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Abstract—This paper addresses a forensic tool used to assess
audio authenticity. The proposed method is based on detecting
phase discontinuity of the power grid signal; this signal, referred
to as electric network frequency (ENF), is sometimes embedded in
audio signals when the recording is carried out with the equipment
connected to an electrical outlet or when certain microphones are
in an ENF magnetic field. After down-sampling and band-filtering
the audio around the nominal value of the ENF, the result can
be considered a single tone such that a high-precision Fourier
analysis can be used to estimate its phase. The estimated phase
provides a visual aid to locating editing points (signalled by abrupt
phase changes) and inferring the type of audio editing (insertion or
removal of audio segments). From the estimated values, a feature
is used to quantify the discontinuity of the ENF phase, allowing
an automatic decision concerning the authenticity of the audio
evidence. The theoretical background is presented along with
practical implementation issues related to the proposed technique,
whose performance is evaluated on digitally edited audio signals.

Index Terms—Audio authenticity, discrete Fourier transform
(DFT), electric network frequency (ENF), forensic analysis, phase
estimation.

I. INTRODUCTION

ORENSIC audio authenticity, a branch of audio forensics,

has developed remarkably over the last years due to ad-
vances in digital signal processing (DSP) and a growing avail-
ability of technology [1]. It uses DSP methods to perform signal
analysis of recorded audio evidence in legal and law enforce-
ment contexts.

As any other forensic science, authenticity examinations ana-
lyze and interpret physical evidence using natural sciences. The
goal of this paper is to detail a technique that uses a high preci-
sion phase analysis to detect electric network frequency (ENF)
discontinuities and thus provide some degree of audio authen-
tication [2], [3]. The proposed technique is, therefore, based on
the presence of a small portion of the power grid signal, some-
times embedded in audio recordings.
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The importance of this topic is enhanced by the advent of
personal computers and all sorts of digital technology: we may
say that, today, editing digital audio has become a simple task
[4]. Moreover, if a good job is carried out, it is hard, even for
well-trained ears, to detect this type of fraud, hence, the impor-
tance of this subject in the field of audio authenticity.

To tackle the digital audio authenticity problem, this paper
resorts to modern DSP techniques which, to some extent, can
be quite effective in detecting subtle changes in the phase of the
ENF, provided it is present in the recorded material.

The paper is organized as follows. Section II provides some
background about the power grid signal: its generation, behavior
of the ENF and its phase, and how it is embedded in audio sig-
nals. Section III deals with estimating the phase of a sinusoidal
signal. We start from a simple concept, the use of the discrete
Fourier transform (DFT), and discuss a high-precision Fourier
analysis technique for which we propose an efficient phase es-
timation scheme. Section IV details the proposed method for
audio authenticity based on the phase estimate of the power grid
signal. The method includes a visual characterization as well as
an automatic discrimination. Section V evaluates the proposed
method with real audio signals. The signals belong to two public
corpora. Examples of the two types of editing (insertion and re-
moval of a signal fragment) are also shown in this section. Fi-
nally, after a few practical issues discussed in Section VI, con-
clusions are summarized in Section VII.

II. THE POWER GRID SIGNAL

The electric power system, as an important element for
modern society, constitutes a fundamental factor for the de-
velopment of countries and can be defined as a group of
apparatuses, wires, and machines, that links the power plants
to costumers and their needs. Power plants may generate
energy by different ways including thermal (coal, oil, nuclear,
geothermal), hydroelectric, solar, and wind. The public power
grid signal may be viewed as a single sinusoidal waveform with
a fixed frequency (the so-called ENF).

Most of the power provided by the power grid comes from
turbines that work as generators of alternating current. The ro-
tation velocity of these turbines determines the ENF, whose
standard nominal values are 50 and 60 Hz. The first value is
adopted in European countries, Asian countries (except Saudi
Arabia), African countries (except Liberia), Australia, and in
some South American countries like Argentina, Bolivia, Chile,
Uruguay, and Paraguay. Meanwhile, 60 Hz is used in Central
and North America and in some other South American coun-
tries including Ecuador, Venezuela, Peru, Colombia, and Brazil.
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Japan is a peculiar case that adopts both 50 and 60 Hz as ENF
nominal values.

It is important to mention that, for a correct operation of the
power system, frequency and phase of all power generation units
should remain synchronous within narrow limits. It is, therefore,
of paramount importance that the ENF remains stable. If, for
example, a generator drops 2 Hz below the nominal ENF, it will
rapidly build up enough heat to destroy itself [5]. Therefore, in
the majority of cities, especially those in the most developed
regions, a tight control is kept over operator units.

Every type of electric equipment operating connected to the
power grid emits an electromagnetic field. This fact causes the
power grid signal to be embedded in some recorded signals
when a recording device is connected to an electrical outlet or
to certain microphones in an ENF magnetic field [6]. Its pres-
ence in recorded signals and its expected frequency and phase
stability make the ENF useful in some audio authenticity exam-
inations [7], [8].

