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Abstract—Classical AOA estimation methods usually
rely on some simplifying assumptions that do not hold in
many practical situations, like the far-field condition, for
instance. The present work assesses three widely known
methods (beamforming, Capon and MUSIC) under the
near-field condition. In order to improve such analysis, a
simple adaptation to the classical models is proposed and
tested for that condition. The analysis comprises also a
recently released approach, based on TDOA estimation.

Index Terms—AOA, acoustic waves, beamforming,
Capon, MUSIC, TDOA-based AOA estimation.

1. INTRODUCTION

Angle-of arrival (AOA) estimation is a prominent
application field of space-time signal processing. Its
basic theory applies to harmonic signals in general,
comprising physical nature wave phenomena as
distinct as electromagnetic fields, acoustic waves, and
oceanic  waves, among others. Regarding
telecommunications applications, for instance, AOA
estimation is widely used for location-based services
and smart antennas systems [1]-[2]. In the acoustics
field, highly directive microphone synthesis and
indoor speaker tracking can be picked as applications
examples [3]-[4].

There are several AOA estimation methods
available in the literature. They can be seen as
specializations of the generic spectral estimation
problem in which the searched “frequency” is a
parameter associated to a spatial information
sampling, measured with properly arranged multiple
sensors [5]. The simplest algorithms are the Fourier
based ones, like the “classical” beamforming [5].
More elaborated approaches are the Capon [6] and the
MUSIC (MUTtiple SIgnal Classification) [7] methods.
All those procedures assume a complex envelope
signal arriving at the sensors. On the other hand, a
new class of algorithms referred to as TDOA-based
[4], [8] does not require complex signals. Such
methods try to exploit the correlation between sensor
pairs in order to better estimate the time difference of
arrival (TDOA) between the wave fronts and,
consequently, the corresponding AOA.

In general, all AOA estimation algorithms rely on a
number of simplifying assumptions concerning the
source signal (or signals) and the array surroundings.
Far-field condition is one of those, as well as phase
information availability of the signal’s envelope.
Actually, such is the case for many situations,
especially outdoor sensors for communication
systems. Conversely, for applications like acoustic
signals indoor AOA estimation, those basic
assumptions are actually not likely to be fulfilled.

Although the above-mentioned situation is not quite
unusual, it is hard to find AOA estimation methods
specially tailored for that specific scenario or, at least,
any references assessing typical estimation algorithms
performance when basic hypotheses break down. The
present work tried to contribute to “fill that gap” on
this matter, proposing simple realistic changes on
classical AOA estimation approaches. Simulations of
the near-field-real signal problem were carried out, in
order to analyze the proposed methods and also to
assess its performance in comparison to some classical
methods and to a modern TDOA-based approach.

The organization of this paper is as follows. Section
II states the main simplifying assumptions typically
accepted for AOA estimation. Some widely used
estimation methods are briefly reviewed in Section 11,
which also proposes near-field adapted versions of the
classical methods and presents a simple TDOA-based
AOA estimation method. The following section
comprises a comparative analysis of the previously
reviewed approaches under near-field condition,
based on simulations. Finally, some concluding
remarks are discussed in section V.

II. TYPICAL SIMPLIFYING ASSUMPTIONS

An almost ubiquitous hypothesis assumed for the
AOA estimation problem is the far-field condition,
where the wave fronts are plane, and the array is “far
enough” from the source. More specifically, such
condition may be analytically described as [9]:
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where r is the separation between the array and the
source, D is the maximum dimension of the array
(width or height), and 1 is the signal wavelength.

Fig. 1 illustrates a single signal impinging a
uniform linear array (ULA) of sensors under the far-
field condition.

For outdoor applications, the far-field condition is
usually respected with great confidence. On the other
hand, in indoor environments the far-field condition
may not be respected within a considerable range. As
an example, for a 1 kHz tone (A = 0.34m) and a 4-
sensors ULA with a A/2 separation between
consecutive  sensors, the far-field condition
corresponds to » >> 1.53 m; this is barely achievable
within a typical room. In this case, a near-field
representation would be more suitable, with spherical
wave fronts, as illustrated in Fig. 2.

0

Fig. 1. Uniform linear array under far-field condition.

