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On efficient implementations of the Set-Membership
NLMS algorithm for real-time applications

Jog A. Apolinario Jrf and Marcello L. R. de Campbs

Abstract— This paper addresses two efficient implementations is the output estimation error, and(k) and z(k) are the
of the Set-Membership Normalized Least-Mean Squares (SM- desired output signal and the input-signal vector, respegt
NLMS) algorithm suited for real-time applications with strong In set-membership filtering (SMF), an upper bound of the

limitation in computational complexity. It is shown how to tout estimati ) ified h that all ffici
take advantage of a particular property of set-membership output estimalion €rror IS speciiied suc at all coeflicien

algorithms, their data selective updating, to improve performane  Vectors satisfying the error constraint are considereditiéa
with no additional costs concerning computational complexity The resulting adaptation algorithms are data-selectivia wi

or hardware. Convergence speed and misadjustment of the 3 considerably reduced average computational complexity.
proposed alterative implementations are compared to those of g thermore, the sparse updating usually results in lower
the conventional implementation of the SM-NLMS algorithm . . L .
when the computational complexity per iteration is limited. mlsf’:ld]ustment bgcgus'e the algorlthms do_nOt utll!ze thetinp
desired data pair if it does not imply innovation. In the
SM-NLMS algorithm proposed in [1], the coefficient vector
w(k — 1) is updated taw(k) only if the a priori output error
exceeds a certain threshojd Let S denote the space model,
I. INTRODUCTION i.e., (z,d) € S, and© the set of all possible vectors that

result in an error with a norm not exceedingThefeasibility

i Set-l:{lembfersmp %daptwe alg;]orlthlr_’n S t{:\re cgn&dered f?::]@%t@ is defined as the set of all filter vectors satisfying the
V& oplions for a wide range of applications because o€l ., constraint for all possible input-desired data paird is
low average computational complexity, fast convergenod, a

good tracking capability. This paper presents two eﬁicietq'[lven by

implementations for the SM-NLMS algorithm [1] which take O = ﬂ {w c RV . |d — wT;c| < 7} (1)
advantage of the fact that, in this algorithm, coefficieattor (T,d)es

updating is not performed unless the output error of the fiste
larger than a certain threshold. The idea presented he'ré&av?r
the typical peak complexity that the SM-NLMS algorith
imposes to the processor when updating is required.
investigate how simple implementation strategies can awvgr H(k) = {,w e RY: |d(k) — wTz(k)| < V} @)
performance of the SM-NLMS algorithm in a scenario where

computational resources are limited. Although presented f The membership sep(k) = N¥_, (i) is a subset of the
the SM-NLMS algorithm, the techniques can be extended edeasibility set and is defined as the minimal set estimate for
ily to other SM algorithms, e.g., the Set-Membership Affine® at time k.

Index Terms— Set-Membership adaptive filters, efficient im-
plementations, Normalized LMS algorithm.

The set of allw satisfying the error bound, obtained after
aining with & input-desired data pairs{x,d}, denoted by
”\kfe(k)’ is called theconstraint set and can be expressed as

Projections algorithm (SM-APA) [2]. The recursion for the SM-NLMS algorithm can be summa-
This paper is organized as follows: In Section Il, basidzed as follows:

concepts concerning the SM-NLMS algorithm are reviewed. e(k)x(k)

The two efficient implementations proposed in this work are w(k) =w(k—-1)+ a(’f)W 3)

introduced in Section Ill. Simulation results are detailad ) ) ) ) _
Section IV and conclusions are summarized in Section V. The step sizeq(k), is computed at each iteration according

to
1— 25 if |e(k)| >~
_ e(k
Il. THE SET-MEMBERSHIPNLMS ALGORITHM a(k) _{ 0, < otherwise )

~ Conventional adaptive filtering algorithms search, at time The two implementations to be described in the next section
instant k, a coefficient vectorw that minimizes the mean are based on the fact that coefficient updates are carried
squared output estimation error (MSE)[e*(k)], where out only when the output error is beyond a pre-established

e(k) = d(k) — wlz(k) thresholdy.
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capacity that is not available in the DSP in use and therefore
are not an option for the conventional NLMS or SM-NLMS
algorithm implementations.

In the following sub-sections, two alternative and effitien
solutions to the implementation of SM-AFs will be described
In the first implementation scheme, a buffer is used to save
the input-desired signal paiix, d) in case the DSP is busy
performing coefficient updates for previous data pairs.him t
second implementation scheme, data pairs that are received
while the DSP is busy updating previous data pairs are only
used for calculating system output and error, and are disdar
afterwards; they are not used for coefficient update.

