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Abstract— This paper introduces a novel voiced/unvoiced clas-
sification of speech signal for short time frames, sica8ms, which
do not encompass more than one pitch period. The classification
scheme takes into account not only usual features related tothe
speech frame like its energy and its normalized power spectrum
density but also statistical features like the median and the
difference between the maximum and the minimum values of
the latter. With only the three last mentioned features, as will
be seen, this classification can be used in the cryptanalysisof
frequency-domain ciphered speech. The voiced/unvoiced decision
in this case is needed to improve classical cryptanalysis results
by adding the concept of two codebooks: one for voiced ciphered
speech and another one for unvoiced ciphered speech.

Index Terms— Speech processing, speech scrambler, cryptanal-
ysis of ciphered speech.

I. I NTRODUCTION

In many speech analysis systems, there is a need to decide
whether a given segment of speech should be classified as
voiced or unvoiced. In the technical literature, it can be found
a number of methods used to make this decision [1]. Most
of them use frames with a duration encompassing more than
one pitch period and, therefore, relying on this feature for
the classification. Few articles have addressed short duration
speech frames (about10ms or less). In this work, we tackle
the problem of voiced/unvoiced classification of speech frames
as short as8ms.

Another goal of this research is to find features which are
robust to frequency scramblers, i.e., they do not change after
a speech signal is ciphered. Most features addressed in the
literature do not apply for this kind of scrambler; this is
so because they change when we frequency sub-bands are
permuted (which is the basic procedure used by frequency-
domain scramblers, as seen in Subsection IV-A).

In [2], a voiced/unvoiced/silence classification technique for
short time frames (10ms) is introduced. However, four out of
the five features used in this method do not apply when speech
signals are ciphered in the frequency-domain. This happens
because zero-crossing rate, autocorrelation coefficient,and
prediction error change when a speech signal is scrambled.
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This article introduces a voiced/unvoiced classification for
short duration speech frames, around8ms, which roughly
corresponds to the average pitch period for male speakers.
Yet, with only 3 features, it is possible to apply this same
classification in the problem of cryptanalysis of frequency-
domain ciphered speech.

The classifier used here is the Gaussian Mixture Model
(GMM) [3], which was applied successfully in speaker recog-
nition [4]. GMM can be seen as a hybrid between two effective
models: a unimodal Gaussian classifier and a vector quantiza-
tion (VQ) [5] codebook. This scheme combines the robustness
and smoothing properties of the parametric Gaussian model
with the arbitrary modeling capability of a non-parametricVQ.
The GMM performs the spatial separation of voiced/unvoiced
classification and its main difference comparing to VQ con-
cerns the fact that distances are not used to separate the
classification but probabilities from a set of Gaussian prob-
ability density functions previously estimated. The GMM can
also be understood as a single state HMM (Hidden Markov
Model) [6], having as observations mixtures of Gaussian PDFs
(probability density functions). These components may model
the two classifications: voiced or unvoiced. This fact justifies
its use in the decision whether a frame is voiced or not.

This paper is organized as follows. Section II describes
the proposed voiced/unvoiced classification technique while
Section III shows its simulations results. Section IV details
the application: cryptanalysis of frequency-domain ciphered
speech. Finally, Section V concludes this work.

II. V OICED/UNVOICED CLASSIFICATION OF SHORT

FRAMES

In this section, the proposed voiced/unvoiced technique is
described. Subsection II-A details the features and Subsec-
tion II-B explains the classifier.

A. Selected Features

The choice of the features must be carried out such that
they vary consistently from one class to another (voiced to
unvoiced). We will show that the following features, whether



considered together or only a part, are able to classify well
8ms frames as voiced or unvoiced:

• Log-energy (LE).
• 23 normalized power spectral density (NPSD) coeffi-

cients.
• Median of the 23 NPSD coefficients.
• Difference between the maximum and minimum values

of the 23 NPSD coefficients (Dif ).
In order to explain how to obtain these features, letxi be

the vector with theM samples of thei − th speech frame
(note thatM = 64, when the sampling frequency is8000Hz,
corresponds to an8ms frame) andXi be a vector with its64
points DFT coefficientsxij = [Xi]j , j = 1, 2, · · · , 64. Due
to the particular application at hand and the fact that radio
and telephone channels usually destroy information below
300Hz and above3200Hz, these side bands were eliminated
(the corresponding DFT coefficients were not considered) in
our investigation. With this observation and the fact that it is
necessary to keep the symmetry of the DFT, so that the signal
remains real, it is sufficient to work with the coefficients4 to
26 (total of 23).