Pe

Fig. 2. Uniform linear array under near-field condition.

Another usual assumption when dealing with AOA
estimation methods is that both amplitude and phase
information of the transmitted signal are available. In
other words, a complex envelope signal is assumed
impinging the array of sensors. If the problem regards
communication systems, this is usually true. But,
when acoustic waves are considered, the signal is
actually real. Nevertheless, most of the classical
estimation methods rely on the complex envelope
hypothesis. Thus, when real signals are considered,
those methods no longer provide optimum spatial
spectrum estimates.

Narrowband signals are usually assumed for most
of the classical AOA estimation methods. Though
such hypothesis is fairly reasonable for many
communication systems problems, for acoustic signal
AOA estimation the wideband model occurs more
frequently.

III. ESTIMATION METHODS

A. Classical Methods

The classical AOA methods are simply “spatial”
versions of some frequently referred spectral
estimation methods. Beamforming and Capon are
among the simplest and widest used non-parametric
algorithms. On the other hand, MUSIC is perhaps the
most popular among the parametric methods [5]. The
advantage of these two non-parametric methods is that
they do not assume anything about the signals
statistical properties. On the other hand, in the cases
where such information is available, or at least when it
is likely that those properties may be partially
assumed, parametric methods may present better
performances than the non-parametric ones.

In general, classical methods rely on the array
model, which can be briefly stated as follows [5].
Taking Fig. 1 as reference, if a signal s(f) impinges a
m-sensors ULA at an AOA 6, a vector y(f) is formed
on the sensors outputs, such that:

¥(0) = a(0ys(®) + n(D) )
YO =310 v ] 3
n(®=[m® - n,01" )

where symbol {7} represents the transposition of a
vector or matrix, y(f) is the signal at the i™ sensor, and
n{f) is the i™ sensor noise, usually considered as white
Gaussian distributed. Vector a(6) is frequently known
as steering vector, and is given by:

a(0) =1 exp(jocn) ~ expljacs) | (5)

7, = (k—l)Lm(e)z (k—l)A—ﬂ ©6)

v v

where w, is the signal frequency (a narrowband signal
is assumed), 7 is the far-field time delay of arrival
(TDOA) between the k™ sensor and the first sensor,
and v is the phase velocity of the impinging signal.

As it can be noticed in egs. (5) and (6), the steering
vector indeed contains the desired AOA information.
How such information is “extracted” depends on the
specific formulation of each estimation method. It is
also worth mentioning that the array model may also
be extended to the multipath case. If the impinging
signal arrives at the array from » different AOAs, then
there will be a steering vector for each direction. If the
n m x 1 steering vectors are put together, a m x n



148 PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON TELECOMMUNICATIONS

matrix is formed, which is commonly referred as
array manifold. Thus, the basic array model equation
for the multipath case may still be represented by eq.
(2) if we just replace the steering vector for the array
manifold A(6).

Beamforming is an array model based estimation
method that may be seen as a bank of filters, where
each sensor is attributed a weight. An optimization
criterion is chosen to calculate the filter weights, such
that the filter output maximizes only a specified AOA
6, equally minimizing all other directions [5]. This
principle is very simple and fast to compute,
providing a spatial spectral estimate given by:

P(9)=a"(6)-R-a(0) 7

where the symbol {"'} represents the hermitian of a

vector or matrix, and R is an estimate of the signal
covariance matrix R, usually taken as:

R=13 (" () ®

where N is the number of (time) snapshots of the
signal available.

The beamforming method presents resolution
limitation as a function of the number of sensors. The
least the number of sensors, the worst the capability to
distinguish two or more multipath signals arriving at
AOAs very close to each other. However, if such
situation is unlikely to happen, or if precision is not an
issue, this method is adequate enough.

