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Abstract— This paper introduces a novel voiced/unvoiced clas-  This article introduces a voiced/unvoiced classification f
sification of speech signal for short time frames, sic&ms, which  short duration speech frames, arouihs, which roughly
do not encompass more than one pitch period. The classificati corresponds to the average pitch period for male speakers.

scheme takes into account not only usual features related tihe Yet with lv 3 feat it ble t v thi
speech frame like its energy and its normalized power speaim €L, with only 5 Teafures, 1t IS possibie 1o apply this same

density but also statistical features like the median and ta classification in the problem of cryptanalysis of frequency

difference between the maximum and the minimum values of domain ciphered speech.

the latter. With only the three last mentioned features, as Wi The classifier used here is the Gaussian Mixture Model

be sen, i clasticaton ca b s n i COPATAH (G (3, which was aplied successuly i speaker recog-

in this case is needed to improve classical cryptanalysis salts Nition [4]. GMM can be seen as a hybrid between two effective

by adding the concept of two codebooks: one for voiced ciphed Models: a unimodal Gaussian classifier and a vector quantiza

speech and another one for unvoiced ciphered speech. tion (VQ) [5] codebook. This scheme combines the robustness
Index Terms— Speech processing, speech scrambler, cryptanal-and smoothing properties of the parametric Gaussian model

ysis of ciphered speech. with the arbitrary modeling capability of a non-parame¥{.

The GMM performs the spatial separation of voiced/unvoiced

classification and its main difference comparing to VQ con-
In many speech analysis systems, there is a need to dediglens the fact that distances are not used to separate the

whether a given segment of speech should be classifiedctassification but probabilities from a set of Gaussian prob

voiced or unvoiced. In the technical literature, it can berfd ability density functions previously estimated. The GMMhca

a number of methods used to make this decision [1]. Mogiso be understood as a single state HMM (Hidden Markov

of them use frames with a duration encompassing more thidi@del) [6], having as observations mixtures of Gaussian $DF

one pitch period and, therefore, relying on this feature f¢probability density functions). These components may @hod

the classification. Few articles have addressed shortidnratthe two classifications: voiced or unvoiced. This fact jiesi

speech frames (abou®ms or less). In this work, we tackle its use in the decision whether a frame is voiced or not.

the problem of voiced/unvoiced classification of speecméra ~ This paper is organized as follows. Section Il describes

as short asms. the proposed voiced/unvoiced classification techniqueewhi
Another goal of this research is to find features which afeection Ill shows its simulations results. Section IV dstai

robust to frequency scramblers, i.e., they do not change afthe application: cryptanalysis of frequency-domain ciglde

a speech signal is ciphered. Most features addressed in $heech. Finally, Section V concludes this work.

literature do not apply for this kind of scrambler; this is

so because they change when we frequency sub-bands arell. VOICED/UNVOICED CLASSIFICATION OF SHORT

permuted (which is the basic procedure used by frequency- FRAMES

domain scramblers, as seen in Subsection IV-A). In this section, the proposed voiced/unvoiced technique is

In [2], a voiced/unvoiced/silence classification tech®@ider yoqcrineq. Subsection II-A details the features and Subsec
short time frames1(0ms) is introduced. However, four out Oftion II-B explains the classifier.

the five features used in this method do not apply when speech
signals are ciphered in the frequency-domain. This happegs
because zero-crossing rate, autocorrelation coefficiend

prediction error change when a speech signal is scrambled. The choice of the features must be carried out such that
they vary consistently from one class to another (voiced to

The authors thank FAPERJ and CNPq for partial funding of plaiper. unvoiced). We will show that the following features, whethe

I. INTRODUCTION

Selected Features



considered together or only a part, are able to classify well
8ms frames as voiced or unvoiced:

o Log-energy LFE).

