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Abstract—To estimate parameters from measurements sam-
pled on a multidimensional grid, Parallel Factor Analysis
(PARAFAC) based schemes are very appealing, since they are
applicable to mixed array geometries, which are a mixture of
arbitrary arrays and outer product based arrays. Moreover, for
PARAFAC based schemes, errors in some dimensions do not
affect the estimation of parameters in the other dimensions. Par-
ticularly, the closed-form PARAFAC based parameter estimator
has the additional advantage of being non-iterative.
In this contribution, we propose a PARAFAC decomposition

for colored noise with a Kronecker structure called Sequen-
tial Generalized Singular Value Decomposition (S-GSVD) based
closed-form PARAFAC. Our proposed estimator joins the advan-
tages of the closed-form PARAFAC — such as the applicability
to mixed array geometries and the robustness to arrays with
positioning errors — with the suitability of the S-GSVD for data
contaminated by Kronecker colored noise or interference.

I. INTRODUCTION
High-resolution parameter estimation from R-dimensional sig-
nals is a task required for a variety of applications, such as
estimating the multidimensional parameters of the dominant
multipath components from MIMO channels measurements,
radar, sonar, seismology, and medical imaging.
As shown in [1], subspace-based parameter estimation

schemes, such as the R-D Standard Tensor-ESPRIT [2], can
be significantly improved via the Sequential GSVD based
prewhitening technique in environments with multidimen-
sional colored noise with Kronecker structure, which is found
in some EEG applications [3] as well as in certain MIMO
applications [4]. However, ESPRIT-type algorithms [2] are
restricted to shift invariant arrays, while, as shown in [5],
PARAFAC based parameter estimation schemes, such as the
closed-form PARAFAC based parameter estimator, can be
applied for mixed array geometries, which are composed of
arbitrary arrays and outer product based arrays (OPAs). More
details about OPAs can be found in Section II. Moreover, since
after a jointly multidimensional data processing the PARAFAC
decomposition decouples the dimensions, parameter estima-
tion based on this technique is more robust for scenarios with
positioning errors in the arrays [5].
Since the PARAFAC decomposition assumes white

noise [6], we propose a PARAFAC decomposition for col-
ored noise called Sequential GSVD [1] based closed-form
PARAFAC, where the colored Kronecker noise or interference

is taken into account. In our proposed scheme, the Higher
Order Singular Value Decomposition (HOSVD) [7] used in
closed-form PARAFAC [8] is replaced by the Sequential
GSVD [1] of two tensors. By combining the S-GSVD [1]
and closed-form PARAFAC [8], we propose a new PARAFAC
decomposition and show how to use this new PARAFAC de-
composition in parameter estimation problems. The proposed
scheme for parameter estimation can be used in mixed array
geometries and for arrays with positioning errors as well as in
the presence of the Kronecker colored noise or interference.

II. DATA MODEL
We consider the superposition of d planar wavefronts captured
by an R-D array at N subsequent time instants. In the r-th
dimension of the R-D array, there are Mr sensors. Thus, the
measurements obey the following model

X = IR+1,d ×1 A
(1)

. . .×R A
(R) ×R+1 S

T + N
(c)

= X 0 + N
(c)

, (1)

where A(r) ∈ CMr×d is the array steering matrix in the
r-th mode with r = 1, . . . , R, the factor matrix S ∈
Cd×N contains the source symbols si(n), and in the tensor
N (c) ∈ CM1×M2×...×MR×N the colored ZMCSCG (zero-
mean circularly-symmetric complex Gaussian) noise samples
with variance σ2

n are collected. We define IR+1,d as the
identity tensor with R + 1 dimensions, where each dimension
has size d. The elements of IR+1,d are equal to 1 when all
indices are equal and 0 otherwise. The r-th unfolding of A is
represented by [A](r) and it is the matrix form of A varying
the r-th index along the rows and stacking all the other indices
along the columns of [A](r) in the same order as in [7].
In (1) the operator ×r stands for the r-mode product, which is
obtained by multiplying all r-mode vectors by a matrix from
the left-hand side and is defined as [A×r U ](r) = U · [A](r)

according to [7]. The superscript T stands for transposition
and other superscripts used here are H and −1, which mean
Hermitian transposition and matrix inversion, respectively. We
represent the i-th column of A(r) as a