Capon’s AOA estimation has the same basic idea of
beamforming. The goal of Capon’s filter is to
maximize a certain direction #, while attenuating any
other signals actually impinging the array from AOAs
# 6 [6]. The beamforming filter, on the other hand,
pays uniform attention to all AOAs # 6, even when
there might be no incoming signal at those AOAs, as
previously stated. Capon’s method is expected to
present  superior performance compared to
beamforming, what is usually confirmed empirically.
Capon’s spatial spectral estimate is given by:

P)=h" ()R -a(0)}" ©

The MUSIC method is a relatively simple and
efficient eigenstructure method of AOA estimation
[7]. It has many variations and it is perhaps the most
studied method in its class. In its standard form, also
known as spectral MUSIC, the method estimates the
noise subspace from the available samples. This can
be done by either eigenvalue or singular value
decomposition of the estimated data covariance
matrix. Once the noise subspace has been estimated, a
search for some directions has to be carried out,
looking for steering vectors that are as orthogonal to
the noise subspace as possible. More specifically, if R

is the signal covariance matrix, it can be eigen-
decomposed such that:

oo - [2]
R=[s 6] . " (10)
A G
S:[s1 s]
" 11
G=[g; - Zual a

where /, is an eigenvalue of a R matrix of rank m, s; is
am x 1 vector representing the actual signal subspace,
and g; is a m X 1 vector representing the noise
subspace, with both subspaces orthogonal to each
other. Based on such orthogonality, the AOAs may be
interpreted as the »n sharpest peaks of the following
function:

P(0)= p”(0)-6- 6" -a(o)}

where G is an estimate of the noise subspace matrix
G.

MUSIC wusually presents high accuracy and
resolution when the actual signal properties are close
to the ones assumed a priori in the method. For such
reason, it is frequently referred to as a “super-
resolution” method. On the other hand, a major
drawback of this parametric approach is that it
assumes the number of the sources () as a known
parameter, when in fact, knowing that number is an
additional estimation problem.

(12)

B. TDOA-based approach

A simple TDOA-based estimation method was
addressed in [4], and consists on computing the time
delay estimates between sensor pairs of microphones,
and then processing those estimates in order to extract
the inherent AOA information, which is also function
of the site and of the array geometry. This approach is
applicable either to wideband or narrowband signals,
which is a major advantage compared to the classical
methods. However, the TDOA-based methods assume
a single path impinging the array. Thus, its application
to multipath problems is limited. Computation of time
delays between signals from any pair of sensors can
be performed by first computing the cross-correlation
of the signals at each possible sensors pair. The cross-
correlation for the /™ and jth sensors is a N x 1 vector
represented here by ¢y, and given by:

Oy =0 * (0 (13)

where N is the number of time lags of the resulting
convolution. Since a binomial combination gives the
number of possible pairs mp, that is:

m m!
np:[zJ_z!(m—z)! 1
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a N x np cross-correlation matrix ¢ may be computed
for the entire array. The cross-correlation may be
easily calculated if its corresponding cross-power
spectral density (XPSD) is first estimated, since in the
spectral domain a single multiplication is needed,
rather than a convolution.

The number of time delay lags that maximize ¢ for

cach pair of sensors corresponds to the TDOA 7,

between the considered sensors. In other words:

7; =argmax {¢y}/f; (15)

where f; is the sampling frequency applied to the
signal.

Assuming the single-path far-field condition, the
AOA estimation is straightforward. Recalling eq. (6),
np * 1 vectors d and T may be composed, such that:

dysin(®)=v 7, (16)
dsin(=v 7 a7n
Finally, the AOA &may be calculated from [4]:
P S S L A
6 =sin {(d d) d (v‘r)} (18)

C. Adapted Classical Methods

The present work tried to assess some AOA
estimation methods for ULA under near-field
condition, typical of indoor applications. In order to
do that, classical complex-envelope waves algorithms
have been adapted to incorporate spherical wave
fronts separations, rather than plane wave ones.
Regarding the first two sensors of the arrays
represented in Figs. 1 and 2, the wave fronts
displacements for the near-field and far-field cases
are, respectively:

Anf =Fpp —¥p2 = (19

_ JKmT—l)dTHzﬂ(mT—l)d.r.m@_
JK’"Tlle}z(’"Tlleme

(20)

Aﬂ =d -sinf

Thus, a near-field equivalent of the steering vector
given by eq. (5) could be proposed simply replacing
Ay by Ay in eq. (6). Actually, the near-field model
should also comprise an amplitude correction, since
the spherical wave front amplitude is proportional to
1/r. However, since phase variation is much more
critical than amplitude variation, for small array
apertures (small m), this spherical amplitude variation

has not been considered for the adapted model
proposed.

