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Abstract— Set Membership adaptive filtering is known for a
number of attractive features, including reduction of computa-
tional complexity due to less frequent coefficient updates. This
paper addresses the problem of choosing the error bound to be
used in SM adaptation algorithms. This choice has often been
based on the experience of the designer, and affects directly
not only algorithm performance, but also its computational
complexity. We propose a new time-varying error bound for
a set-membership normalized least mean squares (SM-NLMS)
algorithm that yields near constant average coefficient updating
rate during both transient and steady state. The expressions given
herein not only offer a new method to calculate the error bound
automatically, but also describes the behavior of a conventional
SM-NLMS algorithm. The results were obtained for the partic-
ular application of linear time-invariant channel estimation, but
certainly provide insightful hints to other scenarios.

I. INTRODUCTION

Set-membership adaptive filters (SM-AF) are known to
be able to provide an alternative to conventional adaptive
filtering with possible lower computational complexity and
misadjustment, as well as faster convergence. In order to
achieve this optimal performance, SM filtering must rely on
a judicious choice of the error bound, γ, which is often
application dependent. This has been a major difficulty to
implement SM adaptive filters in some practical applications.
In addition, critics of SM-AF have too often emphasized
that computational complexity of SM-AF algorithms is hard
to predict and control. These two factors have somewhat
hindered the acceptance and clouded the impact that SM
adaptive filters might have enjoyed and deserved. After all, set
membership may yield adaptive filters the best of all worlds:
better performance with lower complexity.

In this paper we investigate the application of a SM
Normalized Least Mean Squares (SM-NLMS) algorithm for
a time-invariant linear-channel estimation. For this particular
application we present an analysis of the SM algorithm that
resulted in an accurate expression for the probability of up-
dating the coefficient vector. This analysis can be very useful
in hardware design, for it can very accurately predict the
overall computational power required per block of symbols
in a training sequence. In addition, we proposed a new error
bound that is proportional to the estimated mean squared
error. The resulting algorithm has near constant probability
of coefficient updates. Therefore we hope to have addressed
two major obstacles to the implementation of SM-AF and also
to have eased some of the concerns critics might have to these
powerful adaptation methods.

II. NLMS PERFORMANCE ANALYSIS FOR CHANNEL

ESTIMATION

In the scenario of interest in this paper, adaptive filters
are employed to estimate the coefficients of time-invariant
linear channels, which can also be viewed as a typical
system-identification application. The noisy observation, at
time instant k, is given by d(k) = wT

o u(k) + n(k), where
n(k) represents a zero-mean white Gaussian observation noise
with variance σ2

n, wo represents the length-L linear-channel
impulse-response vector wo = [w0 w1 · · · wL−1]T , and
u(k) represents the input-signal vector u(k) = [u(k) u(k −
1) · · · u(k − L + 1)]T .

The input sequence u(k) is assumed to consist of indepen-
dent and equiprobable symbols ±1 such that σ2

u = 1 and
uT (k)u(k) = L. Nevertheless, the results presented herein
can be easily extended to a more general case of an M -ary
phase-shift keying (M -PSK) constellation.

The NLMS estimate of wo, available at time k, is denoted
by w(k) and is updated as follows:

w(k + 1) = w(k) + µe(k)u(k) (1)

where µ is the step size parameter and e(k) is the a priori
estimation error at time k, given by e(k) = d(k)−wT (k)u(k).
Notice that, for this particular application, LMS and NLMS
algorithms are equivalent because the norm of the input signal
vector u(k) is constant and known.

The coefficient-error vector and its mean squared norm
are defined as ∆w(k) = wo − w(k) and D(k) =
E[∆wT (k)∆w(k)], respectively, where E[·] denotes the ex-
pectation operator.

From the results presented in [1], assuming a time-invariant
channel and using the independence assumption (filter coeffi-
cients are independent of the input signal), we have

D(k) = (1 − 2µ + µ2L)D(k − 1) + (µ2σ2
nL) (2)

Defining α = 1−2µ+µ2L and β = µ2σ2
nL, the expression

for D(k) can be rewritten as

D(k) = αkD(0) + β
k−1∑
i=0

αi where D(0) = ||wo||2

For k → ∞ and |α| < 1, we can write

D(∞) =
µL

2 − µL
σ2

n (3)



The mean-square output error (MSE) is given by

ξ(k) = D(k) + σ2
n = D(k) + ξmin (4)

for, in this case, the input-signal correlation matrix is the
identity matrix.