(r)
i , which is as function

of ej·μ
(r)
i , where μ

(r)
i with r = 1, . . . , R and i = 1, . . . , d are

the spatial frequencies of the i-th source in the r-th dimension.
Our objective is to estimate all the spatial frequencies μ

(r)
i

from the d dominant components of X in the presence of
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Figure 1. An example of a 2-D outer product based array (OPA) of size
4 × 4 is illustrated. All the distances Δ

(r)
i for i = 1, 2, 3 and for r = 1, 2

may assume different values.

colored noise or interference with a Kronecker structure. The
model order is assumed to be known. For efficient multi-
dimensional model order selection schemes, the reader is
referred to [9], [10], [5].
The noiseless tensor X 0 ∈ CM1×M2×...×MR×MR+1 in (1)

is called an outer product based array (OPA), since it can be
written as

X 0 =
dX

i=1

a
(1)
i ◦ a

(2)
i ◦ . . . ◦ a

(R)
i ◦

“
s
(R+1)
i

”T

, (2)

where ◦ is the outer product operator.
For instance, a 2-D OPA can be formed as an outer product

of two uniform linear arrays (ULAs), which gives rise to a
uniform rectangular array (URA). On the other hand, the outer
product of non-uniform linear arrays (NULAs) is also an OPA,
which we refer to as non-uniform rectangular array (NURA).
We exemplify a 2-D OPA formed by NULAs in Fig. 1. OPAs
with more dimensions are typically present if a sensor array
is used to measure a signal at consecutive time instants and/or
on a regular grid of frequency bins.
In case of ULAs/URAs, the corresponding array steering

vectors have a Vandermonde structure, while NULAs/NURAs
can be divided into arrays with shift invariant array steering
vectors (where ESPRIT-type methods are applicable), and
those without shift invariance. The arrays that are non-outer
product arrays are called arbitrary arrays. Note that we also
study the impact of calibration errors, which means that the
actual sensor positions are not perfectly known.
As shown in [5], the closed-form PARAFAC based param-

eter estimator (CFP-PE) can be used for Outer Product based
Arrays (OPAs). Moreover, the CFP-PE is also applicable for
mixed arrays, which have some dimensions as Arbitrary Ar-
rays (AAs) and others as OPAs. Note that physical dimensions
that do not possess an outer product structure are represented
by a single dimension in our model. For example, a 2-D array
without outer product structure is represented by one array
steering matrix A(r) ∈ CMr×d, like a 1-D array.
As in [1], the multidimensional colored noise is assumed to

have a Kronecker structure, which can be written ash
N

(c)
i
(R+1)

= LR+1 · [N ](R+1) · (L1 ⊗ L2 ⊗ . . .⊗ LR)T , (3)

where ⊗ represents the Kronecker product, N ∈
C

M1×M2...×N is a tensor with i.i.d. ZMCSCG elements, and
Lr ∈ CMr×Mr is a correlation factor of the r-th dimension of
the colored noise tensor. Similarly to [1], we can rewrite (3)
by using the n-mode products in the following fashion

N
(c) = N ×1 L1 ×2 L2 . . .×R LR ×R+1 LR+1. (4)

The noise covariance matrix in the i-th modeW i is defined
as

E

jh
N

(c)
i
(i)
·

h
N

(c)
iH

(i)

ff
= α ·W i = α ·Li · L

H
i , (5)

where α is a normalization constant, such that tr(Li ·L
H
i ) =

Mi. The equivalence between (3), (4), and (5) is shown in [1],
and it is the basis for the S-GSVD [1].
For applications where noise samples without the presence

of signal components are not available, the I-S-GSVD can be
applied [11].

