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Abstract— Fast QR decomposition RLS (FQRD-RLS) algorithms are
well known for their good numerical properties and low computational
complexity. The FQRD-RLS algorithms do not provide access to the
filter weights, and their use have so far been limited to problems
seeking an estimate of the output error signal. In this paper we present
techniques which allow us to reproduce the equivalent output signal
corresponding to any input-signal applied to the weight vector of the
FQRD-RLS algorithm. As a consequence, we can extend the range of
applications of the FQRD-RLS to include problems where the filter
weights are periodically updated using training data, and then used for
fixed filtering of a useful data sequence, e.g., burst-trained equalizers.
The proposed output-filtering techniques are tested in an equalizer setup.
The results verify our claims that the proposed techniques achieve the
same performance as the inverse QRD-RLS algorithm at a much lower
computational cost.

I. INTRODUCTION

The recursive least-squares (RLS) is one of the fastest converging
adaptive filtering algorithms. The convergence of the RLS algorithm
serves as a benchmark for adaptive filtering algorithms. However,
there are numerical stability issues associated with it, mainly when
implemented in finite precision [1]. The conventional QRD-RLS
algorithm exhibits RLS like convergence and numerical robustness at
the same computational complexity as the RLS, i.e., O(N2), N being
the number of filter coefficients [2]. A number of low-complexity
derivatives of QRD-RLS algorithm have been successfully discov-
ered [3]–[8]. In this paper we focus on this efficient subset, commonly
called FQRD-RLS algorithms.

The main idea in FQRD-RLS algorithms is to exploit the under-
lying time-shift structure of the input data vector in order to replace
matrix update equations with vector update equations [8]. The vector
update equations are derived from forward and backward predictions.
This paper considers algorithms based on the updating of backward
prediction errors which are known to be numerically robust [7].

A major limitation of the FQRD-RLS algorithms is the unavail-
ability of an explicit weight vector term. Therefore, the applications
are limited to output error based (e.g., noise or echo cancellation), or
those that require a decision-feedback estimate of the training signal
(e.g., continuously updated equalizer). In a burst-training application
the adaptation is performed in a training block. The weight vector
obtained at the end of the training block is used for processing the
useful data. The absence of the weights in the FQRD-RLS makes the
switch from the training mode to the data processing mode nontrivial.

In the following we show how the available internal variables
related to the FQRD-RLS implicit weight vector can be frozen at any
time instant and used for output filtering of a different data sequence.
The results of the filtering will yield the same result as if the output
is due to filtering with the weights obtained using any RLS algorithm
such as the stable O(N2) inverse QRD-RLS [9].

II. FQRD-RLS ALGORITHM

In this section we present the basic concepts of the QRD-RLS
algorithm and one version of the FQRD-RLS algorithms, based on
backward prediction error update [7], [8] to aid the explanation of
the proposed fixed filtering idea.

A. Basic concepts of QR decomposition algorithms

The RLS algorithm minimizes the following cost function

ξ(k) =
k∑

i=0

λk−i[d(i) − xT(i)w(k)]2 = ‖e(k)‖2 (1)

where λ is the forgetting factor and e(k) ∈ R
(k+1)×1 is the a

posteriori error vector given as

e(k) = d(k) − X(k)w(k) (2)

where d(k) ∈ R
(k+1)×1 is the desired signal vector, X(k) ∈

R
(k+1)×N is the input data matrix, and w(k) ∈ R

N×1. The
QRD-RLS algorithm uses an orthogonal rotation matrix Q(k) to
triangularize matrix X(k) as [2][

0(k+1−N)×N

U(k)

]
= Q(k)X(k) (3)

where U(k) ∈ R
N×N is the Cholesky factor of the deterministic

autocorrelation matrix R(k) = XT (k)X(k). Pre-multiplying (2)
with Q(k) gives

Q(k)e(k) =

[
eq1(k)
eq2(k)

]
=

[
dq1(k)
dq2(k)