Amplitude

A. Implementation |
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Kk (samples) This first implementation scheme does not discard the input
data samples that are presented to the adaptive filter while
Fig. 1. IR system impulse response. the updating process has not been completed for previous

iterations. Data are buffered and, as soon as the processor i

free, they can be used to update the coefficients, depending o
used limit the order of a finite impulse-response (FIR) aigapt the threshold comparison test to be performed. The solaly an
filter. In this case, performance is degraded due to insaffici obvious constraint that must be imposed in order to make this
modeling order. approach feasible is that the buffer must be of a limited.size

A simple and natural way of obtaining a better FIR mode‘S p_reviqusly me_ntioned, input and desired signals rededug
eling of an IIR system is to increase the number of taps gy |tera.t|on are immediately used to g.eneratg an outpoakig
the adaptive filter. In order to work with the same hardware af‘d’ optionally, the output error. The input-signal vecad

the same sampling frequency, one can take advantage of £ ired signal are then stored in a buffer to be used later for

basic feature of the SM-NLMS algorithm of not performin oefficient update. Care is taken such that if there is no tome
the parameter update at every iteration ggrocess the data pairs stored in the buffer or, in other words

As observed in [3], [4], SM adaptive filtering (SM-AF) al_whenever the buffer is full, the oldest samples are dischrde

gorithms demand coefficient update only for a fraction otiinp .
data; after convergence, coefficient-update ratio can bevas B 'mplementation Il
as 10% when the environment is stationary and parameiger  In this second implementation scheme, if the computational
selected appropriately. In traditional SM-AF implemeintas, complexity for a larger number of coefficients is too high to
the DSP is usually left idle whenever coefficient update is nbe performed in one single sample interval, all the rest of
required, i.e., output error is smaller than the thresh®lie the computation needed for the coefficients update is chrrie
advantages of set-membership adaptive filters in this case @ut in the forthcoming iterations. The next test to decide if
possible lower misadjustment and lower power consumptitie estimate needs to be updated will be performed only after
when compared to conventional adaptive filters. However, tthe previous update process has been completed; meanwhile,
maximum computational complexity per iteration is similar the filter runs with fixed coefficients such that the incoming
that of the NLMS algorithm. samples are used only for the computation of the filter output
The alternative implementation scheme suggested hers takBis solution, summarized in Table |, is very simple, does no
advantage of processor idle time during iterations that ato reed a buffer, and allows, with a slight decrease in the speed
require coefficient update. This idle time is used to exterff convergence, the use of a larger number of coefficients wit
computational capacity and, as a consequence, to be ablé@same available hardware. Note in Table | that we ingali
update longer filters than would be possible with the NLMS & such thatl’ = T'+1 is the total number of iterations needed
the conventional SM-NLMS algorithms. The implementatioff update the coefficient vector. The DSP programmer would
schemes are based on a dissociation between the rate R@dn charge of optimizing the division of tasks to perforra th
system produces the output signal and the associated ou#iRflating process according to the processor capabilities.
error, from the rate the system updates the coefficient wecto
In traditional implementations of adaptive filters, even$o/- IV. SIMULATION RESULTS
AFs, these two rates are one and the same. In the implemenin this section, an illustrative example is described. AR I
tation schemes proposed herein, system output and error system, such as the one of Figure 1, having its system functio
still produced at every iteration, but coefficient update span given by
two or more iterations. This is an extra degree of freedomn lef H(z) = 1
to the designer: longer filters take more iterations to by ful 272~ 1.2271 4+ 081
updated, but may perform better in steady state. Naturably, is to be identified using an FIR SM-NLMS adaptive filter. The
assume that these larger filter orders require a compugdtiosignal-to-noise ration (SNR) was set to 40 dB and the input
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TABLE |
AN EFFICIENT IMPLEMENTATION OF THESM-NLMS ALGORITHM.

SM-

[ SM-NLMS:  Implementation I ] s s o i i

NLMS with N=7

o
Initialization: |
T' is the number of extra iterations needed to update NN T SM-NLMS with N=15
T=T+1 and e = small constant ol RN gy R e
for eachk i
{ e(k) = d(k) — w" (k — 1)a(k); ‘ .
t(T==0 & le(k)]>) N S i 1
{ T =0 means the Conventional SM-NLMS algorithm: Wl o ‘ Wy .
a(k) =1 = /le(k)]; . e
w(k) = w(k —1) + alk) oz 2 k); a5 _—y
. [SM=NLMS | with C=3] i
eISIfA (T == T + 1 & |e(k)| > ’Y) o 10‘00 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00 SU‘OO 90‘00 10‘000
{ k=k; «
Compute thdirst step of the update:
a(k) =1—~/le(k)]; . Fig. 2. Learning curves of SM-NLMS algorithms (original armdplemen-
w(k) = w(k — 1) + a(k)%m(iﬂ; tation 1) with different computational complexities.
€
7= 1;
w(k) = w(k — 1);
} : . .
else we see that the buffer is heavily used during convergence and
{ wk) =wk—1) is kept close to empty in steady state.
if (T'<T+1)
{ T=T+1;
Conjpute thel'th step of the update above; 1000
if(T==T+1)
{ w(k) = w(k); 900y
} I
end 800
} 700
end
} @ 600 -
end =)
} E 500
end ;3: 00l
300+
. . . . . . . 2007
signal is colored noise with unit variance and an eigenval
spread (of its autocorrelation matrix)close 2a00. 100
In order Fo_ [nvestlgate the performance.of !mplementatu h 2050 o pvve pvve o000
I, we have initially tested the above setup2®0 independent k