III. SEQUENTIAL GSVD BASED CLOSED-FORM
PARAFAC BASED PARAMETER ESTIMATOR (S-CFP-PE)
In this section, we present the proposed PARAFAC decom-
position of the tensors X and N (c). For the closed-form
PARAFAC, the estimation of the factors of the PARAFAC
decomposition is transformed into a simultaneous diagonal-
ization problem based on the relation between the truncated
HOSVD-based [7] low-rank approximation of X and the
PARAFAC decomposition of X . Here we propose to replace
the HOSVD by the S-GSVD of X andN

(c) in order to obtain
a S-GSVD-based [1] closed-form PARAFAC.
As proposed in [1], the S-GSVD is based on the computa-

tion of the GSVD of each r-mode unfolding of the tensor X

and of L̂r. The sequential computation of the GSVDs starts
with r = 1 and the computation in each dimension r can be
represented by the tensor X̃

(r)
as followsh eX (r)

i
(r)

= L̂
−1

r ·
h eX (r−1)

i
(r)

=

U
(L)
r ·Ξ(L)

r

−1
· Ξ(X)

r

T
·U (X)

r

H
, (6)

which is equivalent toeX (r)
= eX (r−1)

×r L̂
−1

r . (7)

In (6), U (L)
r and U (X)

r are unitary matrices and Ξ
(L)
r and

Ξ
(X)
r are diagonal matrices, which result from the GSVD of[
X̃

(r)
]
(r)

and L̂. Since the noise covariance has a Kronecker

structure, we can obtain a better estimate of the noise model
by considering each

[
N (c)

]
(i)
for i = 1, 2, . . . , R+1. In order

to estimate each Lr, we calculate the following expression

E

(h
N

(c)
i
(r)
·

„h
N

(c)
i
(r)

«H
)

= α ·Lr · L
H
r . (8)

where the proof for (8) is demonstrated in [1]. Note that
α is a normalization constant such that tr(Li · L

H
i ) = Mi.

Finally, using (8) it is possible to estimate the correlation factor
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Li by applying an eigenvalue decomposition or a Cholesky
decomposition.
Assuming that for all R + 1 dimensions the noise is

correlated, the S-GSVD is computed in R+1 steps. To initiate
the sequential computation of several GSVDs in (6), we set
X̃

(0)
= X . After applying the GSVD for all values of r, we

obtain the prewhitened X̃
(R+1)

. Therefore, as shown in [1],
we can define the S-GSVD of X and N

(c) as being

eX (R+1)
= S

[s] ×1 U
[s]
1 ×2 U

[s]
2 . . .×R U

[s]
R ×R+1 U

[s]
R+1, (9)

where S
[s] ∈ Cp1×p2...×pR×d and U [s]

r ∈ CMr×pr , such that
pr = min(Mr, d) for r = 1, 2, . . . , R + 1. Note that (9) is
equivalent to the HOSVD of the prewhitened tensor X̃

(R+1)
.

Since the subspaces of X̃
(R+1)

and X are different, to
obtain the same subspace of X the dewhitening step should
be applied in X̃

(R+1)
, where we obtain X

′ is given by

X
′ = S

[s] ×1

“
L̂1 ·U

[s]
1

”
×2

“
L̂2 ·U

[s]
2

”
. . . (10)

×R

“
L̂R ·U

[s]
R

”
×R+1

“
V

[s]
R+1 ·Ξ

(L)[s]
R+1

”
.

