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Abstract—In this paper, we investigate the performance
of constrained adaptive algorithms in a beamforming system
that is also responsible for the estimation of the angle-of-
arrival (AOA) of a moving source. The merits of a num-
ber of linearly constrained adaptive algorithms are verified
in an assumed far-field condition: the Constrained Least
Mean Square (CLMS) algorithm, the Constrained Affine
Projection algorithm (CAPA), the Constrained Conjugate
Gradient (CCG) algorithm, and the Constrained Recursive
Least Square (CRLS) algorithm. In order to have a more
suitable scenario for the simulations, a fixed AOA estimation
method is used and a moving target model is proposed and
tested in our experiments.

Index Terms— angle-of-arrival, Capon, adaptive beam-
formers, tracking, moving target

I. INTRODUCTION

Tracking the angle-of-arrival (AOA) of moving targets
is a procedure of great interest in many fields, including:
communications, air traffic control, and defense operations
[11-[2]. In communications systems, for instance, an array
of antennas can be used in an attempt to effectively reject
undesired signals from other directions, while keeping the
peak of the radiation pattern pointed to the direction of
the impinging main signal. In order to do that, a simple
and intuitive approach may be based on AOA estimation
methods with an array of sensors, followed by an adaptive
beamforming procedure.

AOA estimation by array processing is widely known
in the literature. Along the last years, it has gathered even
more attention, due to the use of smart antenna techniques
for performance improvement in mobile communications
(as in the 3G systems, for instance). The main AOA
estimation methods comprise different techniques, viz,
beamforming approaches [3]-[4], subspace approaches [5]-
[7], and maximum likelihood (ML) approaches [8].

The problem that may arise, when the previously
mentioned AOA-based tracking procedure is adopted for
moving targets, is the time needed for accurate AOA
estimations. Most of the AOA estimation methods are
based on the so-called “array model” [3], that takes at least
a few snapshots of the signal transmitted by the target (cor-
rupted by noise and interference) to provide an acceptable
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estimate. If the target is moving fast, relatively to the
AOA estimation velocity, tracking procedure may present
poor performance. Actually, based on such premise, more
refined tracking approaches may be found in the literature.
In [9], for example, a more elaborated ML approach was
introduced as an amendment to overcome alleged dete-
riorated performance of the traditional techniques when
dealing with moving targets.

Despite an adequate tracking of fast moving targets
may not be achieved with the AOA-based approach, it
is assumed that at least for slow targets that procedure
may behave well enough. This work assumes that premise
to present simulation results of a beamformer that tracks
the corrupted signal of a (slowly) moving target, based
on the estimation of the corresponding AOA. The results
are analyzed aiming the performance of the beamformer,
deployed using four different linearly constrained adaptive
algorithms: the Constrained Least Mean Square (CLMS)
[12] algorithm, the Constrained Affine Projection algo-
rithm (CAPA) [14], the Constrained Conjugate Gradient
(CCG) [15] algorithm, and the Constrained Recursive
Least Squares (CRLS) [13] algorithm. Since the focus has
been chosen to be on the beamforming, a single AOA
estimation method was adopted: Capon [4].

This paper is organized as follows: Section II lists
some typical AOA estimation methods. Section III briefly
presents a description of the linearly constrained adaptive
filtering adopted in this work for beamforming. In the
next section, the simulated system setup is described,
comprising the application scenario details as well as the
beamformer structure. The tracking ability of the simulated
structure is pointed out in section V, where a qualitative
assessment of the beamformers performance is presented.
Conclusions are summarized in section VL

II. SPATIAL SPECTRUM ESTIMATION TECHNIQUES

As before mentioned, there are several AOA estimation
methods available in the literature. They can be seen as
specializations of the generic spectral estimation problem,
in which the searched “frequency” is a parameter as-
sociated to spatial information sampling, measured with



multiple sensors properly arranged [3]. The simplest algo-
rithms are the Fourier based ones, like the so-called “con-
ventional” beamforming ' or Bartlett method [10]. Finer
approaches examples are Capon [4], MUSIC (MUltiple
Slgnal Classification) [5], and Esprit methods [6].

Bartlett and Capon are among the simplest and widest
used non-parametric algorithms. On the other hand, MU-
SIC is perhaps the most popular among the parametric
methods [3]. The advantage of those two non-parametric
methods is that they do not assume anything about the
signals statistical properties. However, in cases where
such information is available or at least when it is likely
that those properties may be partially assumed, paramet-
ric methods present better performances than the non-
parametric ones.