The features are obtained as follows:
(1) Log-energy (LE)

LE = 10log(

26
∑

i=4

|Xi|) (1)

(2) 23 normalized power spectral density (NPSD) coeffi-
cients

NPSDj = 10log(|[Xi]j |
2/‖Xi‖), j = 4, 5, ... 26. (2)

(3) Median of the23 NPSD coefficients (Median) Sorting
these coefficients in an ascending order such thatz1 is
the lowest andz23 is the highest, then

Median = z12 (3)

(4) Difference between the maximum and minimum values
of the 23 NPSD coefficients, i.e., for the4 − th to
26 − th components (Dif )

Dif = max(NPSD) − min(NPSD) (4)

Fig. 1 depicts the typical behavior of the normalized power
spectral density (indB) of short frames for a voiced speech
frame and for an unvoiced speech frame. From this figure, we
can observe that:

• The difference between the maximum and the minimum
values is expected to be larger for voiced frames.

• The median is expected to be lower for voiced frames.
• Voiced frames usually have larger energy in lower fre-

quency bands.
From these observations, it is possible to develop a GMM-

based voiced/unvoiced classification, as will be seen in the
next subsection. The motivation for this approach comes from
the results shown in Fig. 1, Fig. 2, and Fig. 3, where the
classification capabilities of the before mentioned features can
be observed.
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Fig. 1. Log-normalized spectra of short time frames.
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Fig. 2. Difference between maximum and minimum values ofNPSD versus
log-energy (LE).

B. Voiced/unvoiced classifier

As mentioned before, the classifier used in this work is the
GMM which is explained in detail as follows.

A mixture of Gaussian probability densities is a weighted
sum ofM densities, and is given by

p(~x|λ) =

M
∑

i=1

pibi(~x) (5)

where ~x is a random vector of dimensionD, bi(~x), i =
1, ..., M , are the density components, andpi, i = 1, ..., M , are
the mixtures weights. Each component density is aD variate
Gaussian function of the form

bi(~x) =
e(−

1

2
(~x−~µ)′K−1

i
(~x−~µ))

(2π)
D

2

√

|Ki|
(6)

with mean vector~µi and covariance matrixKi.
Note that the weighting of the mixtures satisfiesΣM

i=1pi =
1. The complete Gaussian mixture density is parameterized by
a vector of means, covariance matrix, and a weighted mixture
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Fig. 3. Log-energy (LE) versusMedian.

of all component densities (λ model). These parameters are
jointly represented by the following notation:

λ = {pi, ~µi, Ki} i = 1, ..., M. (7)

The GMM can have different forms depending on the choice
of the covariance matrix. The model can have a covariance
matrix per Gaussian component as indicated in (7) (nodal
covariance), a covariance matrix for all Gaussian components
for a given model (grand covariance), or only one covariance
matrix shared by all models (global covariance). A covariance
matrix can also be complete or diagonal [3].

For a set of training data, the estimation of the maximum
likelihood is necessary. In other words, this estimation tries to
find the model parameters that maximize the likelihood of the
GMM and may be obtained recurrently, using theExpectation
Maximization(EM) algorithm.

The voiced/unvoiced classification scheme comprises the
following steps:

• Manual classification (voiced/unvoiced) of a number of
8ms phonetically balanced speech frames, for training.

• Feature extraction of each frame to be used by a Gaussian
Mixture Model (GMM) in order to produce voiced and
unvoiced models: in our case, we have used23 NPSD
coefficients, their log-energy (LE) without normalization,
the median of theNPSD (Median) and the difference
between their maximum and minimum values (Dif ), i.e,
a vector with a total of26 elements.

• Model generation (GMM with different number of Gaus-
sians) for voice and unvoiced frames.

