sinfi_y (k + 1)el " (k + 1) + cosbi_1 (k + 1)\ 2dyoy ., (K);

e (k+1) = eq]1V+1 (k +1);
e(k+1)=eq(k+1)y(k+1);

11
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Appendix D: The Detailed FQR PRI _B Version 2 Algorithm

FQR_PRI_B — Version 2 [3]

Initialization:
e = small positive value;

e (®) 1= e

| es (k) [|= e
dygo (k) = zeros(N + 1,1);
dg2 (k) = zeros(N + 1, 1);
cosO(k) = ones(NV + 1,1);
cos8's (k) = ones(V + 1,1);
sin@(k) = zeros(N + 1, 1);
sin@'y (k) = zerosV + 1,1);
a(k) = zeros(N + 1,1);
fork=1,2,...
{ e (k+1)=a(k+1);
fori=1: N+1
{ ef), (k+1) = cosbiy (K)efy ") (k + 1) — sinfi1 ()N 2dpgon o (R);
dfqrn s (b +1) = vintl 1 (k el + 1) + costi 1 (k)N 2dpgay ,, ();

}

erqu (k1) = ey " (k4 1);
— _ erq (kD) .

uTo = SyxiEe; (R

fori=1:N+1

{ aii(k+1) =costy  _ (k)ai(k) —sinb _ (k)auzi_y;
auz; = sinby . (k)a (k)+cost9fN+1 (k)auxl 1;

}
ey (k+1) _ .

stTe = ok +1);

ant1(k+1) = auxniq;
| es(k+1) = \/eiql(kﬂL D+ Al er(k) (1%

N .
ek +1) ||=ll ek +1) ||
forz =1:N+1

{12k +1) =/ €20 +1) |2+, (6 + 1)

costly . (k+1)=| e<N+2 Y+ 1)1/ 11Nk +1) 1
sinby,,,_(k+1) = dm (k+1)/ || e ’)<k+1> I

}
1/yOk+1) =1,
fori=1: N+1

{ 1700k +1) = /70D (ke + DP + adop (k +1);

(i—1)(p.
costli 1(k +1) = %’

sindion (k-4 1) = St

vk +1) = 1/[1/y N (k +1)];

e (k+1) =d(k +1);

fori=1:N+1

{ el (k+1) = cosb; 1 (k+ 1)l (k+1) — sinb;_1(k + DAY 2dgy,, (k)
Ayon o (k 4+ 1) = sinfli_1 (k + Vel (k + 1) + cosBi_s (k + V)AY 2d oy, ();

e (k+1) = eq]1v+1 (k+1);
e(k+1)=eq(k+ 1)v(k+1);
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