At last, another adaptation is due to the real domain
nature of signals such as audio recorded from each
sensor (as in a microphone array): the complex-
envelope AOA estimation algorithms do not work
properly when real signals are available. In this work,
a simple procedure has been adopted in order to
transform the original real signal into its complex
domain equivalent. Basically, the upper band (mirror
from 7 to 27 of the left part O to m) of the signal Fast
Fourier Transform (FFT) was nulled, and the result
was then inverse transformed (IFFT). The overall
result was a good estimate of the desired
corresponding complex signal. In other words, with
this procedure, a single cosine became a complex
exponential.

IV. NEAR-FIELD COMPARATIVE PERFORMANCE
ANALYSIS

The near-field performance analysis comprised the
classical beamforming, Capon and MUSIC methods,
as well as the TDOA-based approach described in the
previous section. Both the original far-field versions
and the proposed near-field adaptations have been
assessed. Simulations have been carried out for an
additive white noise corrupted narrowband signal (1
kHz tone), arriving at a 4-sensors ULA from several
directions. The 4 sensors choice concerns future tests
with a practical electrets array that is being assembled.

Still concerning future measurements, the
simulations tried to reproduce the near-field main
conditions of a small acoustic chamber available in
our signal processing lab: source to array separation »
around 0.5 to 2 m, signal-to-noise ratio (SNR) varying
from O to 40 dB, and distance between consecutive
sensors d = 10 cm (less than the 4/2 Nyquist limit [5]).
A sample rate f; = 180 kHz were assumed instead of a
more realistic 44 kHz frequency (“wav” files
acquisition rate), in order to focus the assessment on
the estimation methods. Lower rates result in higher
quantization errors, what could mask some minor
differences between the estimation approaches. The
total sampling time for each simulation was 0.1 s.

The simulation results indicated an unexpected
robustness of the original far-field classical algorithms
to the near-field condition, as observed in Figs. 3 and
4. Actually, only for distances smaller than 0.5 m the
far-field methods errors were noticeable, as
exemplified in Figs. 5 and 6. Regarding SNR
influence, beamforming and Capon were more
susceptible than MUSIC, as Figs. 7 and 8 suggest.
The lower the SNR, the broader the peak “skirt”
width, though the AOA estimation error remained as
small as for the higher SNR case. In general, the
MUSIC algorithm presented the best results among
the classical methods, while beamforming presented
the worst (though also with relatively small errors).
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Fig. 3. Simulation results using near-field methods for AOA = 60°,
r=1.5 m and SNR = 20 dB.
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Fig. 5. Simulation results using near-field methods for AOA = 60°,
r=0.3 m and SNR = 20 dB.
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Fig. 7. Simulation results using near-field methods for AOA = 60°,
r=1.5 mand SNR =5 dB.
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Fig. 4. Simulation results using far-field methods for AOA = 60°,
r=1.5 m and SNR = 20 dB.
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Fig. 6. Simulation results using far-field methods for AOA = 60°,
r=0.3 m and SNR = 20 dB.
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Fig. 8. Simulation results using far-field methods for AOA = 60°,
r=1.5 mand SNR =5 dB.

Besides the previously mentioned classical

methods, the simple version of the new TDOA-based
approaches described in Section III [4] has also been
assessed for the same indoor scenario. Unlike those
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methods, rather than spatial spectra, the TDOA-based
approach provided directly an AOA estimate. Thus, in
order to compare the performances of all the
simulated algorithms, a maximum peak search was
applied to the classical methods to extract their
respective AOA estimates. Tables I and II present
absolute error comparisons for the situations partially
depicted in Figs. 5-6 and 7-8 (for SNR = 20 dB, r =
0.3 m and for SNR = 5 dB, r = 1.5 m, respectively),
comprising 10 distinct angles of arrival (AOAs) from
0° to 90°.

In both Tables I and II, the previously referred
behavior of the classical methods is more explicit. It is
also noticeable that the TDOA-based approach from
[4] presented the worst performance of all the
simulated algorithms.