• Feature extraction of test data (in our experiment,8ms
speech frames from10 phonetically balanced phrases
were used) forming vectors of26 elements.

• Validation of the test data by comparing the vectors from
the last step with those models trained with the GMM,
as illustrated in Fig. 4.

Overall, we have used6528 voiced vectors with2566
unvoiced vectors, for training, and904 voiced vectors with
252 unvoiced vectors for testing.

Fig. 4. Voiced/unvoiced identification using GMM.
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Fig. 5. Error rate (in %) of voiced/unvoiced decision for feature vectors with
dimension26.

III. S IMULATION RESULTS

Fig. 5 depicts the error rates of the validation test when
vectors of dimension26 are used, for different numbers of
Gaussians.

From Fig. 5, it can be observed that it is possible to decrease
the overall error rate if we use different numbers of Gaussians
to model voiced and unvoiced vectors; the figure suggests that
8 Gaussians are enough to model unvoiced frames while128
(or even more) are necessary to model voiced frames. With this
simple approach, the overall error rate would drop according
to the voiced/unvoiced frame rates found in speech.

Fig. 6 shows the error rates, when vectors of dimension3
are used—the log-energy (LE), theMedian (of theNPSD),
and the difference between its maximum and minimum values
(Dif ).

Comparing Figures 5 and 6, we note that with only the3
features used in Fig. 6 we are are able to classify a speech
frame with nearly the same performance as of the26 features
used in Fig. 5. This fact can be explored in frequency domain
cryptanalysis since these three features do not change whena
speech signal is ciphered by a frequency-domain scrambler.

The voiced/unvoiced decision can be used to implement two
codebooks instead of the single codebook approach used by
[8] in an attempt to improve the performance of the frequency-
domain cryptanalysis.
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Fig. 6. Error rates (in %) for feature vectors with dimension3.
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IV. CRYPTANALYSIS OF FREQUENCY-DOMAIN CIPHERED

SPEECH

This section presents an application where the classifier
proposed in Section II was successfully used: the frequency-
domain cryptanalysis. In Subsection IV-A, the frequency
scrambler is briefly explained and, in Subsection IV-B, the
cryptanalysis scheme is detailed.

A. A simple example of a frequency-domain scrambler

Fig. 7 depicts an example of a frequency-domain scrambler
based on the Discrete Fourier Transform DFT). Note that the
upper half of this figure comprises the transmitter where a
block of M samples of the original speech is processed with
or without overlap. The DFT of each frame (or block of
samples) in then computed andM coefficients in the trans-
formed domain are obtained. Following, these coefficients are
permuted by permutation matrixP and the inverse transform
is applied to return the signal to the time domain, allowing its
transmission over a channel to the receiver.

The lower part of Fig. 7 depicts the reception process. The
de-cipheringis carried out in a similar way but using the key
or the inverse permutation (P

−1) to recover the clear signal.
Signaly (or y′) in Fig. 7 would be used in the cryptanalysis.

B. Frequency-domain cryptanalysis

In order to perform the cryptanalysis, we implement a vector
quantization (VQ) in the ciphered domain. Therefore, a code-

book is to be designed to accomplish this task. Moreover, the
speech signal used for training must have similar distortions
and environmental noise as those of the signal we wish to
intercept and recover intelligibility through cryptanalysis.

Fig. 6 has shown that the voiced/unvoiced error rate is
relatively low even when considering only3 features (log-
energy, the median of the NPSD, and the difference between
its maximum and the minimum values). These features are not
altered when the signal is ciphered with a frequency-domain
scrambler. Therefore, it is possible to classify each blockusing
two distinct codebooks: one for voiced frames and a second
one for unvoiced frames.

In this work, we have assumed that the number of samples
M of each ciphered frame is known (we have usedM = 64
in our experiments), that the signal is synchronized, and also
that frequencies components below300 Hz and above3200
Hz are heavily attenuated.

Knowing that the DFT must always keep its symmetry,
we work only with coefficients4 to 26 (a total of 23) when
considering64 points DFTs, the assumed frequency selective
channel, and a sampling frequency of8000Hz.