Log-normalized spectra of short time frames
T T T

T T
m— \0iced vectors
= = = unvoiced vectors| |

n

o 23 normalized power spectral densitiV P.SD) coeffi- °f A ,"_',"‘

cients. N -8 At ot .
e Median of the 23 NPSD coefficients. " -‘,' Yool v
o Difference between the maximum and minimum values g

of the 23 NPSD coefficients Di f). il
In order to explain how to obtain these features,agtbe 4r

the vector with theM samples of the — th speech frame -16}

(note thatM = 64, when the sampling frequency §)00H z,
corresponds to aBms frame) andX ; be a vector with it$4
points DFT coefficientsy;; = [X;];,7 = 1,2,---,64. Due o s 1000 1§tlfo 2000 200 3000 3500
to the particular application at hand and the fact that radio e
and telephone channels usually destroy information below
300Hz and above3200Hz, these side bands were eliminated
(the corresponding DFT coefficients were not considered) in
our investigation. With this observation and the fact thas i 6
necessary to keep the symmetry of the DFT, so that the signal
remains real, it is sufficient to work with the coefficiertso
26 (total of 23).

The features are obtained as follows:

(1) Log-energy LF)

Fig. 1. Log-normalized spectra of short time frames.

Vectors with dimension 2
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(2) 23 normalized power spectral densityW .S D) coeffi- I
cients *
NPSDj = 1Olog(|[X,]J|2/||XlH), j = 4, 5, ... 26. (2) _80 é 1‘0 fs 26 25 éo 3% 40

difference between maximum and minimun values of NPSD
(3) Median of the23 N PS D coefficients (/ edian) Sorting
these coefficients in an ascending order such thas Fig. 2. Difference between maximum and minimum value'a@?S D versus
the lowest andko3 is the highest, then log-energy (E).

Median = z12 3

(4) Difference between the maximum and minimum values: Veiced/unvoiced classifier
of the 23 NPSD coefficients, i.e., for thel — th to As mentioned before, the classifier used in this work is the
26 — th componentsDi f) GMM which is explained in detail as follows.
e . A mixture of Gaussian probability densities is a weighted
Dif = maz(NPSD) = min(NPSD) 4) sum of M densities, and is given by
Fig. 1 depicts the typical behavior of the normalized power o
spectral density (inlB) of short frames for a voiced speech () = Zp'b’(f) 5)
frame and for an unvoiced speech frame. From this figure, we P !
can observe that: _ . _ o
. The difference between the maximum and the minimul{n€re  is a random vector of dimensiom, b;(z), i =
values is expected to be larger for voiced frames. 1,..., M, are the density components, gndi = 1, .., M, are
« The median is expected to be lower for voiced framesth® mixtures weights. Each component density i8 &ariate
« Voiced frames usually have larger energy in lower fré>@ussian function of the form
quency bands. o(— 2 (@) K (7))
From these observations, it is possible to develop a GMM- bi(¥) = D (6)
. : o . . (2m) 2 /| K]
based voiced/unvoiced classification, as will be seen in the
next subsection. The motivation for this approach comeas fravith mean vectoyi; and covariance matri¥;.
the results shown in Fig. 1, Fig. 2, and Fig. 3, where the Note that the weighting of the mixtures satisf8’, p;, =
classification capabilities of the before mentioned fezgwran 1. The complete Gaussian mixture density is parameterized by
be observed. a vector of means, covariance matrix, and a weighted mixture
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Fig. 4. \oiced/unvoiced identification using GMM.
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of all component densities\(model). These parameters are o '," :
i i i i - -- *
jointly represented by the following notation: J :-
)\:{Pi,ﬁuKi} 1= 1,...,M. (7) ,'
The GMM can have different forms depending on the choice 0 20 o & 8 100 120 140
umber of Gaussians

of the covariance matrix. The model can have a covariance
mam)_( per GaUSSIan compone_znt as Indlcateq in (7) (nOdlf?glg. 5. Error rate (in %) of voiced/unvoiced decision fortiea vectors with
covariance), a covariance matrix for all Gaussian comptnegimension26.
for a given model (grand covariance), or only one covariance
matrix shared by all models (global covariance). A covaréan
matrix can also be complete or diagonal [3].