]
−

[
0(k+1−N)×N

U(k)

]
w(k) (4)

The cost function in (1) is minimized by choosing w(k) such that
dq2(k)−U(k)w(k) is zero. The QRD-RLS algorithm updates vector
dq2(k) and matrix U(k) as[

eq1(k)
dq2(k)

]
= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]
(5)

and [
01×N

U(k)

]
= Qθ(k)

[
xT(k)

λ1/2U(k − 1)

]
(6)

where Qθ(k) ∈ R
(N+1)×(N+1) is a sequence of Givens rotation

matrices which annihilates the input vector x(k) in (6) and is
partitioned as [4]

Qθ(k) =

[
γ(k) gT(k)
f(k) E(k)

]
(7)

The QRD-RLS algorithm is complete with the definition of the a
priori error value e(k) = eq1(k)/γ(k) where γ(k) is a scalar found
in matrix Qθ(k), see (7).



B. The FQR PRI B algorithm

The idea of the FQRD-RLS algorithm is to replace the matrix
update equation (6) with a vector update equation. The a priori error
is given as

e(k) = d(k) − wT(k − 1)x(k)

= d(k) − dT
q2(k − 1)U−T(k − 1)x(k)︸ ︷︷ ︸

λ1/2a(k)

(8)

where g(k) = −γ(k)a(k).
In the FQR PRI B algorithm [7], [8], the update equation for

vector a(k) is used. The update equation, obtained by using forward
and backward prediction equations and applying rotation matrices to
triangularize the data matrix, is given by[

eb(k)

λ1/2‖eb(k−1)‖
a(k)

]
= Qθf (k − 1)

[
a(k − 1)

ef (k)

λ1/2‖ef (k−1)‖

]
(9)

The FQR PRI B algorithm is given at the beginning of Table II.
See [5] for implementation details.

III. OUTPUT FILTERING FOR BURST-TYPE TRAINING

This section defines the problem, states the limitations of the
FQRD-RLS and provides the derivation of the proposed approaches.

A. System description

The output filtering problem under consideration is illustrated in
Figure 1. As can be seen from the figure, the adaptive filter for time
instants k < kf is updated using its input and desired signal pair
{x(k), d(k)}; we call it training mode. At time instant k = kf , the
adaptive process is stopped and from there onwards the coefficient
vector at hand w(kf ) is frozen and used for filtering, with a possibly
different input sequence, i.e., x̃(k); we call it data mode.

Such scenario can occur, for example, in periodic training where
the adaptive filter weights are not updated at every iteration but after
a certain data block. So, the adaptive filter acts as an ordinary filter
for the data block. As an example, consider an equalizer design in a
GSM environment, where the blocks of training symbols are located
within the data stream, and the estimation process is only carried out
when training symbols are encountered. The output of the filter is
given by

y(k) =

{
wT(k − 1)x(k) k < kf

wT
f x̃(k) k ≥ kf

(10)

where wf = w(kf −1) is the coefficient vector of the adaptive filter
“frozen” at a time instant immediately before k = kf and x̃(k) is
the input signal for the time instant k ≥ kf . This approach of output
filtering is unrealizable using FQRD-RLS algorithm considering its
current form.

In the proposed method, the FQRD-RLS algorithm is used during
the training mode. In the next subsection, we describe how output
filtering is carried out in the data mode using the implicit weights of
the FQRD-RLS algorithm obtained at k = kf − 1.

B. Lemmas for equivalent output-filtering

The variables from the FQRD-RLS update at time instant k =
kf − 1 can be reused to reproduce the equivalent output signal. For
this purpose, the output after weight freezing is written as

y(k) = dT
q2(kf − 1)U−T(kf − 1)︸ ︷︷ ︸

wT(kf−1)

x̃(k)

= dT
q2(kf − 1)r(k), k ≥ kf

(11)

Training mode

Data mode

x̃(k)

x(k)

w(k − 1)

k = kf

k = kf

e(k)

y(k)

d(k)

Fig. 1. The output filtering with fixed weights using adaptive filter setup.

where, dq2(kf − 1) and U−T(kf − 1) are parameters of the FQRD-
RLS at time instant k = kf −1, respectively, and r(k) from Eq. (11)
is U−T(kf − 1)x̃(k). The following lemmas are required in order to
compute Eq. (11) without explicitly computing matrix U−T(kf − 1)
(the proofs are given in the Appendix).

