
VI INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM (ITS2006), SEPTEMBER 3-6, 2006, FORTALEZA-CE, BRAZIL

On efficient implementations of the Set-Membership
NLMS algorithm for real-time applications

Jośe A. Apolinário Jr.† and Marcello L. R. de Campos‡

Abstract— This paper addresses two efficient implementations
of the Set-Membership Normalized Least-Mean Squares (SM-
NLMS) algorithm suited for real-time applications with strong
limitation in computational complexity. It is shown how to
take advantage of a particular property of set-membership
algorithms, their data selective updating, to improve performance
with no additional costs concerning computational complexity
or hardware. Convergence speed and misadjustment of the
proposed alternative implementations are compared to those of
the conventional implementation of the SM-NLMS algorithm
when the computational complexity per iteration is limited.

Index Terms— Set-Membership adaptive filters, efficient im-
plementations, Normalized LMS algorithm.

I. I NTRODUCTION

Set-Membership adaptive algorithms are considered attrac-
tive options for a wide range of applications because of their
low average computational complexity, fast convergence, and
good tracking capability. This paper presents two efficient
implementations for the SM-NLMS algorithm [1] which take
advantage of the fact that, in this algorithm, coefficient-vector
updating is not performed unless the output error of the filter is
larger than a certain threshold. The idea presented here avoids
the typical peak complexity that the SM-NLMS algorithm
imposes to the processor when updating is required. We
investigate how simple implementation strategies can improve
performance of the SM-NLMS algorithm in a scenario where
computational resources are limited. Although presented for
the SM-NLMS algorithm, the techniques can be extended eas-
ily to other SM algorithms, e.g., the Set-Membership Affine-
Projections algorithm (SM-APA) [2].

This paper is organized as follows: In Section II, basic
concepts concerning the SM-NLMS algorithm are reviewed.
The two efficient implementations proposed in this work are
introduced in Section III. Simulation results are detailedin
Section IV and conclusions are summarized in Section V.

II. T HE SET-MEMBERSHIPNLMS ALGORITHM

Conventional adaptive filtering algorithms search, at time
instant k, a coefficient vectorw that minimizes the mean
squared output estimation error (MSE),E[e2(k)], where

e(k) = d(k) − w
T
x(k)

The authors are with the†Department of Electrical Engineering, Insti-
tuto Militar de Engenharia, Praça General Tibúrcio, 80, 22.290-270, Rio
de Janeiro-RJ, Brazil, e-mail: apolin@ieee.org and‡Program of Electrical
Engineering, COPPE/UFRJ, P. O. Box 68504, 21.945-970, Rio de Janeiro-
RJ, Brazil, e-mail: campos@lps.ufrj.br.

is the output estimation error, andd(k) and x(k) are the
desired output signal and the input-signal vector, respectively.

In set-membership filtering (SMF), an upper bound of the
output estimation error is specified such that all coefficient
vectors satisfying the error constraint are considered feasible.
The resulting adaptation algorithms are data-selective with
a considerably reduced average computational complexity.
Furthermore, the sparse updating usually results in lower
misadjustment because the algorithms do not utilize the input-
desired data pair if it does not imply innovation. In the
SM-NLMS algorithm proposed in [1], the coefficient vector
w(k− 1) is updated tow(k) only if the a priori output error
exceeds a certain thresholdγ. Let S denote the space model,
i.e., (x, d) ∈ S, andΘ the set of all possible vectorsw that
result in an error with a norm not exceedingγ. The feasibility
set Θ is defined as the set of all filter vectors satisfying the
error constraint for all possible input-desired data pairsand is
given by

Θ =
⋂

(x,d)∈S

{

w ∈ R
N : |d− w

T
x| ≤ γ

}

(1)

The set of allw satisfying the error bound, obtained after
training with k input-desired data pairs{x, d}, denoted by
H(k), is called theconstraint set and can be expressed as

H(k) =
{

w ∈ R
N :

∣

∣d(k) − w
T
x(k)

∣

∣ ≤ γ
}

(2)

The membership setψ(k) = ∩k
i=1H(i) is a subset of the

feasibility set and is defined as the minimal set estimate for
Θ at timek.

The recursion for the SM-NLMS algorithm can be summa-
rized as follows:

w(k) = w(k − 1) + α(k)
e(k)x(k)

xT (k)x(k)
(3)

The step size,α(k), is computed at each iteration according
to

α(k) =

{

1 − γ
|e(k)| if |e(k)| > γ

0, otherwise
(4)

The two implementations to be described in the next section
are based on the fact that coefficient updates are carried
out only when the output error is beyond a pre-established
thresholdγ.