Assuming thatNQ is the number of ciphered frames and
NQc the number of vectors belonging to the codebook, the
cryptanalysis procedureis:

1) Compute the64 DFT of each ciphered frame, keeping
the results in vectorsXi, i = 1, 2, ..., NQ, which
components arexij (j-th component of the i-th vector),
j = 1, 2, ..., 64.

2) Compute the absolute valuesXi, storing them in vectors
Vi, i = 1, 2, ..., NQ, which components arevij . as
explained before, we only work withj = 4, 5, 6, ..., 26.

3) We classify Vi as voiced or unvoiced according to
Section II and assign one particular codebook for each
case. Therefore, in the following steps, when mentioning
the word “codebook”, it means the codebook assigned
for the type of frame classified in this step.

4) Considering thei−th ciphered signal frame: components
vij , j = 4, 5, 6, ..., 26 of vector Vi are sorted in a
descending order.

5) We assume that thek − th vector of the codebook,
Uk, was formed from the same frame that formed
vector Vi (under analysis). The componentsukj , j =
4, 5, 6, ..., 26 of vectorUk are also sorted in a descend-
ing order.

6) We namep1 the highest component of the vector cor-
responding to the ciphered frame under analysis (Vi),
p2 the second highest, and so on tillp23 . Also, we
nameq1 the highest component of vectorUk, q2 the
second highest, and so on tillq23 . We then store the
pairs(p1 , q1 ), (p2 , q2 ), ..., (p23 , q23 ).

7) We form a64 × 64 permutation matrix,P̂ , where all
elements are zeros except:

a) the elements located on rowpa with columnsqa , in
which the paires(pa , qa ), a = 1, 2, ..., 23 are the
same of item item6;



b) the elements located on rowz with column z , in
which z is the order of all DFT coefficients not
permutable, i.e.,1 to 3, 27 to 39, 63 to 64;

c) the elements located on row(66− pa) with column
(66 − qa ), such that the signal is kept real (due to
the need of keeping the symmetry of the DFT).

8) We multiply vector Vi by the inverse of matrixP̂
obtaining vectorV

′

i. For the23 permutable elements of
Vi, we compute a permutation error namede(k) defined
as the squared norm of the error vectorEk = V

′

i − Uk,
i.e., e(k) = E

T
k Ek.

9) Repeat steps5 to 8 for all vectors of the codebook
obtaining ane(k) for eachk = 1, 2, ..., NQc. The index
k corresponding to the lowest error (km ) will be assumed
related to closest codevector to the ciphered frame.

10) Since allNQc P̂ matrices are easily available, we use the
one corresponding tokm-th codevector and pre-multiply
its inverse by vectorXi obtaining the cryptanalysed
vectorXc

i .
11) We apply the IDFT to vectorXc

i , obtaining thei − th
frame of64 samples in the time domain.

12) Steps4 to 11 are repeated to all frames of the ciphered
signal.

For the performance evaluation of the cryptanalysis, it was
used the IME 2002 corpus which consists of200 phonetically
balanced phrases of the Portuguese language spoken in the
city of Rio de Janeiro, recorded from50 male speakers.

The phrases were the same introduced in [9]. For training
the codebook, we have used9 minutes of speech of the corpus,
using10 speakers and180 sentences. For the test, it was used
1 minute of speech from the corpus, with4 speakers and8
sentences not present in the training.

The tests consisted in ciphering the phrases with the
frequency-domain scrambler of Subsection IV-A, with blocks
of 64 samples, permuting23 of them (total of23! possible
permutations per block).

Since the goal of the cryptanalysis is not the perfect
reconstruction of the signal but making the scrambled
speech intelligible to trained ears, no regular objective
measure usually used to access speech quality applies.

Instead, a subjective evaluation was carried out in order to
check if the intelligibility of the analyzed signal was possible,
i.e., if the meaning of the phrases could be recovered. The
percentage of the words correctly understood by the listeners
was78.4%.

V. CONCLUSIONS

A new scheme for classifying voiced/unvoiced speech
frames of short duration, around8ms, was detailed. It was
also figured out that only three features are able to provide a
satisfactory classification, specially for the case of frequency-
domain scrambled speech for which traditional methods fail.
The reason for this attractive result comes from the fact that
the statistical features used are robust to frequency scrambling
techniques.
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