TABLE I
ABSOLUTE ERRORS [9— 8 IN°], SNR=20DB,R=0.3 M
g FF FF FF NF NF NF | TDOA
[in°] | Beam | Cap | MUS | Beam | Cap | MUS
0| -1.00 | -1.00 | -1.00 | -1.00 | -1.00 | -1.00 | -30.66
10| 1.00 | 1.00 1.00 | 0.00 [ 0.00 [ 0.00 [ -9.19
20| 1.00 | 1.00 1.00 | 0.00 | 0.00 | 0.00 | 1.84
30| 200 | 2.00 | 2.00 | 0.00 [ 0.00 | 0.00 | 2.43
40| 3.00 | 3.00 | 3.00 | 0.00 | 0.00 | 0.00 | 3.15
50| 3.00 | 3.00 | 3.00 [ 0.00 [ 0.00 | 0.00 | 3.19
60| 3.00 | 3.00 | 3.00 [ 0.00 [ 0.00 | 0.00 | 3.00
70| 200 | 2.00 | 2.00 [ 0.00 [ 0.00 | 0.00 | 2.67
80| 1.00 | 1.00 1.00 | 0.00 | 0.00 | 0.00 | 0.82
90| 1.00 | 1.00 1.00 | 1.00 1.00 | 1.00 | 0.00

TABLE 2
ABSOLUTE ERRORS [ — 8 IN°], SNR=5DB,R=1.5M

4 FF FF FF NF NF NF | TDOA
[in°] | Beam | Cap | MUS | Beam | Cap | MUS

0| -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -1,00 | -30,66
10| 0,00 0,00 0,00 0,00 0,00 | 0,00 | -0,12
20| 0,00 0,00 0,00 0,00 0,00 | 0,00 0,01
30| 0,00 0,00 0,00 0,00 0,00 | 0,00 0,21
40| 0,00 0,00 0,00 0,00 0,00 | 0,00 0,04
50| 0,00 0,00 0,00 0,00 0,00 | 0,00 0,09
60| 0,00 0,00 0,00 0,00 0,00 | 0,00 0,53
70| 0,00 0,00 0,00 0,00 0,00 | 0,00 0,46
80| 0,00 0,00 0,00 0,00 0,00 | 0,00 | -0,08
90| 4,00 4,00 4,00 4,00 4,00 | 4,00 6,01

V. FINAL COMMENTS

The present work analyzed some typical AOA
estimation methods, and also a new TDOA-based
approach, under near-field conditions, especially for
acoustic signals propagation. Besides the geometric
implications of that condition, the impact of the real
nature of acoustic signals to the frequently referred
AOA estimation approaches has also been discussed.

A simple near-field adaptation has been proposed to
be used in AOA estimation techniques based on
classical methods such as beamforming, Capon, and
MUSIC. The new proposal has been assessed with the
help of simulations of a narrowband single arriving
path signal impinging a small aperture array of
sensors, under near-field conditions. Although the
proposed method represented more accurately the
near-field scenario, typical of indoor environments,
the far-field original approaches presented an

unexpected robustness. The small error increase
observed only for situations where the source is
extremely close to the array was an indication that
even for near-field conditions, the far-field approaches
provide accurate AOA estimates.

A simple version of a new TDOA-based approach
has also been simulated, in order to compare its
performance with the classical methods. Though such
methods are claimed to present superior performance
[8], specially for wideband signals, the narrowband
single-path simulations led to a slightly different
conclusion. Anyway, except for the poor estimation
behavior at the spatial spectrum edges (0° and 90°),
the TDOA-based approach performed quite as well as
the far-field classical methods.

A multipath analysis has also been carried out with
the same algorithms described in this work. However,
since  the  real-to-complex  domain  signal
transformation described in Section III does not apply
to a sum of cosines, the expected performance was
poor, what has been confirmed for 2 or 3 paths
simultaneously arriving at the array. Different
approaches still have to be tested in order to
incorporate the multipath effect to the AOA
estimation methods analysis for the case of real
signals. The other major issue still to be considered
for the next stage of this work is wideband signal
analysis.

Despite the limitations above, the main simulated
results presented in this paper have been recently
corroborated experimentally. Preliminary tests with a
4-microphones ULA in a small acoustic chamber
provided fairly accurate results, though obviously not
as accurate as those from the theoretical simulations.
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