According to the definitions presented in [2], the excess
in the MSE is numerically equal to D(k) and Eq. (3) gives
the excess mean-square error. Equivalently, the misadjustment
is given by M = µL

2−µL . Due to the fact that |α| < 1, the
step-size shall be in the range 0 < µ < 2/L. Given that
ξ(∞) = (1 + M)ξmin then the step-size can be written as a
function of the misadjustment:

µ =
2M

(1 + M)L
(5)

III. A SET-MEMBERSHIP NLMS ALGORITHM

The formulation of the SM-NLMS algorithm [3] states
that w(k) shall be updated only if the absolute value of the
estimation error, |e(k)|, is greater than a pre-defined error
bound, γ. The updated vector, w(k + 1), should lead to an
a posteriori error inside the boundary hiperplanes. The SM-
NLMS algorithm chooses the closest boundary at a minimum
distance from w(k). In this work, considering the application
described in the previous section, we define the following
updating scheme:

w(k +1) =

{
w(k) + µe(k)u(k) if |e(k)| > γ

w(k) otherwise
(6)

For the case |e(k)| > γ in the equation above, the a posteriori
error will lie inside the range ±γ as long as µ is chosen close
to 1/L; actually whenever |1 − µL||e(k)| < γ. Assuming
that the a priori error e(k) is a zero-mean Gaussian process
with variance given by Eq.(4), the range of values of µ that
guarantees probability p of having the new coefficient vector
in the constraint set is given by

µ ∈ [(1/L)(1 − ρ), (1/L)(1 + ρ)] (7)

where ρ = γ√
2ξ(k)erfc−1(1−p)

and erfc[·] denotes the comple-

mentary error function [4]. Notice that if p = 1, ρ = 0 and
µ = 1/L (conventional NLMS update). When p is reduced, the
range of possible values of µ increases. The updating scheme
in Eq. (6), although a data-dependent filtering scheme, cannot
strictly be considered an SM algorithm.

Assuming that the learning curve of the updating scheme
proposed above can be approximated by the one generated
from the fixed step-size algorithm of (1), e(k) is modeled
as a Gaussian random variable with zero mean and variance
given by Eq. (4). As it will be seen at the end of this Section,
the assumption mentioned above has proved valid for values
of parameter γ commonly used in practical situations. The
probability of updating at time instant k is given by

P [|e(k)| > γ] = erfc

[
γ√

2ξ(k)

]

Bounds for the probability of update have already been used in
the set-membership literature in order to compute the excess
MSE after convergence [5].

We can assume that e(l) and e(m) are statistically indepen-
dent for l �= m and define z(k) as

z(k) =

{
1 if |e(k)| > γ

0 otherwise

and the instantaneous updating rate r(k) = E[z(k)], which
gives

r(k) = erfc

[
γ√

2ξ(k)

]
(8)

for the particular application at hand.
For a block of B symbols, we can also define the block

updating coefficient rate as

rB =
1
B

B∑
i=1

erfc

[
γ√
2ξ(i)

]

It can be observed that the rate for coefficient update will
be larger in the beginning of the adaptation and will become
smaller as convergence is approached.

A. On the behavior of the error bound.

The analytical expression given in Eq. (8) for the updating
rate may help the designer to obtain a practical value for γ.
We remind the reader that choosing the upper bound for the
estimation error has been a trial-and-error procedure and, as a
rule of thumb, a value of γ =

√
5σn has been often used.

For a particular misadjustment M , we can calculate µ
according to Eq. (5), ξ(∞) from Eq. (4), and γ can be obtained
from the updating rate after convergence, r(∞), using Eq. (8)
as follows:

γ = erfc−1[r(∞)]
√

2(M + 1)σn (9)

The choice of γ, as seen in Eq. (9), is related to the desired
rate of updating after convergence, the desired misadjustment,
and the observation noise. However, in most practical situa-
tions the designer has only limited control over observation
noise. Figure 1 shows r(∞) × M for constant values of
η = γ2/σ2

n. Values of r(∞) from 5% to 10% and M from
0.5 to 1 yield good speed of convergence and a value of
η between 4 and 5, typically found in the set-membership
filtering literature, i.e.,

√
4σn ≤ γ ≤ √

5σn.

B. Verifying the applicability of the NLMS analysis in the SM
framework.

In the previous subsection, we have assumed that the main
expression of the analysis of the conventional NLMS, i.e., the
mean squared norm of the coefficient error vector expressed
in Eq. (2), was valid for the SM-NLMS algorithm. In order to
check the validity of this assumption, we ran an experiment
consisting of a channel identification with an impulse response
given by [4] h = [0.2270 0.4601 0.6881 0.4601 0.2270]T
and the training set being a block of 500 independent and
equiprobable symbols u(k) = ±1.
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Fig. 1. Curves of r(∞) × M for fixed values of η.
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Fig. 2. Theoretical and simulated D(k) for different values of SNR.