In [4] and [9], the ENF is used for the task of audio authen-
ticity; the method therein is based on comparing the pattern of
the ENF embedded in a recorded signal with the patterns of the
power grid signals from a few (suspect) regions, which have
been previously stored in a database. It is then possible to obtain,
besides audio authentication, information about the place where
and the time when the recording was carried out. The Forensic
Speech and Audio Analysis Working Group of the European
Network of Forensic Science Institutes recently published a doc-
ument giving guidelines for the use of ENF analysis in forensic
authentication of audio recordings [10], attesting to the impor-
tance of this subject.

The present work is based on estimating the phase of the
power grid signal embedded in the recorded audio signal as-
suming that a database with ENF information is not available.
We use abrupt changes in the estimated phase to infer whether
or not the signal has been digitally edited.

III. ESTIMATING FREQUENCY AND PHASE OF A SINGLE TONE

The power grid signal may be viewed as a single tone whose
frequency and phase can be estimated. This section starts with
the short-time DFT [11] and proceeds to a high-precision
Fourier analysis method named DFT! (the term DFT* was
coined in [12] denoting the DFT of the kth derivative of a
signal, DFT" representing its regular DFT).

A. Phase Estimation Using the DFT

Let Stone(n) be an M-sample single tone sequence, whose
frequency and phase are to be estimated. The application of a
smoothing window w(n) (e.g., Hann) yields the signal z(n) =
Stone(n)w(n). The Nppr-point DFT of z(n), with Nppr >
M, will be called X (k).

Let kpeak be the integer index associated with the maximum
value of | X (k)|. Then, the estimated value of the tone frequency
is

fs

forT = k‘peakm e

where f is the sampling frequency of Stone(n). The resolution
of fprr, which can only assume discrete values, is fs/Nppr.
This means that the greater the value of Nppr, the better the
accuracy of fppr, at the expense of increased computational
burden. The tone phase is simply the argument (or angle) of
X (kpeak)

¢prr = arg [X (kpeak)] - )

B. The Novel Phase Estimation Method

The method in [12], named DFT?, refines the DFT-based fre-
quency estimation of a single tone, and is commonly used to
extract spectral modeling parameters from audio signals. It uses
the short-time DFT of the first-order signal derivative. Practical
experiments show that DFT! attains an improved accuracy in
finding the peak of the signal spectrum (i.e., the actual value
of its frequency) compared to the DFT method, even for small
values of Nppr.

The basic steps to estimate the frequency, as presented in [12],
are the following:

1) Compute the approximate first derivative of the signal at
instant n

Stone(n) = fs [Stone(n) = Stone(n — 1)].
2) Obtain the windowed version of s¢one(n) and si,,.(n)
2(n) = Stone(N)w(n)
' (n) = s{one(n)w(n).
3) Obtain the Nppr-point DFT of z(n) and z’(n). They
will be denoted as X (k) and X' (k), respectively.
4) Compute | X (k)| and | X' (k)| as well as kpeak, obtained

as in Section III-A.
5) Multiply | X' (k)| by the scaling factor F'(k)

7k

F(k) = [ (N?;T) :

At this point, we have DFT’[k] =
DFT'[k] = F(k)|X'(k)|.
6) Finally, the value of the estimated frequency

| X (k)| and

1 DFT! [kpear]

PorT = o DR e

According to [12], kpeak is expected to be the closest
integer to fppr1 Nprr/ fs; then, in order for fppr1 to
be considered a valid solution,

fs (kpeak - %)
Nprr

fs (kpeak + %)

< < A S

< form Nppr

must be satisfied, otherwise the method has failed for
this frequency. If we define kppr1 = NprrfprpTi/ fss
the validation condition can be rewritten as

1 1
(kpcak - 5) < kDFTl < (kpcak + 5) .
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The mechanism introduced in [12] is intended to estimate
the value of the frequencies of single tones present in an audio
signal, based on the use of the Fourier transform of signal deriva-
tives. The method proposed below extends this result to estimate
the phase of a single tone.

Considering a signal model given by Sione(n) =
a(n)cos(won + ¢o), the signal phase corresponds to
¢(n) = won + ¢o, where ¢ is the phase at n = 0. An
estimation of such a value would be restricted to the interval
between —7 and m, and a plot of ¢(n) x n would be a saw-
tooth-like curve (wrapped phase). This model of S¢one(n) is
of a narrowband signal, which would be deterministic were
a(n) a constant. In practice, a(n) is assumed to evolve slowly
over time, and thus can be taken as approximately constant
within a small analysis frame or “window.” The model does
not include any stochastic part (or broadband component), but
can be applied to the target problem of this work, since, as will
be seen in the next section, all frequency components outside
a small bandwidth defined around the ENF nominal value are
carefully filtered out.