For a set of training data, the estimation of the maximum
likelihood is necessary. In other words, this estimatiaestto
find the model parameters that maximize the likelihood of the Fig. 5 depicts the error rates of the validation test when

GMM and may be obtained recurrently, using Bxepectation \eciors of dimensior26 are used, for different numbers of
Maximization(EM) algorithm. Gaussians.

The voiced/unvoiced classification scheme comprises the . . . .
P From Fig. 5, it can be observed that it is possible to decrease

following steps: ) ) -
M g Ipl ificati iced/ iced) of b tEe overall error rate if we use different numbers of Gaussia
» Manual classification (voiced/unvoiced) of a NUMDET 4y model voiced and unvoiced vectors; the figure suggests tha
8ms phonetically balanced speech frames, for trammgg Gaussians are enough to model unvoiced frames wRite

« Feature extraction of each frame to be used by a Gauss ap : : .
; . _ even more) are necessary to model voiced frames. Wih thi
Mixture Model (GMM) in order to produce voiced and( ) Y

X ; simple approach, the overall error rate would drop accagrdin
unvoiced models: in our case, we have ug8dVPSD P bp P v

L . ; e to the voiced/unvoiced frame rates found in speech.
coefficients, their log-energy () without normalization,

the median of theV PSD (Median) and the difference Fig. 6 shows the error rates, when vectors of dimension
between their maximum and minimum valugsi(), i.e, '€ used—the log-energy.f), the Median (of the NPSD),
a vector with a total oR6 elements. and the difference between its maximum and minimum values

« Model generation (GMM with different number of Gaus{Dif)-
sians) for voice and unvoiced frames. Comparing Figures 5 and 6, we note that with only the
« Feature extraction of test data (in our experim@ms features used in Fig. 6 we are are able to classify a speech
speech frames froni0 phonetically balanced phrasedrame with nearly the same performance as of2fideatures
were used) forming vectors @6 elements. used in Fig. 5. This fact can be explored in frequency domain
« Validation of the test data by comparing the vectors froryptanalysis since these three features do not change avhen
the last step with those models trained with the GMMgpeech signal is ciphered by a frequency-domain scrambler.
as illustrated in Fig. 4. The voiced/unvoiced decision can be used to implement two
Overall, we have used528 voiced vectors with2566 codebooks instead of the single codebook approach used by
unvoiced vectors, for training, an@b4 voiced vectors with [8] in an attempt to improve the performance of the frequency
252 unvoiced vectors for testing. domain cryptanalysis.

Ill. SIMULATION RESULTS
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IV. CRYPTANALYSIS OF FREQUENCY¥DOMAIN CIPHERED
SPEECH

book is to be designed to accomplish this task. Moreover, the
speech signal used for training must have similar distostio
and environmental noise as those of the signal we wish to
intercept and recover intelligibility through cryptansily.

Fig. 6 has shown that the voiced/unvoiced error rate is
relatively low even when considering onby features (log-
energy, the median of the NPSD, and the difference between
its maximum and the minimum values). These features are not
altered when the signal is ciphered with a frequency-domain
scrambler. Therefore, it is possible to classify each blggikg
two distinct codebooks: one for voiced frames and a second
one for unvoiced frames.

In this work, we have assumed that the number of samples
M of each ciphered frame is known (we have ugdd= 64
in our experiments), that the signal is synchronized, asd al
that frequencies components bel@@0 Hz and above3200
Hz are heavily attenuated.

Knowing that the DFT must always keep its symmetry,
we work only with coefficientst to 26 (a total of23) when
considering64 points DFTs, the assumed frequency selective
channel, and a sampling frequency8900Hz.

Assuming thatNQ is the number of ciphered frames and
NQc the number of vectors belonging to the codebook, the
cryptanalysis proceduris:

1) Compute thes4 DFT of each ciphered frame, keeping
the results in vectorsX,;,: = 1,2, ..., NQ, which
components are;; (j-th component of the i-th vector),
j=1,2, .., 64.

Compute the absolute valu&s, storing them in vectors
Vi, i = 1,2, ..., NQ, which components are;;. as
explained before, we only work with= 4, 5, 6, ..., 26.