Note that X ′ ≈ X , i.e., a better approximation than
using the HOSVD based low-rank truncation, since using
the S-GSVD based truncation in (10) the noise structure is
taken into account. The accuracy in (10) is improved by
computing additionally R SVDs as proposed in [1]. Note that,
for notational convenience, we use in (10) L̂R ·U

[s]
R instead

of V
[s]
R ·Ξ

(L)[s]
R as proposed in [1]. Moreover, the PARAFAC

decomposition of X ′ can be written as

X
′ = IR+1,d ×1 F̂

(1)
×2 F̂

(2)
. . .×R+1 F̂

(R+1)
, (11)

where F̂
(r)

= L̂r ·U
[s]
r · T r for a nonsingular transformation

matrix T r ∈ Cd×d for all modes r ∈ R, where R = {r|Mr ≥
d, r = 1, . . . , R+1} denotes the set of non-degenerate modes.
Therefore, given (11) and since we obtain L̂r and U [s]

r from
the Sequential GSVD [1], we still have to estimate T r in order
to obtain F̂

(r)
. As proposed in [8], the estimation of T r is

performed via simultaneous matrix diagonalizations.
In CFP, several estimates for each factor matrix F̂

(r)

are returned and one estimate should be selected. In the
simulations presented in this paper, we choose the estimates
F̂

(r)
corresponding to the simultaneous diagonalizations with

smallest residuals as proposed in [8]. As shown [5], using
these estimates of F̂

(r)
gives estimates of parameters with

smallest root mean square error (RMSE). Moreover, each F̂
(r)

obtained from different simultaneous matrix diagonalizations
have a different permutation of the d principal components
and in order to make the correct pairing of the permuted main
components the amplitude based approach proposed in [12]
can be applied.
Up to this point only the estimates F̂

(r)
are found, however,

our objective is to have the estimates μ̂
(r)
i . In order to extract

the spatial frequencies μ̂
(r)
i from F̂

(r)
, Peak Search (PS) or

Shift Invariance (SI) based schemes can be used as proposed
in [5]. If the array is shift invariant in the r-th mode, the
estimation of the spatial frequency can be performed by
exploiting this property as follows

μ̂
(r)
i = arg

»“
J

(r)
1 · f̂

(r)

i

”H

· J
(r)
2 · f̂

(r)

i

–
(12)

where the operator arg(·) returns the phase, and J
(r)
1 ∈

R
M(sel)

r
×Mr and J

(r)
2 ∈ RM(sel)

r
×Mr are the selection matrices

from the ESPRIT-type algorithms. The selection matrix J
(r)
1

selects the M
(sel)
r elements of the first subarray and the

selection matrix J
(r)
2 selects theM

(sel)
r elements of the second

subarray [13]. M
(sel)
r depends on the geometry of the array,

and as an example for the ULA, M (sel)
r = Mr−1 corresponds

to maximum overlap.
To increase the maximum model order, with which the CFP

is still applicable, pairs of dimensions of the tensor X can
be merged into one dimension as shown in [5]. In order to
separate the merged dimensions, a Least Squares Khatri-Rao
Factorization (LSKRF) can be applied in conjunction with PS
and SI based schemes [5].

IV. SIMULATION RESULTS
In this section, we generate our samples based on the data
model of (1), where the spatial frequencies μ

(r)
i are drawn

from an uniform distribution in [−π, π]. The source symbols
are i.i.d. ZMCSCG distributed with power equal to σ2

s for
all the sources. The SNR at the receiver is defined as SNR
= 10 log10

(
σ2

s

σ2
n

)
, where σ2

n is the variance of the elements of
the white noise tensor N in (3). The standard deviation of the
positioning error of the array elements in the first and second
dimensions is denoted by ρe similarly as in [5].
Here we consider that the elements of the noise covariance

matrix in the i-th mode W i = Li · L
H
i vary as a function of

the correlation coefficient ρi similarly as in [1]. As an example
we consider in (13) the structure of W i as a function of ρi

for Mi = 3

W i =

24 1 ρ
∗

i (ρ∗i )
2

ρi 1 ρ
∗

i

ρ
2
i ρi 1

35 , (13)

where ρi is the correlation coefficient. Note that also other
types of correlation models can be used. To be consistent
with (5), we normalize Li such that tr(Li · L

H
i ) = Mi.

