A UNIFIED FRAMEWORK FOR MULTICHANNEL FAST QRD-LS ADAPTIVE FILTERS BASED ON BACKWARD PREDICTION ERRORS César A. Medina S.*, José A. Apolinário Jr.†, and Marcio G. Siqueira IME – Department of Electrical Engineering Praça General Tibúrcio, 80 – Urca Rio de Janeiro, RJ 22290-270 Brazil csmedina@epq.ime.eb.br,apolin@ieee.org and mqs@ieee.org #### **ABSTRACT** Fast QR decomposition algorithms based on backward prediction errors are well known for their good numerical behavior and their low complexity when compared to similar algorithms with forward error update. Their application to multiple channel input signals generates more complex equations although the basic matrix expressions are similar. This paper presents a unified framework for a family of multichannel fast QRD-LS algorithms. This family comprises four algorithms — two basic algorithms with two different versions each. These algorithms are detailed in this work. #### 1. INTRODUCTION Digital processing of multichannel signals using adaptive filters has recently found a variety of new applications [1] such as color image processing, multi-spectral remote sensing imagery, biomedicine, channel equalization, stereophonic echo cancellation, multidimensional signal processing, Volterra-type nonlinear system identification, and speech enhancement. This increased number of applications has spawned a renewed interest in efficient multichannel algorithms. One class of algorithms, known as multichannel fast QR decomposition least-squares adaptive algorithms based on backward error updating, has become an attractive option because of fast convergence properties and reduced computational complexity. In the case of one single channel, a unified formulation for Fast QRD-LS algorithms is available in [2]. In this paper, the basic algorithm proposed in [3] is studied and a new formulation is developed for the family of multichannel fast QRD algorithm based on backward errors. This paper is organized as follows. Is Section 2 we present the matrix equations for the Multichannel Fast QRD-LS algorithm based on a priori backward error updating, named MC FQR-PRI.B. Section 3 addresses the MC FQR-POS.B (a posteriori backward errors updating). In Section 4 we present two different versions for each algorithm and, among them, two algorithms that hadn't been proposed before. Section 5 shows computer simulations with one of the proposed algorithms. Conclusions are summarized in Section 6. [†]Supported by the FAPERJ from Brazil (grant no. E-26/171.307/2001) #### 2. THE MULTICHANNEL FOR PRI B ALGORITHM In this work N is defined as the number of filter coefficients and M is the number of input channels. The objective function to be minimized according to the least-squares (LS) algorithm is defined as $$\xi_{LS}(k) = \sum_{i=0}^{k} \lambda^{k-i} e^{2}(i) = e^{T}(k)e(k)$$ (1) where $e(k) = \begin{bmatrix} e(k) & \lambda^{1/2}e(k-1) & \cdots & \lambda^{k/2}e(0) \end{bmatrix}^T$ is an error vector and may be represented as