Lemma 1: Let x(k) ∈ R
N×1 be the input data vector and

ur,i(k) ∈ R
N×1 denote the ith column of the upper triangular matrix

U−1(k) ∈ R
N×N . Given Qθ(k−1) ∈ R

(N+1)×(N+1) from Table II,
then U−T(k−2)x(k) can be obtained from U−T(k−1)x(k) using
the relation below[

0

λ−1/2U−T(k − 2)x(k)

]
= QT

θ (k−1)

[
zk

U−T(k − 1)x(k)

]
(12)

where zk = −fT(k− 1)U−T(k− 1)x(k)/γ(k− 1) and is unknown
a priori.

Lemma 2: Let x(k) ∈ R
N×1 be the input data vector and

ur,i(k) ∈ R
N×1 denote the ith column of the upper triangular

matrix U−1(k) ∈ R
N×N . Given Qθf (k−1) ∈ R

(N+1)×(N+1) from
Table II, then U−T(k − 1)x(k) can be obtained from U−T(k −
2)x(k − 1) using the following relation[ ∗

U−T(k − 1)x(k)

]
= Qθf (k − 1)

[
U−T(k − 2)x(k − 1)

∗
]

(13)

where ∗ denote variables unknown a priori that can be solved for
recursively, and uT

r,N−1(k)x(k) = x(k)

‖e
(0)
f

(k−1)‖
.

In the next two subsection we describe two approaches that make
use of the above lemmas to filter any input sequence with the FQRD-
RLS weight vector.

C. Approach 1: Output filtering without weight extraction

This section explains an output filtering approach that does not
require the explicit knowledge of the FQRD-RLS weight vector. If
we substitute U−T(k − 1) with U−T(kf − 1) and x(k) with x̃(k)
in the Lemmas, we get[

0

λ−1/2r̃(k − 1)

]
= QT

θ(kf − 1)

[ ∗
r(k − 1)

]
(14)

and [ ∗
r(k)

]
= Qθf (kf − 1)

[
r̃(k − 1)

∗
]

(15)

where r̃(k − 1) = U−T(kf − 2)x̃(k − 1) is an intermediate value
required to get r(k). At a time instant after k = kf we have

r(k − 1) = U−T(kf − 1)x̃(k − 1) (16)

and applying Eq. (14) and (15) in succession we get

r(k) = U−T(kf − 1)x̃(k) (17)

The output y(k) can then be obtained by using the updated r(k) in
Eq. (11). Note that when r(k) is obtained from r(k − 1), only the



TABLE I
COMPUTATIONAL COMPLEXITY IN TERMS OF NUMBER OF OPERATIONS.

ALGORITHMS MULT DIV SQRT
training mode
FQR PRI B (0 ≤ k < kf ) 19N + 4 4N + 1 2N + 1
Inverse QRD-RLS 3N2 + 2N + 1 2N N
data mode
Approach 1 8N − 7 2N 0
Approach 2 (k ≤ kf + N) 16N − 6 − 13i 1 0
Approach 2 (k > kf + N) N 0 0
Inverse QRD-RLS N 0 0

input vector x̃(k) is updated and the matrix U−T(kf −1) remains the
same in the process. The computational complexity of the algorithms
and the detailed equations are provided in Tables I and II, respectively.