III. T HE EFFICIENT IMPLEMENTATIONS

A system with infinite impulse response (IIR), e.g., the one
shown in Figure 1, is to be identified. Suppose the Digital
Signal Processor (DSP) and the sampling frequency to be

VI INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM (ITS2006), SEPTEMBER 3-6, 2006, FORTALEZA-CE, BRAZIL

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

k (samples)

A
m

pl
itu

de

Fig. 1. IIR system impulse response.

used limit the order of a finite impulse-response (FIR) adaptive
filter. In this case, performance is degraded due to insufficient
modeling order.

A simple and natural way of obtaining a better FIR mod-
eling of an IIR system is to increase the number of taps of
the adaptive filter. In order to work with the same hardware at
the same sampling frequency, one can take advantage of the
basic feature of the SM-NLMS algorithm of not performing
the parameter update at every iteration.

As observed in [3], [4], SM adaptive filtering (SM-AF) al-
gorithms demand coefficient update only for a fraction of input
data; after convergence, coefficient-update ratio can be aslow
as 10% when the environment is stationary and parameterγ is
selected appropriately. In traditional SM-AF implementations,
the DSP is usually left idle whenever coefficient update is not
required, i.e., output error is smaller than the threshold.The
advantages of set-membership adaptive filters in this case are
possible lower misadjustment and lower power consumption
when compared to conventional adaptive filters. However, the
maximum computational complexity per iteration is similarto
that of the NLMS algorithm.

The alternative implementation scheme suggested here takes
advantage of processor idle time during iterations that do not
require coefficient update. This idle time is used to extend
computational capacity and, as a consequence, to be able to
update longer filters than would be possible with the NLMS or
the conventional SM-NLMS algorithms. The implementation
schemes are based on a dissociation between the rate the
system produces the output signal and the associated output
error, from the rate the system updates the coefficient vector.
In traditional implementations of adaptive filters, even for SM-
AFs, these two rates are one and the same. In the implemen-
tation schemes proposed herein, system output and error are
still produced at every iteration, but coefficient update can span
two or more iterations. This is an extra degree of freedom left
to the designer: longer filters take more iterations to be fully
updated, but may perform better in steady state. Naturally,we
assume that these larger filter orders require a computational

capacity that is not available in the DSP in use and therefore
are not an option for the conventional NLMS or SM-NLMS
algorithm implementations.

In the following sub-sections, two alternative and efficient
solutions to the implementation of SM-AFs will be described.
In the first implementation scheme, a buffer is used to save
the input-desired signal pair(x, d) in case the DSP is busy
performing coefficient updates for previous data pairs. In the
second implementation scheme, data pairs that are received
while the DSP is busy updating previous data pairs are only
used for calculating system output and error, and are discarded
afterwards; they are not used for coefficient update.

A. Implementation I

This first implementation scheme does not discard the input
data samples that are presented to the adaptive filter while
the updating process has not been completed for previous
iterations. Data are buffered and, as soon as the processor is
free, they can be used to update the coefficients, depending on
the threshold comparison test to be performed. The solely and
obvious constraint that must be imposed in order to make this
approach feasible is that the buffer must be of a limited size.
As previously mentioned, input and desired signals received at
any iteration are immediately used to generate an output signal
and, optionally, the output error. The input-signal vectorand
desired signal are then stored in a buffer to be used later for
coefficient update. Care is taken such that if there is no timeto
process the data pairs stored in the buffer or, in other words,
whenever the buffer is full, the oldest samples are discarded.

B. Implementation II

In this second implementation scheme, if the computational
complexity for a larger number of coefficients is too high to
be performed in one single sample interval, all the rest of
the computation needed for the coefficients update is carried
out in the forthcoming iterations. The next test to decide if
the estimate needs to be updated will be performed only after
the previous update process has been completed; meanwhile,
the filter runs with fixed coefficients such that the incoming
samples are used only for the computation of the filter output.
This solution, summarized in Table I, is very simple, does not
need a buffer, and allows, with a slight decrease in the speed
of convergence, the use of a larger number of coefficients with
the same available hardware. Note in Table I that we initialize
T such thatT̂ = T+1 is the total number of iterations needed
to update the coefficient vector. The DSP programmer would
be in charge of optimizing the division of tasks to perform the
updating process according to the processor capabilities.

