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Abstract— Gunshot detection finds application in the fields
of law enforcement, forensic science, and defense (military
applications). The first task of a sniper detector, aiming to
estimate the direction of arrival of a given gunshot, is to
detect automatically the presence of this audio event. Since
it is a typical on-line application where a fast response is
of paramount importance, a non (computationally) expensive
procedure is needed. In a recent work, a simple procedure
based on the correlation of the audio signal against a template
has proved its efficiency as a gunshot detection algorithm. In
this paper, we extend its evaluation to a noisy environment
and assess its performance, in gunshot recognition and gunshot
detection tasks, comparing it to other more complex methods.
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I. I NTRODUCTION

The military application of DOA (Direction of Arrival)
estimation of gunshot audio signals (sometimes referred to
asSniper Detector) requires an automatic on-line detection
of a gunshot.

Gunshot sounds are made up of distinct components,
namely, themuzzle blast, lasting about 3 milliseconds, and
caused by the explosion of the charge that propels the bullet;
the sounds related to mechanical actions on the gun, like the
trigger and hammer mechanism, or the expulsion of used
cartridges; in some cases ashock wavefrom supersonic pro-
jectiles; and sounds related to environmental perturbations
that can generally be caused by impulsive sounds, as the
sound wave hits the ground or other solid surfaces [1].

Gunshot and impulsive sound detection and classification
has relied on methods from the area of speech processing
and, recently, [2] has applied a variety of such methods to the
problem of detection and classification of impulsive sounds.
These methods may rely on intensive computations, and as
such may not be fit for real-time operation in military and
law enforcement applications [3].

The problem of gunshot detection has been explored
in the context of audio streams from movies [4] using
dynamic programming and another work evaluates different
algorithms in the task of detecting firearms gunshots [5]; the

later reminds the reader that, being a gunshot signal similar
to an impulsive signal, its spectral characteristics shallmost
likely provide information of the acoustic surroundings. The
correlation detection algorithm has presented prospective
good results [5]. This work evaluates the performance of
a correlation measure against a template, by comparing it
to more sophisticated methods such as HMM [6] working
on LPC [7], MFCC [7], or the impulsivity parameter of
stable distributions [8].

This paper is organized as follows: Section II deals with
the extraction of a number of features of the impulsive signal
while Section III presents the results of tasks of gunshot
detection and gunshot recognition. Finally, conclusions are
summarized in Section IV.

II. FEATURES EXTRACTION FROM IMPULSIVE

SIGNALS

In this section, we discuss the impulsive characteristic of
a gunshot signal and briefly detail the features used in the
classification and detection tasks.

A. Impulsive sounds
Impulsive sounds are generated with the sudden appear-

ance of an air pressure wave. This can occur, for example,
in the explosion of an inflated balloon, handclaps, gunshots,
and plosive consonants such as [p], [t], and [k]. Such sounds
are characterized by a sharp attack phase and highly non-
stationary properties.

Characteristics of reverberation of an impulsive sound
reflect properties of the environment, more so than non-
impulsive signals [9], but the main concern here is with
sounds occurring in non-reverberating environments, such
as open fields.

B. Features Extraction
From each audio file, the following features were ex-

tracted:
- Correlation against audio files in set of templates,
- 8th order Linear Predictive Coding (LPC) coefficients

[7],
- The first 13 Mel-frequency cepstral coefficients

(MFCC) [7], and
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- The impulsivity parameter from stable distributions
[8].

MFCC coefficients were calculated using the Audi-
tory Toolbox [10], LPC coefficients were calculated by
Matlabr’s native implementation, and the impulsivity pa-
rameter was calculated in Fraclab [11], by McCulloch’s
method [12].

The features with temporal developments — LPC,
MFCC, and impulsivity measure — were computed for 25
millisecond windows, with overlaps of 8 milliseconds with
each adjacent window.
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Fig. 1. Example waveforms in the database.

C. Classification Algorithms
While correlation is a single quantity relating two audio

signals, the other features provide information about tempo-
ral variations in the sound.

Correlation against signals in a set of templates classifies
a signal according to the class against which maximum
correlation was obtained. Features that reflect temporal char-
acteristics of the signal are fed to Hidden Markov Models
(HMM) [6].

The HMM used 20 observable states and 8 hidden
states. Probability distribution function of an observable
state given a hidden state was modeled by a mixture of three
Gaussians. Model creation and testing were performed in a
cross-validation design. The HMM implementation is Kevin
Murphy’s HMM Toolbox[13].

D. Detection Algorithm
A correlation thresholdmethod was used for detection of

gunshots, according to a threshold for the correlation against
a gunshot template. Correlations are calculated from z-score
normalized signals.

III. S IMULATION RESULTS

First we describe the audio database used in our exper-
iments. Then we compare the correlations feature to other
more sophisticated, albeit not exactly more efficient, features
in clean and mildly noisy environments, in impulsive sound
classification tasks. Based on the good results of the corre-
lation feature, we decrease the SNR to more critical levels
and asses its performance in this scenario. Then a correlation
threshold method is proposed for gunshot detection.

A. The audio database
The database contains example sounds of handclapping,

explosions of balloons, rifle and pistol shots, and speech.
Figure 1 shows examples from our database.