D. Approach 2: Output filtering with distributed weight flushing

Another approach is based on the observation that the output during
the first N iterations in data mode is given by

ỹ(k) =

k−1∑
i=0

wi(kf − 1)x̃(k − i); k ≤ N (18)

As can be noted from Eq. (18), it is only necessary to extract
the weights in a distributed manner, i.e., one weight per each new
incoming sample. Such “on-the-fly” extraction provides us with all
the weights after N iterations, and still produces the correct output
values before all the weights are acquired (according to Eq. (18)).
After the initial N iterations in the data mode, the output is simply
given by wT(kf − 1)x̃(k). Invoking Lemmas 1 and 2 using a unit
pulse (as in [10]) in parallel with the output filtering in Eq. (18)
will sequence out the weights wi(kf − 1) at the time instant it
shows up in Eq. (18). In other words, it is not necessary to make
all the weights available before starting filtering in data mode (peak
complexity O(N2) [10]). This distributed weight flushing procedure
ensures a peak complexity of O(N).

The algorithm for the filtering operation is given in Table II
(Approach 2). As can be seen from the table, variable zk in this
approach is not computed recursively (see [10] for details). The
computational complexity of this approach is given in Table I. For the
N initial iterations the computational complexity decreases linearly
from 16N − 19 to 3N − 6. After that all the weights are obtained,
the complexity is only N multiplications per iteration for the rest of
the data burst. The peak complexity in terms of number of operations
required per iteration for the proposed method and the inverse QRD-
RLS algorithm are given in Table I for comparison.

IV. SIMULATIONS

The channel equalization example is taken from [11], where the
channel taps are

[
0.5 1.2 1.5 −1

]T
. The SNR is 30 dB and

the equalizer has N = 35 coefficients. The equalizer runs in
two modes: the training mode and the data mode. In the training
mode 150 symbols from 4-QAM are used whereas in the data
mode 750 symbols from a 16-QAM constellation are processed.
For comparison, the inverse QRD-RLS algorithm [9] is implemented
along with the output filtering based FQRD-RLS algorithm. The
MSE of the algorithms are shown in Figure 2, averaged over 100
runs. It can be seen that both the algorithms converge to the same
solution. Also, the constellation diagram in the data mode is given
in Figure 3 for both algorithms. The constellation points achieved
with the inverse QRD-RLS and the proposed methods cannot be
distinguished in the figure (difference lower than −250 dB). The

TABLE II
EQUIVALENT OUTPUT-FILTERING METHOD FOR BURST TYPE TRAINING

Conventional FQRD-RLS algorithm with input signal x(k)
for each 0 ≤ k ≤ kf

Obtaining dfq2(k):[
efq1(k)
dfq2(k)

]
= Qθ(k − 1)

[
x(k)

λ1/2dfq2(k − 1)

]
Obtaining a(k):[

eb(k)

λ1/2‖eb(k−1)‖
a(k)

]
= Qθf (k − 1)

[
a(k − 1)

ef (k)

λ1/2‖ef (k−1)‖

]
Obtaining ‖ef (k)‖:

‖ef (k)‖ =
√

e2
fq1(k) + λ‖ef (k − 1)‖2

Obtaining Qθf (k):[
0

‖e(0)
f (k)‖

]
= Qθf (k)

[
dfq2(k)
‖ef (k)‖

]
Obtaining Qθ(k):[
1/γ(k)

0

]
= Qθ(k)

[
1

−a(k)

]
Joint Process Estimation:[
eq1(k)
dq2(k)

]
= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]
e(k) = eq1(k)/γ(k)

Output filtering Approach 1 Output filtering Approach 2
Initialization: Initialization:
r̃(kf ) = 0 wf,−1(kf ) = −1
for each k > kf Obtaining f and γ(kf ):[

γ
f

]
= Qθ

[
1

0N×1

]
Obtaining r(k): for each k ≤ kf + N + 1[ ∗

r(k)

]
= Qθf (kf )

[
r̃(kf )
∗

]
Get uk(kf ) from uk−1(kf − 1):[ −wb,k

‖eb‖
uk

]
= Q̃θf

[
uk−1−wf,k−1
‖ef‖

]
Updating r̃(k): Get uk(kf − 1) from uk(kf ):[

0
λ−1/2r̃(k)