IV. SIMULATION RESULTS

In this section, an illustrative example is described. An IIR
system, such as the one of Figure 1, having its system function
given by

H(z) =
1

z−2 − 1.2z−1 + 0.81

is to be identified using an FIR SM-NLMS adaptive filter. The
signal-to-noise ration (SNR) was set to 40 dB and the input

VI INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM (ITS2006), SEPTEMBER 3-6, 2006, FORTALEZA-CE, BRAZIL

TABLE I

AN EFFICIENT IMPLEMENTATION OF THESM-NLMS ALGORITHM.

SM-NLMS: Implementation II
Initialization:
T is the number of extra iterations needed to updatew

T̂ = T + 1 and ε = small constant
for eachk
{ e(k) = d(k) − w

T (k − 1)x(k);
if (T == 0 & |e(k)| > γ)
{ T = 0 means the Conventional SM-NLMS algorithm:

α(k) = 1 − γ/|e(k)|;

w(k) = w(k − 1) + α(k)
e(k)

ε+||x(k)||2
x(k);

}

elsif (T̂ == T + 1 & |e(k)| > γ)

{ k̂ = k;
Compute thefirst step of the update:(

α(k̂) = 1 − γ/|e(k̂)|;

w(k̂) = w(k̂ − 1) + α(k̂)
e(k̂)

ε+||x(k̂)||2
x(k̂);

T̂ = 1;
w(k) = w(k − 1);

}
else
{ w(k) = w(k − 1);

if (T̂ < T + 1)

{ T̂ = T̂ + 1;

Compute theT̂ th step of the update above;
if (T̂ == T + 1)
{ w(k) = w(k̂);
}
end

}
end

}
end

}
end

signal is colored noise with unit variance and an eigenvalue
spread (of its autocorrelation matrix)close to2000.

In order to investigate the performance of Implementation
I, we have initially tested the above setup in250 independent
runs, with a large buffer which is never full and, therefore,
no data pair is lost. The order of the SM-NLMS I algorithm
was fixed in 63 (64 taps) and we varied the number of
coefficients that the processor is able to update per iteration,
we named itC. The result in terms of learning curves is
depicted in Figure 2 where the curves of the conventional
SM-NLMS with ordersN = 31, 15, and 7 are shown
along with the computational complexity equivalent algorithm-
implementation described herein forC = 32, C = 16, and
C = 81, respectively. For all algorithms in our simulations,
we have usedγ =

√
5σn, a typical value as noted in [5].

As shown in Figure 2, there is an influence of the number
of taps updated per iteration with algorithm performance as
C decreases. Nevertheless, compared to the conventional SM-
NLMS algorithm with equivalent computational complexity,
the results are very good, particularly after convergence,for
the effects of undermodeling are severely reduced.

In this same experiment, we present in Figure 3 the buffer
occupation for the particular case ofC = 32. From this curve,

1Note thatC = 32, 16, and 8, correspond to updating64 in 2, 4, and8
iterations, respectively.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

k

E
[e

2 (k
)]

SM−NLMS with N=7

SM−NLMS with N=15

SM−NLMS with N=31

SM−NLMS I with C=32

SM−NLMS I with C=8

SM−NLMS I with C=6

Fig. 2. Learning curves of SM-NLMS algorithms (original and Implemen-
tation I) with different computational complexities.

we see that the buffer is heavily used during convergence and
is kept close to empty in steady state.

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

1000

k

B
U

F
F

E
R

 U
S

E
D

Fig. 3. Buffer occupation for Implementation I withB = 1000 andC = 32.

Yet, for this first implementation, we have analyzed the
effect of the buffer-size, plotting in Figure 4 the learning
curve for three different values:B = 1000, B = 10, and
B = 1 while keepingC constant and equal to32. The resulting
curves show that the impact of not using all data pairs is not
very significant.B = 1 corresponds to the Implementation
II discussed in the previous section. As its performance is
similar to that of the Implementation I, in terms of speed of
convergence, and as it does not require buffering of data pairs,
more attention is devoted to this implementation form in the
remainder of this article.

We have assumed that a given processor when operating
at a certain sampling frequency is able to perform coefficient
updating for a maximum orderN = 18 for the conventional
SM-NLMS algorithm. Knowing that this value would result in
an implementation that does not meet the desired performance
due to undermodeling, the order was increased initially in50%
(27) and later doubled (36) for Implementation II described in

VI INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM (ITS2006), SEPTEMBER 3-6, 2006, FORTALEZA-CE, BRAZIL

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

k

E
[e

2 (k
)]

SM−NLMS I with C=16 and B=1000
(LARGEST BUFFER)

SM−NLMS I with C=16 and B=1
(NO BUFFER)

SM−NLMS I with C=16 and B=10

Fig. 4. Influence of buffer size in the MSE for Implementation I.