Figure 2 shows the behavior of D(k) averaged over 1000
independent runs for values of SNR from 10dB to 40dB. Ex-
cept for the case of SNR = 40dB, simulations and theoretical
curves agree very well. In this experiment, we have set γ
equal to 0.0316 and M equal to 0.1, such that µ = 0.0364
for all values of SNR. According to the equations presented
in Sections II and III, for γ = 0.0316 and the values of SNR
equal to 10dB, 20dB, 30dB, and 40dB, r(∞) should be equal
to 0.924, 0.763, 0.3404, and 0.0026, respectively. For SNR =
40dB the value of γ = 0.0316 was clearly inappropriate for
it yielded a very low rate of updating (r(∞) = 0.26%),
which was the reason for the only unmatched curve. For the
same scenario with SNR = 40dB but with γ = 0.01, the
updating rate was 48%, leading to a very good match between
theoretical and simulated curves in Figure 2.

In a second experiment, the same setup was used in order
to verify the accuracy of the estimates of r(∞) for values of
SNR from 5dB to 40dB and for different values of γ. We
measured the rate of coefficient adaptation after convergence,
r(∞), for three different values of γ. The results are presented
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Fig. 3. Theoretical and simulated values for r(∞) as a function of the SNR.

in Figure 3. Simulation results and theoretical values agreed
very well.

It is worth mentioning that other experiments, not shown in
this paper due to lack of space, were carried out and pointed
out that, for the usual range of η, the analytical expressions
obtained from the analysis of the NLMS algorithm, for this
particular application, accurately describe the behavior of the
SM-NLMS algorithm presented in Eq.(6).

IV. A NOVEL TIME-VARYING ERROR BOUND WITH NEAR

CONSTANT UPDATING RATE

SM algorithms usually have high updating rate during
convergence and low updating rate after convergence. It may
be that an approximately constant updating rate is desirable;
in that case, an alternative approach to the choice of γ is
necessary. Our proposition is to make the error bound time-
varying, γ(k), and proportional to ξ(k). In the beginning of the
adaptation process, the larger threshold will cause less frequent
coefficient updates. As the adaptive filter converges and the
average estimation error at each time instant becomes smaller,
an also smaller threshold will render less misadjustment.

For γ(k) =
√

τξ(k) with ξ(k) given by Eq. (4), the
probability of updating the coefficients at time instant k is
equal to

P [|e(k)| > γ(k)] = r(k) = erfc
[√

τ

2

]

The constant probability of updating may be advantageous
as one may expect the same average computational complexity
throughout the training set.

Table I shows the equations of the proposed algorithm.
Values of γ(k) can be calculated in advance and stored in
memory during algorithm initialization.

For this algorithm, although the value of µ is constant,
the chosen bounds are time-varying and data-dependent. The
corresponding ρ (as in (7)) becomes

ρ =
√

τ

erfc−1(1 − p)



TABLE I
THE SM-NLMS ALGORITHM WITH CONSTANT UPDATING RATE.

SM-NLMS CU
Initialization

Choose r (the desired rate of updating):
τ = 2[erfc−1(r)]2;
Choose M (the desired misadjustment):
µ = 2M

(1+M)L
; α = (1 − 2µ + µ2L); β = 2µσ2;

Running the algorithm
for each k
{

e(k) = d(k) − wT (k)u(k);
ξ(k) = αξ(k − 1) + β;
γ(k) =

p
τξ(k);

if |e(k)| > γ(k)
{
w(k + 1) = w(k) + µe(k)u(k);
}
else
{
w(k + 1) = w(k);
}

}

which allows a simple calculation of the probability of having
the a posteriori error lying inside the constraint set. In other
words, p gives the probability that the algorithm updates as a
“true” SM algorithm.

V. SIMULATION RESULTS

In this section, we present the results of an experiment
carried out in order to show the performance of the proposed
algorithm in the same scenario previously described. We
obtained µ = 0.1333 for a misadjustment M = 0.5. We ran
the same channel identification experiment for few different
updating rates, from 5% to 50%, with a constant SNR equal
to 30dB. Figure 4 shows the simulation results averaged over
5000 independent runs. For r(∞) = 50%, p = 94.6%, i.e.,
given that an update was required, 94.6% of the updates
rendered a solution inside the constraint set. For smaller values
of r(∞), the probability of updating to w(k + 1) inside
the constraint set rapidly approached 100%. In Figure 4 the
updating rate is not exactly constant during initial convergence.
The difference is particularly noticeable when the desired rate
is small. This is due to the fact that, during convergence and
for small updating rates, the analysis expressions are only
rough approximations of the real curves. This can be seen
in Figure 5: the curves associated with smaller values of r(k)
are further apart from the theoretical curve.

VI. CONCLUSIONS

In this paper we evaluated the rate of coefficient updates
for an SM-NLMS algorithm when applied in a time-invariant
linear-channel estimation. An accurate analysis for the case
of fixed error bound was provided based in a previous work
and assuming a typical communications application. We also
proposed a new approach to the choice of the error bound
to be used by the SM algorithm where an estimate of the
mean squared error is used. This choice renders a probability
of coefficient update which is approximately constant and,
therefore, the algorithm does not “suffer” from the unbalanced
computational load over time that is seen in conventional SM
adaptive filters.
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