]
= QT

θ(kf )

[
zk

r(k)

]
zk = −fTuk/γ

Obtaining the output:

[
0

λ−1/2uk

]
= QT

θ

[
zk
uk

]
y(k) = dT

q2(kf )r(k) Obtaining wf,k(kf ) :
wf,k = uT

kdfq2

Obtaining weights wk(kf ):
wk = uT

kdq2

Obtaining output y(k):
ỹ(k) =

∑k−1
i=0 wf (kf )x̃(k − i)

for each k > kf + N + 1
Obtaining output y(k):
y(k) = wTx̃(k)

squared weight-difference of the weights of the inverse QRD-RLS
algorithm and those extracted using Approach 2 was calculated and
averaged over K = 100 ensemble using

∆w̄i =
1

K

K−1∑
j=0

[wj
IQRD,i − wj

F QRD,i]
2 (19)

where j is the simulation run and i corresponds to the coefficient
number of the respective algorithm. Figure 4 verifies that both
algorithms acheive the same solution.

V. CONCLUSIONS

This paper showed how to reuse the internal variables of the fast
QRD-RLS (FQRD-RLS) algorithm to perform output filtering of a
different data sequence than the one related to the FQRD-RLS update
recursions. The techniques presented here facilitate new applications



of the FQRD-RLS algorithm, which are different from the standard
output-error type applications. The new output filtering technique
was used in tandem with the FQRD-RLS algorithm to design a
burst-trained equalizer for which a data sequence is processed using
the implicit weights of the FQRD-RLS algorithm. The results were
compared with that of using a design based on the inverse QRD-RLS
algorithm. It was verified that identical results are obtained using the
proposed design method at a much lower computational cost.
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APPENDIX

A. Proof of Lemma 1

It can be shown that the following relation holds for the QRD-RLS
algorithms [9][

zT(k − 1)
U−T(k − 1)

]
= Qθ(k − 1)

[
0T

λ−1/2U−T(k − 2)

]
(20)

Pre-multiplying (20) with QT
θ(k−1) followed by post-multiplication

with x(k) leads to[
0

λ−1/2U−T(k − 2)x(k)

]
= QT

θ(k − 1)

[
zT (k − 1)x(k)

U−T(k − 1)x(k)

]
(21)

where z(k) = − fT(k)U−T(k)
γ(k)

and zT(k − 1)x(k) corresponds to the
variable zk in Equation (12) which is unknown a priori.

Using (12) and (7), the value of the unknown zk can be computed
from known values with the following expression

zk = −fT(k − 1)U−T(k − 1)x(k)/γ(k − 1) (22)

where the elements of vector f(k − 1) are given by fj(k − 1) =
sin θN−j−1(k− 1)

∏N−j−2
i=0 cos θi(k− 1) with angles sin θj(k− 1)

and cos θj(k − 1) associated with the Givens rotation matrices. The
vector can then be stored for further use. A more efficient approach
used in practice to solve the expression is to consider Qθ(k) as a
sequence of Givens rotation matrices. Each rotation matrix is then
applied one by one and the expression can be solved for recursively.
See [5] for similar implementation.

B. Proof of Lemma 2

Combining the definition of a(k) with (9), we get[
eb(k)

‖eb(k−1)‖
U−T(k − 1)x(k)

]
= Qθf (k − 1)

[
U−T(k − 2)x(k − 1)

ef (k)

‖ef (k−1)‖

]
(23)

We proceed to show how Equation (23) can be evaluated without the
a priori knowledge of

ef (k)

‖ef (k−1)‖ and eb(k)
‖eb(k−1)‖ . Matrix Qθf (k) can

be written as a sequence of Givens rotation matrices. With the last
element of vector U−T(k − 2)x(k − 1) known, the Givens rotation
matrices are applied one by one and the solution can be obtained in
a recursive manner.
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