TABLE II

SUMMARY OF PEAK COMPUTATIONAL COMPLEXITY IN TERMS OF

FLOATING POINT OPERATIONS(FPO).

Algorithm FPO
SM-NLMS 3(N + 1) + 3

SM-NLMS Imp. II N + 1 + 2N+5
T+1

Numerical example forN = 18:
Size ofw SM-NLMS Imp. II (T = 1) Imp. II (T = 2)

N + 1 = 19 60 39.5 32.67

N + N

2
+ 1 = 28 87 57.5 47.67

2N + 1 = 37 114 75.5 62.67

Table I. For this implementation, peak complexity per iteration
is (N + 1) + (2N + 5)/(T + 1)2, not the3(N + 1) + 3 of the
conventional SM-NLMS algorithm.T is the number of extra
iterations required to complete coefficient updates.

The learning curves shown in Figure 5 were obtained
with the error bound set toγ =

√
5σn, for an average of

1000 independent runs. The worst performance in steady-state
presented in Figure 5 corresponds to the Conventional SM-
NLMS algorithm with filter orderN = 18. The other two
MSE curves correspond to the SM-NLMS Implementation
II with filter order equal to 27 andT = 1 extra iteration
needed to update the coefficient vector, and to the SM-NLMS
Implementation II with filter order equal to 36 andT = 2
extra iterations needed for the update of the coefficient vector.

For all three cases the computational complexities are sim-
ilar, meaning we can use the same DSP at the same sampling
frequency.

The corresponding learning curves show a clear advantage
of the proposed implementation.

V. CONCLUSIONS

In this work, two optimized implementations—named Im-
plementation I and II—for the set-membership Normalized
LMS algorithm were discussed. The main idea behind these
implementations is to avoid the peak complexity of SM
adaptive filters, making them suited for real-time applications.

2Note that, if T = 0, the computational complexity corresponds to the
conventional SM-NLMS algorithm; moreover, the firstN +1 multiplications
correspond to the fixed coefficient vector filtering operation.

0 1000 2000 3000 4000 5000
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

k

M
S

E
 (

dB
)

MSE
min

 SM−NLMS with N=18

 SM−NLMS II with 2N and T=2

 SM−NLMS II with N+N/2 and T=1

Fig. 5. Comparing the performance of the SM-NLMS ImplementationII for
different values of filter order and similar computational complexity.

Implementation I (SM-NLMS I) is based on buffering the
input-desired data pair every iteration the processor is busy
updating the coefficient vector. As seems through computer
experiments, the scheme works well as the buffer is filled
during learning and emptied in steady state. Nevertheless,
it was also seem that the buffer size does not cause an
important loss of performance when shortened. Implementa-
tion II follows as a better (although very simple) option for
performing similarly without the need of using a buffer. It was
shown, via computer simulations, that the proposed algorithm
offers ways of improving the performance of an adaptive filter
by allowing the increase of the filter order keeping exactly
the same computational complexity. This feature might be
very important in practical implementations when the DSP
is operating close to its processing capacity.

ACKNOWLEDGMENTS

The authors thank CAPES, CNPq, and FAPERJ for partial
funding of this work.

REFERENCES

[1] S. Gollamudi, S. Nagaraj, S. Kapoor, and Y. F. Huang, “Set-membership
filtering and a set-membership normalized LMS algorithm with an
adaptive step size,”IEEE Signal Processing Letters, vol. 5, no. 5, pp.
111–114, May 1998.

[2] S. Werner and P. S. R. Diniz, “Set-membership affine projection algo-
rithm,” IEEE Signal Processing Letters, vol. 8, no. 8, pp. 231–235, Aug.
2005.

[3] S. Gollamudi, S. Kapoor, S. Nagaraj, and Y. F. Huang, “Set-membership
adaptive equalization and an updator-shared implementationfor multi-
ple channel communications systems,”IEEE Trans. Signal Processing,
vol. 46, no. 9, pp. 2372–2385, Sept. 1998.

[4] S. Gollamudi and Y. F. Huang, “Updator-shared adaptive parallel equal-
ization (u-SHAPE) using set-membership identification,” in Proc. Int.
Symp. Circuits and Systems (ISCAS), Atlanta, USA, May 1996.

[5] J. F. Galdino, J. A. A. Jr., and M. L. R. de Campos, “A set-membership
NLMS algorithm with time-varying error bound,” in Proc. Int.Symp.
Circuits and Systems (ISCAS), Island of Kos, Greece, May 2006.