follows. $$e(k) = \begin{bmatrix} d(k) \\ \lambda^{1/2}d(k-1) \\ \vdots \\ \lambda^{k/2}d(0) \end{bmatrix} - \begin{bmatrix} \mathbf{x}_N^T(k) \\ \lambda^{1/2}\mathbf{x}_N^T(k-1) \\ \vdots \\ \lambda^{k/2}\mathbf{x}_N^T(0) \end{bmatrix} \mathbf{W}_N^T(k)$$ $$= \mathbf{d}(k) - \mathbf{X}_N(k)\mathbf{W}_N(k)$$ (2) and $$\boldsymbol{x}_{N}^{T}(\boldsymbol{k}) = \begin{bmatrix} \boldsymbol{x}_{k}^{T} & \boldsymbol{x}_{k-1}^{T} & \cdots & \boldsymbol{x}_{k-N+1}^{T} \end{bmatrix}$$ (3) where $x_k^T = [x_1(k) \ x_2(k) \ \cdots \ x_M(k)]$ is the input vector at time instant k If we have $U_N(k)$ as the Cholesky factor of $X_N(k)$, obtained through Givens rotation matrix $Q_N(k)$, then $$e_{q}(k) = Q_{N}(k)e(k) = \begin{bmatrix} e_{q1}(k) \\ e_{q2}(k) \end{bmatrix}$$ $$= \begin{bmatrix} d_{q1}(k) \\ d_{q2}(k) \end{bmatrix} - \begin{bmatrix} 0 \\ U_{N}(K) \end{bmatrix} W_{N}(k)$$ (4) Assuming the use of forward prediction, we define the matrix $X_{N+1}(k)$ as follows. $$X_{N+1}(k) = \begin{bmatrix} d_f(k) & X_N(k-1) \\ 0^T & 0 \end{bmatrix}$$ (5) where $d_f(k) = [x_k \quad \lambda^{1/2}x_{k-1} \cdots \lambda^{k/2}x_0]^T$ is the $(k+1) \times M$ forward reference signal. ^{*}This work was partially supported by CAPES, Brazil. $U_{N+1}(k)$ can be obtained by applying Givens rotations to (5) as follows $$\begin{bmatrix} Q(k-1) & 0 \\ 0 & I_{MxM} \end{bmatrix} \begin{bmatrix} d_f(k) & X_N(k-1) \\ 0_{(M-1)x(MN+M)} \end{bmatrix} = \begin{bmatrix} e_{fq1}(k) & 0 \\ d_{fq2} & U_N(k-1) \\ \lambda^{1/2}x_0^T & 0 \\ 0_{(M-1)x(MN+M)} \end{bmatrix}$$ (6) It is possible to premultiply (6) by a series of Givens rotations $Q_f(k)$ and $Q'_f(k)$ that zeroes its first k-MN rows and performs a triangularization process. The resulting *null* section can be removed as shown below $$U_{N+1}(k) = Q'_{\theta f}(k) \begin{bmatrix} d_{fq2}(k) & U_N(k-1) \\ E_f(k) & 0 \end{bmatrix}$$ (7) where $Q_{\theta f}'(k)$ are rotation matrices that perform the triangularization process. Based upon the above equation it is possible to obtain $$\left[u_{N+1}(k)\right]^{-1} = \left[\begin{array}{cc} 0 & E_f^{-1}(k) \\ u_N^{-1}(k-1) & -u_N^{-1}(k-1)d_{f/2}(k)E_f^{-1}(k) \end{array}\right] Q'_{\theta f}^T(k) \ (8)$$ and $$\begin{bmatrix} \mathbf{0} \\ \mathbf{E}_{f}^{0}(k) \end{bmatrix} = \mathbf{Q}_{\theta f}^{\prime}(k) \begin{bmatrix} \mathbf{d}_{fq^{2}}(k) \\ \mathbf{E}_{f}(k) \end{bmatrix}$$ (9) where $E_f^0(k)$ corresponds to the zero order forward error covariance matrix. In the MC FQR_PRI_B algorithm, the a priori backward prediction error vector is updated as follows [4]. $$a_N(k) = \lambda^{1/2} U_N^{-T}(k-1) x_N(k)$$ (10) From the definition above and (8) it is possible to obtain $$\boldsymbol{a}_{N+1}(k+1) = \boldsymbol{Q}_{\theta_f}'(k) \begin{bmatrix} \boldsymbol{a}_N(k) \\ \boldsymbol{r}(k+1) \end{bmatrix}$$ (11) where $$r(k+1) = \lambda^{1/2} E_f^{-T}(k) \tilde{e}_f'(k+1)$$ (12) and [4] $$\widetilde{e}_f'(k+1) = \gamma(k)\widetilde{e}_{fq1}(k+1) \tag{13}$$ where $\tilde{e}_{fq1}(k+1)$ is obtained as follows. Algebraic manipulations based on the Givens rotations applied to (6), generate the following equation using the fixed order matrix $Q_{\theta}(k)$. $$\begin{bmatrix} \tilde{\boldsymbol{e}}_{fq1}^T(k+1) \\ \boldsymbol{d}_{fq2}^T(k+1) \end{bmatrix} = \boldsymbol{Q}_{\boldsymbol{\theta}}(k) \begin{bmatrix} \boldsymbol{x}_{k+1}^T \\ \boldsymbol{\lambda}^{1/2} \boldsymbol{d}_{fq2}(k) \end{bmatrix}$$ (14) Similarly, it is possible to obtain $$\begin{bmatrix} \mathbf{0}^{\mathrm{T}} \\ \mathbf{E}_{f}(k+1) \end{bmatrix} = \overline{\mathbf{Q}}_{f}(k+1) \begin{bmatrix} \widetilde{e}_{fq1}^{T}(k+1) \\ \lambda^{1/2} \mathbf{E}_{f}(k) \end{bmatrix}$$ (15) The following equation is used to update $Q_{\theta}(k+1)$: $$\begin{bmatrix} 1/\gamma(k+1) \\ 0 \end{bmatrix} = Q_{\theta}(k+1) \begin{bmatrix} 1 \\ -\alpha(k+1) \end{bmatrix}$$ (16) Finally, the joint process estimation is performed by the following expressions [1] $$\begin{bmatrix} e_{q1}(k+1) \\ d_{q2}(k+1) \end{bmatrix} = Q_{\theta}(k+1) \begin{bmatrix} d(k+1) \\ \lambda^{1/2} d_{q2}(k) \end{bmatrix}$$ (17) $$e'(k) = e_{q1}(k)/\gamma(k) = e(k)/\gamma^2(k)$$ (18) Equation (12) requires a matrix inversion operation which can be numerically unstable. In order to avoid stability problems we can use [3] $$\begin{bmatrix} * \\ 0 \end{bmatrix} = \overline{Q}_f(k+1) \begin{bmatrix} 1/\gamma(k+1) \\ -r(k+1) \end{bmatrix}$$ (19) The resulting equations are summarized in Table 1. Table 1: The Multichannel FOR_PRI_B Equations | Table 1. The Multichannel 1 QK3 K135 Equations. | |--| | MC FQR.PRLB | | 1. Obtaining $d_{fq2}(k+1)$ | | $\left[\begin{array}{c} \widetilde{\boldsymbol{e}}_{fq1}^T(k+1) \\ \boldsymbol{d}_{fq2}(k+1) \end{array}\right] = \boldsymbol{Q}_{\boldsymbol{\theta}}(k) \left[\begin{array}{c} \boldsymbol{x}_{k+1}^T \\ \lambda^{1/2} \boldsymbol{d}_{fq2}(k) \end{array}\right]$ | | 2. Obtaining $E_f(k+1)$ | | $\begin{bmatrix} 0^{\mathrm{T}} \\ E_f(k+1) \end{bmatrix} = \overline{Q}_f(k+1) \begin{bmatrix} \widetilde{\mathbf{e}}_{fq1}^T(k+1) \\ \lambda^{1/2} E_f(k) \end{bmatrix}$ | | 3. Obtaining $a_N(k+1)$ | | $oldsymbol{a_{N+1}}(k+1) = oldsymbol{Q_{ heta f}'}(k) \left[egin{array}{c} oldsymbol{a_N(k)} \\ oldsymbol{r(k+1)} \end{array} ight]$ | | 4. Obtaining $Q'_{\theta f}(k+1)$ | | $\begin{bmatrix} 0 \\ \mathbf{E}_{f}^{0}(k+1) \end{bmatrix} = \mathbf{Q}_{\theta f}^{\prime}(k+1) \begin{bmatrix} \mathbf{d}_{fq2}(k+1) \\ \mathbf{E}_{f}(k+1) \end{bmatrix}$ | | 5. Obtaining $Q_{\theta}(k+1)$ | | $\left[\begin{array}{c} 1/\gamma(k+1) \\ 0 \end{array}\right] = \boldsymbol{Q}_{\boldsymbol{\theta}}(k+1) \left[\begin{array}{c} 1 \\ -\boldsymbol{a}(k+1) \end{array}\right]$ | | 6. Joint Estimation | | $\begin{bmatrix} e_{q1}(k+1) \\ d_{q2}(k+1) \end{bmatrix} = Q_{\theta}(k+1) \begin{bmatrix} d(k+1) \\ \lambda^{1/2} d_{q2}(k) \end{bmatrix}$ | | 7. Obtaining the a priori error | | $e'(k+1) = e_{q1}(k+1)/\gamma(k+1)$ | ## 3. THE MULTICHANNEL FQR_POS_B ALGORITHM To derive equations for this