runs, with a large buffer which is never full and, therefore,
no data pair is lost. The order of the SM-NLMS | algorithn¥ig. 3. Buffer occupation for Implementation | with = 1000 andC' = 32.
was fixed in 63 (64 taps) and we varied the number of
coefficients that the processor is able to update per iterati Yet, for this first implementation, we have analyzed the
we named itC. The result in terms of learning curves iseffect of the buffer-size, plotting in Figure 4 the learning
depicted in Figure 2 where the curves of the conventionewrve for three different values3 = 1000, B = 10, and
SM-NLMS with orders N = 31, 15, and 7 are shown B = 1 while keepingC' constant and equal 2. The resulting
along with the computational complexity equivalent algom-  curves show that the impact of not using all data pairs is not
implementation described herein f6t = 32, C = 16, and Very significant. B = 1 corresponds to the Implementation
C = 8, respectively. For all algorithms in our simulations|l discussed in the previous section. As its performance is
we have usedy = /50, a typical value as noted in [5]. similar to that of the Implementation |, in terms of speed of
As shown in Figure 2, there is an influence of the numbéenvergence, and as it does not require buffering of dats pai
of taps updated per iteration with algorithm performance &gore attention is devoted to this implementation form in the
C decreases. Nevertheless, compared to the conventional $&mainder of this article.
NLMS algorithm with equivalent computational complexity,
the results are very good, particularly after convergemae,
the effects of undermodeling are severely reduced.

In this same experiment, we present in Figure 3 the buff
occupation for the particular case ©f= 32. From this curve,

We have assumed that a given processor when operating
at a certain sampling frequency is able to perform coefficien
Pdating for a maximum ordeN = 18 for the conventional
M-NLMS algorithm. Knowing that this value would result in
an implementation that does not meet the desired perforenanc
INote thatC' — 32, 16, and 8, correspond to updating4 in 2,4, ands  du€ to undermodeling, the order was increased initial fyoib
iterations, respectively. (27) and later doubled3) for Implementation Il described in
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Fig. 4. Influence of buffer size in the MSE for Implementation |I. 1000 2000 2000 2000 =000

TABLE Il

SUMMARY OF PEAK COMPUTATIONAL COMPLEXITY IN TERMS OF Fig. 5. Comparing the performance of the SM-NLMS Implementatidar

FLOATING POINT OPERATIONS(FPO). different values of filter order and similar computational cdewity.
Algorithm FPO
SM-NLMS 3(N+1)+3
SM-NLMS Imp. I N+ 14 2052 Implementation | (SM-NLMS 1) is based on buffering the
Numerical example forV = 18: input-desired data pair every iteration the processor sy bu
Size ofw SM-NLMS | Imp. 1 (T"=1) | Imp. Il (T' = 2) updating the coefficient vector. As seems through computer
Ni1=19 60 395 32.67 experiments, the scheme works well as the buffer is filled
N+3+1=28 87 575 47.67 during learning and emptied in steady state. Nevertheless
2N +1=37 114 75.5 62.67 y

it was also seem that the buffer size does not cause an
important loss of performance when shortened. Implementa-
tion Il follows as a better (although very simple) option for
Table |. For this implementation, peak complexity per it performing similarly without the need of using a buffer. lasv
is (N +1)+ (2N +5)/(T +1)%, not the3(N +1) + 3 of the  shown, via computer simulations, that the proposed alyorit
conventional SM-NLMS algorithmT" is the number of extra offers ways of improving the performance of an adaptiverfilte
iterations required to complete coefficient updates. by allowing the increase of the filter order keeping exactly
The learning curves shown in Figure 5 were obtaindtie same computational complexity. This feature might be
with the error bound set tos = /50, for an average of very important in practical implementations when the DSP
1000 independent runs. The worst performance in steady-st&eoperating close to its processing capacity.
presented in Figure 5 corresponds to the Conventional SM-
NLMS algorithm with filter orderN = 18. The other two
MSE curves correspond to the SM-NLMS Implementation ACKNOWLEDGMENTS
Il with filter order equal tq _27 and’ = 1 extra iteration  Tne authors thank CAPES, CNPg, and FAPERJ for partial
needed to update thg co.eff|C|ent vector, and to the SM'NLMUQ‘nding of this work.
Implementation 1l with filter order equal to 36 arid = 2
extra iterations needed for the update of the coefficientovec
For all three cases the computational complexities are sim-
ilar, meaning we can use the same DSP at the same sampling
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