2)

This section presents an application where the classifieg
proposed in Section Il was successfully used: the frequency
domain cryptanalysis. In Subsection IV-A, the frequency
scrambler is briefly explained and, in Subsection IV-B, the
cryptanalysis scheme is detailed.

A. A simple example of a frequency-domain scrambler 4)

Fig. 7 depicts an example of a frequency-domain scrambler
based on the Discrete Fourier Transform DFT). Note that th%)
upper half of this figure comprises the transmitter where a
block of M samples of the original speech is processed with
or without overlap. The DFT of each frame (or block of
samples) in then computed ardd coefficients in the trans-
formed domain are obtained. Following, these coefficierss a
permuted by permutation matri® and the inverse transform
is applied to return the signal to the time domain, allowitsy i
transmission over a channel to the receiver.

The lower part of Fig. 7 depicts the reception process. The
de-cipheringis carried out in a similar way but using the key
or the inverse permutatiod" ') to recover the clear signal.
Signaly (or ¢) in Fig. 7 would be used in the cryptanalysis.

6)

7

B. Frequency-domain cryptanalysis

In order to perform the cryptanalysis, we implement a vector
guantization (VQ) in the ciphered domain. Therefore, a eode

We classify V; as voiced or unvoiced according to
Section Il and assign one particular codebook for each
case. Therefore, in the following steps, when mentioning
the word “codebook”, it means the codebook assigned
for the type of frame classified in this step.

Considering thé —th ciphered signal frame: components
v, j = 4,5,6, ..., 26 of vector V; are sorted in a
descending order.

We assume that thé — th vector of the codebook,
U,, was formed from the same frame that formed
vector V; (under analysis). The componenis;, j =
4,5, 6, ..., 26 of vectorU,, are also sorted in a descend-
ing order.

We namep; the highest component of the vector cor-
responding to the ciphered frame under analydis)(

pe the second highest, and so on tilbs;. Also, we
name ¢; the highest component of vect®, ¢» the
second highest, and so on tighbs. We then store the
pairs(p17q1)7 (p»?aq?)a ) (p237q23)' R

We form a64 x 64 permutation matrix,P, where all
elements are zeros except:

a) the elements located on rgw with columnsg,, in
which the paireqp,, ¢.), a = 1, 2, ..., 23 are the
same of item iten®;



b) the elements located on row with column z, in Instead, a subjective evaluation was carried out in order to
which z is the order of all DFT coefficients notcheck if the intelligibility of the analyzed signal was pitss,
permutable, i.e.] to 3, 27 to 39, 63 to 64; i.e., if the meaning of the phrases could be recovered. The

c) the elements located on roi6 — p,) with column percentage of the words correctly understood by the listene
(66 — q,), such that the signal is kept real (due tavas78.4%.
the need of keeping the symmetry of the DFT).

8) We multiply vector V; by the inverse of matrixP

obtaining vectorV;. For the23 permutable elements of o oy scheme for classifying voiced/unvoiced speech
Vi, we compute a permutation error name#) defined a5 of short duration, arourkins, was detailed. It was
as the squarciepd norm of the error vecky = V; — Uk, 5150 figured out that only three features are able to provide a
i.e., e(k) =E;Ej. satisfactory classification, specially for the case of Giemgy-

9) Repeat step$ to 8 for all vectors of the codebook y,mqin scrambled speech for which traditional methods fail
obtaining are(k) for eachk =1, 2, ..., NQc. The index e reason for this attractive result comes from the fact tha

k corresponding to the lowest errok,() \,N'” be assumed 4 statistical features used are robust to frequency dtiragn
related to closest codevector to the ciphered frame. techniques

Since allNQc P matrices are easily available, we use the

V. CONCLUSIONS

10)

one corresponding té,,,-th codevector and pre-multiply
its inverse by vectorX; obtaining the cryptanalysed
vector X§. [
We apply the IDFT to vectoK¢, obtaining the: — th
frame of64 samples in the time domain.

11)
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