III. ADAPTIVE BEAMFORMING TECHNIQUES

In adaptive beamforming [11], an array of sensors (or
antennas) is used to provide the maximum reception in a
specified direction, based on an estimate of the impinging
signal. This “desired” signal is corrupted by noise and
usually also by signals at the same frequency, arriving
from different directions. The beamforming technique is
also able to reject such undesirable interferences; this is
carried out by matching radiation pattern nulls to their
directions. The weights of each sensor used in the array
is then adapted for that purpose at each iteration,

This adaptive approach is efficient in tracking the di-
rection of the interferers but it usually requires some
a priori information or properties of the desired signal.
The use of a “reference” signal, which presents good
correlation to the desired one, is a common practice
in some systems, for example. The correlation between
desired and reference signals influences the beamforming
algorithm performance, specially regarding its accuracy
and convergence.

Since a reference signal is not always available, an
alternative that presents good results is the application of
linear restrictions to the weighting vector. Such is the case
of the so-called LCMV (Linearly Constrained Minimum
Variance) beamformer, which chooses its weights to min-
imize the output variance of the filter, subject to linear
constraints. The LCMV beamformer may be implemen-
ted in many different ways, depending on the type of
tradeoff that is chosen for the beamformer performance.
For example, the Constrained Least Mean Square (CLMS)
approach, which was first introduced by Frost in [12], does
not require re-initialization and incorporates the constraints
into the solution. On the other hand, the Constrained
Recursive Least Squares (CRLS) algorithm is a solution
that tries to overcome the slow convergence problem

It is worth mentioning that the word beamforming is also used to
refer to the procedure used to modify the radiation pattern of a sensors
array, as can be noticed in the following section.

experienced by the CLMS algorithm when the input signal
is strongly correlated [13]. Besides the CLMS and the
CRLS algorithms, intermediary performance algorithms
will be used in this work, namely: the Constrained Affine
Projection algorithm (CAPA) [14] and the Constrained
Conjugate Gradient (CCG) algorithm [15].

IV. SYSTEM SETUP

The application scenario thought for the tracking analy-
sis in this work is illustrated in Fig. 1. The main target
moves with uniform speed (v) along a linear path, as
indicated. Two fixed distinct co-channel interferers were
also considered in the scenario. The type of array used
was the so-called ULA (Uniform Linear Array). The far-
field condition hypothesis was assumed in all simulations.
Although such hypothesis is restrictive for some typical
application scenarios, it has been pointed out that AOA
estimation under that consideration does not present sig-
nificant errors, contrary to what might be expected [16].
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Fig. 1. Moving target AOA tracking scenario (the array is out of scale
in the drawing).

The structure implemented to carry out the tracking of
the signal emitted by moving target is depicted in Fig. 2.
As it can be seen, an array of N sensors carries out a spatial
sampling of the impinging signal transmitted from the
target (corrupted by noise and interferences). The vector
thus generated feeds the AOA estimation block, which
computes the main AOAs present (from the target and
from the interferers), after a few (time) snapshots of the
impinging signal are available. These AOA estimates help



to build the constrained matrix needed in the adaptive
beamforming algorithm, which will be responsible for
lining up the main beam of the array beampattern with the
target’s AOA. Since the constrained matrix also includes
the interferer’s AOAs presence, the beamformer is able to
minimize their undesirable contribution, putting nulls at
those angles in the beampattern.

Regarding the corruption of the signal, it was assumed
the presence of additive noise (zero mean white Gaussian)
and non-moving interferers operating in the same fre-
quency band of the target signal, (co-channel). It was
also assumed that the signal was narrowband, that is, the
potential variations of the channel impulse response along
the time affected almost equally the spectral content of the
signal received in each sensor (flat fading) [1]. Another
assumed hypothesis was that the received signal was in
baseband.
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Fig. 2. Analyzed system structure,

A complete simulation run comprised the use of the
beamforming structure in Fig. 2 along a limited time
period. In this work, a signal “time windowing” scheme
was adopted, which may be described as follows. After the
algorithm starts, a first window is defined in order to carry
out the spatial spectrum (AOA) estimation (time duration
nl in number of samples). In the following instant, the
beamformer algorithm is executed, having as reference the
AOA estimate of the desired signal, extracted from that
spatial spectrum previously processed. The beamforming
is kept iterating, with no AOA reference modification,
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during a second time window (time duration n2), long
enough for achieving convergence. This second window is
longer than the one needed for the AOA estimation (n2 >
nl). Immediately after the end of this second window, an
AOA estimation is carried out again, in order to update the
beamformer AOA reference, and so the cycle goes on, until
the end of the specified total time period of the simulation
run,

V. PERFORMANCE ANALYSIS

To exemplify the behavior of the structure, a ULA with
8 sensors with element spacing equal half wavelength was
considered. The signal transmitted by the moving target
was a 1 kHz tone, sampled with a 8 kHz rate (more
than enough to prevent aliasing). Both interferers also
transmitted 1 kHz tones, but with different phase shifts
from each other and from the target signal (the phase shifts
were chosen to be uniformly distributed random variables).
The total signal impinging the array was comprised by the
sum of the three signals plus white noise. Relatively low
values of signal-to-noise ratios (SNR) have been chosen:
10 dB for the main signal and 5 dB for the interferer’s
signals. The signal-to-interference ratio (SIR) set to was
thus 5 dB.