Similarly to [5], we consider the case that there is a
URA with positioning errors at the RX. Therefore, for severe
positioning errors, all the distances between all the consecutive
antennas are different, which implies that the assumption of
an outer product structure between the first and the second
dimensions, which are merged in our CFP approach, is not
valid anymore. These positioning errors are modeled by zero
mean real-valued Gaussian random variables with variance σ2

e .
Note that the URA with positioning errors is only included
at the RX side, whereas at the TX and frequency dimen-
sions the arrays have a Vandermonde structure without any
error. In order to compare the performance of the Sequential
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NOTATION OF THE LEGENDS USED IN ALL FIGURES.

Abbreviation Algorithm
R-D STE w/o PWT The R-D Standard Tensor-based ESPRIT [2]

is applied without prewhitening.
R-D STE S-GSVD The R-D Standard Tensor-based ESPRIT [2]

in conjunction with the S-GSVD II [1] with
correlation factors estimation (8) [1] is ap-
plied. Note that we include R − 1 SVDs at
the end of the S-GSVD in order to improve
the estimation.

CFP-PE The closed-form PARAFAC parameter esti-
mator is used [5]. In this case, for the param-
eter extraction, we combine the CFP with the
shift invariance scheme according to [5].

S-CFP-PE The proposed Sequential GSVD based closed-
form PARAFAC based parameter estimator
combined with the shift invariance scheme is
applied.

FBA This suffix indicates that the Forward Back-
ward Averaging is applied [14], [2] to virtu-
ally double the number of samples.

CFP The closed-form PARAFAC proposed in [8]
and modified in [12] is applied.

S-CFP The proposed Sequential GSVD based closed-
form PARAFAC is applied until obtaining
F̂

(r) and without including the extraction of
parameters.

GSVD combined with the closed-form PARAFAC to the other
schemes, we compute the root mean squared error (RMSE) of
the estimated spatial frequencies μ̂

(r)
i in the third, fourth, and

fifth dimensions.
In Table IV, we show the notation used for the schemes

presented in all figures. Since for the R-D STE w/o PWT
and CFP-PE the colored noise is not taken into account, their
performance is severely degraded in comparison to the S-
GSVD based schemes as shown in Fig. 2. The R-D STE
S-GSVD takes into account the colored noise and similarly
as shown in [1] a considerable improvement is achieved
compared to the R-D STE w/o PWT. Also as shown in Fig. 2,
the S-CFP-PE outperforms the R-D STE S-GSVD, due to the
robustness of the closed-form PARAFAC according to [1].
In Fig. 3, by increasing the standard deviation ρe of the

errors in the arrays of the first and second dimensions, the
R-D STE FBA w/o PWT is severely affected due to the FBA,
since to apply the FBA a more specific structure is assumed.
In this sense, the R-D STE S-GSVD [1] is more robust, since
no FBA is applied. However, both ESPRIT-algorithms are
outperformed by the closed-form PARAFAC based schemes,
S-CFP-PE and CFP-PE. In this case, both schemes have the
same performance, since the noise is white.
In general, in Figs. 2 and 3, the performance of R-D STE

with FBA is significantly degraded for high values of ρe.
In Fig. 4, we vary the SNR and additionally a severely

colored noise is assumed for r = 1, . . . , 4. By using the S-
GSVD in conjunction with the CFP, the best performance is
achieved.
In order to show the applicability of PARAFAC in Kro-

necker colored noise environments, we compute the relative

10−5 10−4 10−3 10−2 10−1 100 101

10−2

10−1

100

101

ρe

R
M

S
E

5−D STE w/o PWT
5−D STE FBA w/o PWT
5−D STE S−GSVD
CFP−PE
S−CFP−PE

Figure 2. RMSE versus the standard deviation of the array error ρe defined
in [5] in Kronecker colored environment is depicted. In the simulated scenario,
5 factor matrices have a Vandermonde structure, the array size is M1 = 4,
M2 = 4, M3 = 4, M4 = 4, M5 = 4, and N = 4, the number of
sources d = 3, the SNR = 0 dB, and the colored noise level ρr = 0.9 for
r = 1, 2, 3, 4.