algorithm, we update the *a posterior* backward prediction errors vector as in [4] $$\mathbf{f}_{n+1}(k+1) = \mathbf{U}_{N+1}^{-T}(k+1)\mathbf{X}_{N+1}(k+1) \tag{20}$$ From (8) and the expression above, we obtain $$\boldsymbol{f}_{N+1}(k+1) = \boldsymbol{Q}_{\theta f}'(k+1) \begin{bmatrix} \boldsymbol{f}_{N}(k) \\ \boldsymbol{p}(k+1) \end{bmatrix}$$ (21) where $$p(k+1) = E_f^{-T}(k+1)\tilde{e}_f(k+1)$$ (22) Also from [4], we have the following expression, similar to its single dimension counterpart. $$\mathbf{Q}_{\theta}(k+1) \begin{bmatrix} 1 \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \gamma(k+1) \\ f_{N}(k+1) \end{bmatrix}$$ (23) All other equations are taken from Section 2; the complete algorithm is summarized in Table 2. Table 2: The Multichannel FQR_POS_B Equations. $$\begin{array}{c} \mathbf{MC} \, \mathbf{FQR} \, \mathbf{POS} \, \mathbf{B} \\ \hline 1. \, \mathrm{Obtaining} \, d_{fq^2}(k+1) \\ \left[\begin{array}{c} \widetilde{e}_{fq^1}^T(k+1) \\ d_{fq^2}(k+1) \end{array}\right] = \boldsymbol{Q}_{\theta}(k) \left[\begin{array}{c} \boldsymbol{x}_{k+1}^T \\ \lambda^{1/2} d_{fq^2}(k) \end{array}\right] \\ 2. \, \mathrm{Obtaining} \, \boldsymbol{E}_f(k+1) \\ \left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{E}_f(k+1) \end{array}\right] = \overline{\boldsymbol{Q}}_f(k+1) \left[\begin{array}{c} \widetilde{e}_{fq^1}^T(k+1) \\ \lambda^{1/2} \boldsymbol{E}_f(k) \end{array}\right] \\ 3. \, \mathrm{Obtaining} \, \boldsymbol{Q}_{\theta}^T(k+1) \\ \left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{E}_f^0(k+1) \end{array}\right] = \boldsymbol{Q}_{\theta}^T(k+1) \left[\begin{array}{c} d_{fq^2}(k+1) \\ \boldsymbol{E}_f(k+1) \end{array}\right] \\ 4. \, \mathrm{Obtaining} \, \boldsymbol{f}_N(k+1) \\ f_{N+1}(k+1) = \boldsymbol{Q}_{\theta}^T(k+1) \left[\begin{array}{c} \boldsymbol{f}_N(k) \\ \boldsymbol{p}(k+1) \end{array}\right] \\ 5. \, \mathrm{Obtaining} \, \boldsymbol{Q}_{\theta}(k+1) \\ \boldsymbol{Q}_{\theta}(k+1) \left[\begin{array}{c} 1 \\ 0 \end{array}\right] = \left[\begin{array}{c} \gamma(k+1) \\ \boldsymbol{f}_N(k+1) \end{array}\right] \\ \boldsymbol{Q}_{\theta}(k+1) \left[\begin{array}{c} 1 \\ 0 \end{array}\right] = \left[\begin{array}{c} \gamma(k+1) \\ \boldsymbol{f}_N(k+1) \end{array}\right] \\ 6. \, \mathrm{Joint} \, \mathrm{Estimation} \\ \left[\begin{array}{c} \boldsymbol{e}_{q^1}(k+1) \\ d_{q^2}(k+1) \end{array}\right] = \boldsymbol{Q}_{\theta}(k+1) \left[\begin{array}{c} d(k+1) \\ \lambda^{1/2} d_{q^2}(k) \end{array}\right] \\ 7. \, \mathrm{Obtaining} \, \mathrm{the} \, a \, priori \, \mathrm{error} \\ \boldsymbol{e}^T(k+1) = \boldsymbol{e}_{q^1}(k+1)/\gamma(k+1) \end{array}$$ #### 4. THE DIFFERENT VERSIONS The different versions presented in this section are based on the implementation of a particular matrix equation. For both algorithms we have a matrix equation with the following structure (step 3 and 4 in Tables 1 and 2, respectively) $$\boldsymbol{u}(k+1) = \boldsymbol{Q}'_{\theta