Since the target was moving and a plane wave propa-
gation mechanism was assumed (far-field condition), the
motion effect was represented as a time variant additional
phase shift in the main signal. This phase shift was
calculated as a function of time, of the target speed and
of geometric parameters of the adopted scenario.

Regarding the windowing procedure, a tradeoff relation-
ship had to be considered in order to define the two win-
dows lengths (n1 and n2). For the AOA estimation, better
estimates are expected if a great number of snapshots is
available. On the other hand, since the AOA spectrum is
(slowly) time variant, the window should not be that large,
otherwise the tracking accuracy would be compromised,
not to mention the increasing computational burden. For
the situations analyzed in the present work, this AOA
estimation window width adopted was nl = 20 (samples
or snapshots).

The beamforming window also presents a low width
limit in order to perform well. More specifically, the main
issue here is the beamforming algorithm convergence,
specially for the CLMS approach [12]. On the other hand,
a high width limit was also desirable, in order to make
the structure capable of tracking even abrupt changes in
the path orientation (¢). The beamforming time window
adopted for the examples presented in this work was n2
= 500 samples.

In order to illustrate the beamformer behavior, it was
assumed a scenario where two target speeds were tested
(1 m/s and 10 m/s) and the inteferer’'s AOAs were 100°
and 120°. The moving target path began 5m away from



the array center, that is, with an initial AOA of 90°, and
presented an inclination with respect to an axis parallel to
the array line () of 15°. Taking the fastest case (10 m/s) as
the first example, Fig. 3 presents the 3D estimated spatial
spectrum around 2 s duration simulation run. As it can
be noticed, both interferer’'s AOAs estimations presented
good agreement with the actual values. The same good
estimation performance has been achieved for the main
signal’s AOA, with estimation errors no greater than 2°.
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Fig. 3. Top view of a 3D spatial spectrum estimated for a 2s simulation
run (v=10m/s)

In the adopted procedure, a beampattern is calcu-
lated every instant after the AOA estimation is available.
However, it suffices to show one beampattern per window
in order to illustrate the tracking capacity of the simulated
structure. Fig. 4 and 5 present 3D views of beampatterns
calculated around 2s duration simulation run, taking only
the last pattern of each window. The top view illustrated
in Fig. 5 makes it easier to verify that the beamforming
was able to track the main signal, while nulling the
interferences along the simulation time.

In the overall, all the constrained algorithms tested
performed well regarding tracking accuracy. Only slight
differences were observed among the beampatterns, except
for the CLMS, as exemplified in Figs. 6 and 7. The
poorer CLMS performance was somehow expected, due to
its inherent slow convergence. The corresponding spatial
spectra have been inserted in those figures in order to illus-
trate the good accuracy performance of the beampatterns.

VI. FINAL REMARKS

In this work, a beamforming structure was proposed
and simulated for tracking the AOA of a slowly moving
target. Four different linearly constrained adaptive algo-
rithms have been tested: CLMS (u = 0.005), CAPA (3
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Fig. 5. Top view of a 3D CCG beampattern for a 2s simulation run
(v=10m/s).

hyperplanes), CCG (n = 0.98 and £ = 10~* ) and CRLS
(A = 0.99). The constrained matrix needed in the algo-
rithms was generated based on spatial spectrum estimates
derived from Capon’s method. The performance of those
algorithms has been assessed for a typical scenario.

In the overall, all algorithms presented good behavior
regarding stability, convergence and accuracy. The CLMS
was the one with the poorest accuracy performance, yet
the results were still acceptable. The other three algorithms
presented almost no difference in accuracy.

Since accuracy was not a critical issue, stability, con-
vergence speed, and computational burden should be taken
into account in order to evaluate the performance of the
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Fig. 6. AOA spectrum and beampatterns at the end of a 2s simulation
run (v=10m/s).
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Fig. 7. AOA spectrum and beampatterns at the end of a 2s simulation
run (v=1m/s).

algorithms. In this sense, the CCG algorithm would be
an attractive choice for its numerical stability and its near
RLS speed of convergence. Concerning its computational
complexity, we can say that it is usually between the RLS
and the APA. Please note that the CRLS algorithm is not
stable as seen in [17]. It is also worth mentioning that the
CAP algorithm presents intermediary behaviors in terms
of computational complexity and speed of convergence by
varying the number of hyperplanes [14].

Despite the good results achieved with the proposed
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technique, an alternative tracking procedure using a sliding
window procedure (as opposed to the jumping window
approach used in this paper) is currently under investi-
gation. Also, the case of non-linear motion is a topic
of further research. Finally, it is worth mentioning that
the corresponding GSC (Generalized Sidelobe Canceller)
versions of the algorithms used would lead to similar
conclusions.
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