root mean square reconstruction error (rRMSRE) using the
CPE and using the S-CFP, which takes the Kronecker structure
of the colored noise into account. As in [8], we define the
rRMSE as

rRMSRE =

vuuuutE

8><>:
‚‚‚IR+1,d ×1 F̂

(1)
. . .×R+1 F̂

(R+1)
−X 0

‚‚‚2

H

‖X 0‖
2
H

9>=>;,

(14)
where F̂

(r)
corresponds to the estimate of F (r). In Fig. 5,

for low SNR regimes, an improvement is obtained using the
S-CFP instead of the CFP.
The computational complexity of CPE-PE based schemes

is much greater than the R-D ESPRIT-type algorithms, since
in the closed-form PARAFAC (R−1) ·R simultaneous diago-
nalization problems are solved, while for the R-D ESPRIT-
type algorithms only one simultaneous diagonalization is
solved. Note that in CFP, several simultaneous diagonaliza-
tions (SMDs), i.e., up to R · (R− 1) SMDs, can be solved in
order to get several estimates for each factor. This information
can be used to estimate the model order via the closed-form
PARAFAC based model order selection (CFP-MOS) scheme.
Solving several SMDs is optional, for a low-complexity ver-
sion of CFP, already a single SMD can provide estimates for
all factors.

V. CONCLUSIONS
In this paper, we propose the Sequential GSVD based

closed-form PARAFAC (S-CFP), which is a new PARAFAC
decomposition of two tensors, for applications involving col-
ored noise. In contrast to the CFP, which is based on the
HOSVD, our proposed scheme takes the colored noise into
account, since it is based on the Sequential GSVD (S-GSVD).
For applications related to multidimensional array signal

processing [15], the S-CFP based parameter estimator (S-
CFP-PE) is applicable to mixed arrays and at the same time

TABLE I 
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10−5 10−4 10−3 10−2 10−1 100 101

10−1

100

ρe

R
M

S
E

5−D STE FBA w/o PWT
5−D STE S−GSVD
CFP−PE
S−CFP−PE

Figure 3. RMSE versus the standard deviation of the array error ρe for
the case of white and Kronecker colored noise is depicted. In the simulated
scenario, R factor matrices have a Vandermonde structure, and the array size
is such R = 5, M1 = 4, M2 = 4, M3 = 4, M4 = 4, M5 = 4, N = 4, and
the number of sources d = 3. White Gaussian noise is present, i.e., ρr = 0

for r = 1, 2, 3, 4.

−20 −15 −10 −5 0 5 10
10−3

10−2

10−1

100

101

SNR [dB]

R
M

S
E

5−D STE w/o PWT
5−D STE S−GSVD
CFP−PE
S−CFP−PE

Figure 4. RMSE versus the SNR in Kronecker colored environment is
depicted. In the simulated scenario, the array size is M1 = 4, M2 = 4,
M3 = 4, M4 = 4, M5 = 4, and N = 4, the number of sources d = 3,
ρe = 1, and the colored noise level ρr = 0.9 for r = 1, 2, 3, 4.

−5 0 5 10 15
10−1

100

SNR [dB]

rR
M

S
R

E

CFP−PE
S−CFP−PE

Figure 5. Relative root mean square reconstruction error (rRMSRE) versus
the SNR in Kronecker colored environment is depicted. In the simulated
scenario, the array size is M1 = 4, M2 = 4, M3 = 4, M4 = 4, M5 = 4,
and N = 4, the number of sources d = 3, and the colored noise level
ρr = 0.9 for r = 1, 2, 3, 4.

takes the Kronecker structure of the noise into account. The
performance of the S-CFP-PE for low SNR regimes is better
than the R-D STE using the S-GSVD, since the S-CFP-PE is
more robust against positioning errors in the array.
The reconstruction error is a measure for the accuracy of the

decomposition which is independent of its specific structure,
such as array steering matrices. The fact that the S-CFP-
PE lowers the reconstruction errors suggests that it can be
successfully applied for more general problems, such as, those
occuring in the food industry [6] and in chemistry [6].
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