All signals of our audio database were sampled at
44.1kHz. The length of each of them is 3 seconds. Gunshots
were recorded at two open field sites, during Army training
sessions carried out at CAEx (Centro de Avaliações do
Exército) and CIAMPA (Centro de Instrução Almirante
Milciades Portela Alves); speech was recorded in differ-
ent environments; balloon explosions and handclaps were
recorded in a laboratory environment (with medium level of
reverberation).

In order to evaluate the performance of the classification
algorithms at various SNR’s, white noise was added to each
audio signal. Measuring SNR for impulsive sounds can be
done in various ways [2] so as to take into account the large
and quick variations in signal potency, but here the most
usual convention of defining SNR as 10log(σ2

s /σ2
n ) over

the whole sound sample has been adopted,σ2
s andσ2

n being
the signal and noise variances, respectively. White noise was
added with the Matlabr function awgn.

B. Classification in clean and mildly noisy envi-
ronments

In simulation environments without added noise, Hidden
Markov Models working on LPC and MFCC coefficients
perform with perfection over the database of choice. The
impulsivity parameter from stable distributions, suggested
in [8] as a good characterization of impulsive sounds, did
not perform well in differentiating between the impulsive
sound classes, but performed perfectly for speech versus
impulsive sounds comparisons. This is an indication that
it could be used to identify impulsive sounds in low-noise
environments. Tables I and II show the results for all
techniques in terms of confusion matrices for the original
(clean) signals and for an SNR of 30dB, respectively.
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Fig. 2. Rifle shot template at various SNR’s.

TABLE I
CONFUSION MATRICES FOR THE ORIGINAL(CLEAN) SIGNALS

Correlation Gunshot Balloon Speech Clap
Gunshot 22 0 0 0
Balloon 9 13 0 0
Speech 4 0 18 0
Clap 0 0 0 22

LPC Gunshot Balloon Speech Clap
Gunshot 22 0 0 0
Balloon 0 22 0 0
Speech 0 0 22 0
Clap 0 0 0 22

MFCC Gunshot Balloon Speech Clap
Gunshot 22 0 0 0
Balloon 0 22 0 0
Speech 0 0 22 0
Clap 0 0 0 22

Impulsivity Gunshot Balloon Speech Clap
Gunshot 22 0 0 0
Balloon 9 5 0 8
Speech 0 0 22 0
Clap 2 1 0 19

C. Classification in heavily noisy environments

Based on results from the 30dB SNR environment, the
feature chosen for further experimentation in even noisier
environments, with 20 dB SNR and 25 dB SNR, was the
correlation against templates from each class. Results are
reported as 2x2gunshotx non-gunshotconfusion matrices,
in Table III. Experiments were run with the original four
classes and the results are presented as 2 x 2 matrices.

At 25dB SNR, no gunshots were missed, though approx-
imately one quarter of non-gunshots were false positives. At
20dB SNR, more elements from each class are classified as
non-gunshots.

TABLE II
CONFUSION MATRICES FOR THE CASE OFSNR= 30dB

Correlation Gunshot Balloon Speech Clap
Gunshot 22 0 0 0
Balloon 9 13 0 0
Speech 4 0 18 0
Clap 3 0 0 19

LPC Gunshot Balloon Speech Clap
Gunshot 13 2 0 7
Balloon 1 11 0 10
Speech 0 0 22 0
Clap 3 3 0 16

MFCC Gunshot Balloon Speech Clap
Gunshot 7 14 1 0
Balloon 0 21 0 1
Speech 0 0 22 0
Clap 1 19 0 2

Impulsivity Gunshot Balloon Speech Clap
Gunshot 14 3 0 5
Balloon 0 15 0 7
Speech 1 6 2 13
Clap 1 6 0 15

TABLE III
CONFUSION MATRICES FOR THE CORRELATION METHOD IN

HEAVILY NOISY SIGNALS

20dB Gunshot Not a gunshot
Gunshot 20 2

Not a gunshot 15 51

25dB Gunshot Not a gunshot
Gunshot 22 0

Not a gunshot 18 48

D. Gunshot detection
The good performance of the correlation measure in

classification tasks, added to its low computational cost
and robustness against noise suggests its use as a gunshot
detection feature. The proposed gunshot detection method
thus compares the signal only against a gunshot template
and uses a threshold value to determine whether it is or not
a gunshot. Figure 3 depicts histograms of correlation of each
of the classes with a gunshot template (a rifle at a distance
of 31m), at different SNR’s. Varying the decision threshold,
ROC curves are obtained and shown in Figure 4.

IV. CONCLUSIONS

The correlation against templates is not only a com-
putationally cheap procedure but also displays comparable
and even better performance than state-of-the-art algorithms
adapted from the field of speech signal processing, espe-
cially in conditions of high environmental noise, in im-
pulsive sound classification tasks. Based on these results,
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Fig. 3. Histogram of correlations between various classes and the
rifle shot template, at different SNR’s.
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Fig. 4. ROC curves for the correlation threshold method with
original (clean) signals and SNR’s 30, 25 and 20 dB.

this paper proposes its use as a gunshot classification and
detection feature.

Natural next steps are building a template database
for gunshot detection and employing de-noising techniques
prior to the correlation methods.
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