f}(k+1) \left[\begin{array}{c} \boldsymbol{v}(k) \\ \beta(k+1) \end{array} \right]$$ (24) where $\beta(k+1)$ is a vector of order M, and is updated without using any prior knowledge of any element of u(k+1). For the first version of each algorithm, we assume that the inverse of $Q'_{\theta f}(k+1)$ corresponds to $Q'_{\theta f}^T(k+1)$. Therefore, it is possible to show that $$\begin{bmatrix} v_{1}(k+1) \\ \vdots \\ v_{N}(k+1) \\ \beta(k+1) \end{bmatrix} = \begin{bmatrix} I_{j} & 0 & 0 & 0 & 0 \\ 0 & \cos^{j}\theta M_{j+s+1} & 0 & \sin^{j}\theta M_{j+s+1} & 0 \\ 0 & 0 & I_{MN+M-j-s-2} & 0 & \cos^{j}\theta M_{j+s+1} & 0 \\ 0 & -\sin^{j}\theta M_{j+s+1} & 0 & \cos^{j}\theta M_{j+s+1} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} u_{0}(k+1) \\ u_{1}(k+1) \\ \vdots \\ u_{N}(k+1) \end{bmatrix}$$ $$\times \begin{bmatrix} u_{0}(k+1) \\ u_{1}(k+1) \\ \vdots \\ u_{N}(k+1) \end{bmatrix}$$ (25) where L1 is from j = 0 to MN - 1 and L2 is from s = 0 to M - 1. It is possible to update v(k) based upon u(k+1) if $u_{N+1}(k+1)$ is previously known. For the second version of this algorithm, equation (11) is used directly. The resulting operations are shown below $$\begin{bmatrix} u_0(k+1) \\ u_1(k+1) \\ \vdots \\ u_N(k+1) \end{bmatrix} = \begin{bmatrix} I_j & 0 & 0 & 0 & 0 \\ 0 & \cos'_{\theta Mj+s+1} & 0 & 0 & 0 \\ 0 & 0 & I_{MN+M-j-s-2} & 0 & 0 & 0 \\ 0 & \sin'_{\theta Mj+s+1} & 0 & 0 & \cos'_{\theta Mj+s+1} & 0 \\ 0 & 0 & \sin'_{\theta Mj+s+1} & 0 & 0 & \cos'_{\theta Mj+s+1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$ $$\times \begin{bmatrix} v_1(k+1) \\ \vdots \\ v_N(k+1) \\ \vdots \\ \vdots \\ v_N(k+1) \end{bmatrix}$$ (26) where L3 is from j = MN - 1 to 0 and L4 is from s = M - 1 to 0. ## 4.1. The Multichannel FQR_PRI_B: Versions 1 and 2 When equation (11) was derived, the last element of $a_N(k+1)$ was known before its updating process. It is known that this element is equal to $\lambda^{-1/2} \left[E_I^0(k) \right]^{-T} x_{k+1}$. This property is used in MC FQR_PRI_B_1, which is the first algorithm version introduced in this paper. Table 3 shows pseudo code for MC FQR_PRI_B step 3 using Matlab[©] (Obtaining $a_N(k+1)$). Table 3: The MC FQR_PRI_B: Version 1. The second version of the MC FQR_PRLB algorithm is based on the direct computation of $\alpha_N(k+1)$ according to the matrix equation. This version was introduced in [3] and the corresponding implementation is presented in Table 4. #### 4.2. The Multichannel FQR_POS_B: Versions 1 and 2 When (21) was derived, the last element of $f_N(k+1)$ was known prior to its updating process and was equal to $\left[E_f^0(k+1)\right]^{-T}x_{k+1}$. This property generates the first algorithm version known as the MC FQR_POS_B_1. Table 5 presents the implementation of its step 4 (Obtaining $f_N(k+1)$). The second version of the Multichannel FQR_POS_B algorithm is based on the direct computation of $f_N(k+1)$ according to the matrix equation. This version was introduced in [5] and its implementation is presented in Table 6. ### Table 4: The MC FQR_PRI_B: Version 2. ``` for j = 1:N for i = 1:M for s = 1:M temp1 = a (M*j + i); temp2 = r(M - s + 1); a (M*(j - 1) + i) = temp1 ... *cos.p (M*(j - 1) + i, s) ... - temp2*sin.p (M*(j - 1) + i, s); a (M*j + i) = a (M*(j - 1) + i); r (M - s + 1) = temp1 ... *sin.p (M*(j - 1) + i, s) ... + temp2*cos.p (M*(j - 1) + i, s); end end end end a (M*N + 1:M*N + M) = r; ... ``` #### Table 5: The MC FQR_POS_B: Version 1. ``` i. aux = inv(Ef_0)' * x(k+1,:)'; tempf = f; f(M*(N-1)+1:L) = aux; for j = 1:N-1 for s = 1:M for s = 1:M f(M*(N-j)-i+1) = (tempf(M*(N-j+1)-i+1)... - aux(M-s+1)*sinp(M*(N-j+1)-i+1,s)} ... / cos_p(M*(N-j+1)-i+1,s); tempf(M*(N-j+1)-i+1) = f(M*(N-j)-i+1); aux(M-s+1) = -f(M*(N-j)-i+1)... * sin_p(M*(N-j+1)-i+1,s) ... + aux(M-s+1) * cos_p(M*(N-j+1)-i+1,s); end end end : ``` ## 5. SIMULATIONS This section presents simulation results of the Multichannel FQR_POS_B algorithm version 1. The algorithm was used in a system identification problem with M=5 channels, each one with N=10 coefficients. The input signal to each channel was colored noise with eigenvalue spread equal to 350 and observed noise with variance corresponding to -40dB. The forgetting factor was set to $\lambda=0.95$. Fig. 1 presents the MSE (in dB) over an ensemble of 20 independent runs. It is worth noting that all other versions present identical learning curves in infinite precision. # 6. CONCLUSIONS This paper presents a unified framework for Multichannel FQR algorithms based on backward error updating. Different algorithms were derived using the same notation, therefore highlighting their similarities and differences. \(^1\) Alternative and more efficient forms Table 6: The MC FQR_POS_B: Version 2. Figure 1: Learning Curve of the MC FQR_POS_B, Version 1. — such as the MC FQR_PRI_B_2 algorithm in [3] — are currently under investigation. # 7. REFERENCES - N. Kalouptsidis and S. Theodoridis, "Adaptive Systems Identification and Signal Processing Algorithms," Englewood Cliffs, NJ: Prentice Hall, 1993. - [2] J. A. Apolinário Jr., M. G. Siqueira, and P. S. R. Diniz, "On Fast QR Algorithms Based on Backward Prediction errors: New Results and Comparisons," in Proc. First Balkan Conf. on Signal Process., Commun., Circuits, and Systems, Istanbul, Turkey, June 2000. - [3] A. A. Rontogiannis and S. Theodoridis, "Multichannel Fast QRD-LS Adaptive Filtering: New Technique and Algorithms," *IEEE Transactions on Signal Processing*, vol. 46, No. 11, Nov. 1998. - [4] J. A. Apolinário Jr., New Algorithms of Adaptive Filtering: LMS with Data-Reusing and Fast RLS Based on QR Decomposition, D.Sc. Thesis, COPPE/UFRJ, Rio de Janeiro, RJ, Brazil, 1998. - [5] M. G. Bellanger and P. A. Regalia, "The FLS-QR algorithm for adaptive filtering: The case of multichannel signal," Signal Process. vol. 22, pp. 115-126, 1991. ¹An extended paper with detailed descriptions of the algorithms and Matlab[®] codes, are available for downloading via internet at the web page http://www.ime.eb.br/~apolin