Therefore, the signal can be expressed as

Stone(n) = GCOS(WOTL + d)O) (3)

where wg = 27 frone/ fs» and fione is the actual value of the
tone frequency.

Consequently, si,..(n), as computed in the first step of the
DFT! frequency estimation procedure, can be expressed as

Séoani;(n) = [cos(won + ¢o) — cos(won — wo + ¢o)]
= [cos(¢o) — cos(po — wo)] cos(won)

— [sin(¢g) — sin(¢o — wo)] sin(won). 4

Additionally, since the first difference of a sinusoid (tone)
is in fact another sinusoid with the same frequency, (4) can be
represented by

Stone()

of. = C cos(won + 0)

= C cos(f) cos(won) — C'sin(f) sin(won) (5)

where C' is a constant and 6 is the phase of s} ...
Comparing (4) to (5), we can write

C cos(0) = cos(¢g) — cos(do — wo) (6)
and

C'sin(f) = sin(¢g) — sin(do — wp)- (7

Dividing (7) by (6), we obtain

sin (6 sin(¢o) — sin(¢o — wo)
cos(f cos(¢g) — cos(¢o — wo)
sin(¢o) [1 — cos(wg)] + cos(¢o) sin(wp)

= cos(¢o) [L — cos(wo)] — sin(¢o) sin(wo)’ ®)

tan(f) = ; =

Dividing both numerator and denominator of (8) by cos(¢o)
and isolating tan(¢y), the next expression is obtained

tan(o) = tan(f) [1 — cos(wo)] + sin(wg). ©)

1 — cos(wp) — tan(f) sin(wp)

The value of ¢ represents the initial phase of son0(n); since
it is being estimated from the DFT!, we write it as

tan(f) [1 — cos(wp)] + sin(wp)
1 — cos(wp) — tan(f) sin(wp) } (10)

¢DFT1 = arctan{

where the value of wy is approximated as wo ~ 27 fppr1 / fs.
For the value of 6, we carry out a linear interpolation in the
argument of X'(k). Let kiow and kpign be defined as

kiow = floor[kppr1]
and

Enigh = ceil[kppr1]

where floor[] rounds the value of « to the nearest integer less
than or equal to « and ceil[3] rounds the value of (3 to the nearest
integer greater than or equal to 3.

Recalling that kppri = Nprrfppri/fs, a linear in-
terpolation between points (Kiow,flow = arg[X'(kiow)])
and (khig}u Hhigh = arg[X'(k'high)]) can yleld pOil’lt
(kppr1,arg[X’(kpprt)]), whose argument corresponds to
the value of # used in (10), i.e.,

) Ohigh — Olow

0 ~ (kDFTl — klow + HIOW'

khigh - klow (11)

From (10), it is worth mentioning that ¢pp1 can have two
possible values. If arctan(¢ppr1 ) has a positive value, gpp
could be in the first or in the third quadrant of a two-dimensional
Cartesian system; if, on the other hand, arctan(¢ppr:) has a
negative value, ¢ppr: could be in the second or in the fourth
quadrant. A simple decision can be taken by using the value of
¢prr as areference: choose the value of ¢pppr1 closer to ¢ppr.

C. Preliminary Experiments

In order to understand better and evaluate the proposed
method, we provide the results of a few preliminary computer
experiments.

We have initially considered a 60.98-Hz sinusoidal tone sam-
pled at 1200 Hz. In Fig. 1, the true spectrum of this signal,
zoomed around the nominal frequency of the tone, is shown to-
gether with its associate discrete spectra computed via 200- and
2000-point DFTs.

In this experiment, we obtained the first 100 estimated
frequencies and phases for consecutive frames of the test tone
delimited by a 200-sample sliding window (i.e., advancing
sample by sample). For this particular signal, the DFT proce-
dure provided a constant estimated frequency value of 60 Hz
for Nprpr = 200, and 61.20 Hz for Nppr = 2000. Meanwhile,
when using the DFT! method, the values of the estimated
frequency had a mean of 60.9719 Hz with a standard deviation
of 0.0025 Hz for Npgr = 200, and a mean of 60.9818 Hz with
a standard deviation of 0.0032 Hz for Nprt = 2000.
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Fig. 1. Spectra of 500 windowed samples of a single 60.98-Hz tone sampled
at 1200 Hz: continuous spectrum; 200-point DFT; and 2000-point DFT.
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Fig. 2. Phase estimation of an artificial 60.98-Hz tone: (a) signal; (b) phase
estimate.

A mean relative error! averaged over the frames € has been
computed for both DFT and DFT?. The values of € ¢ obtained
were: 1.61% with Nppt = 200, and 0.36% with Nprpr = 2000
for the DFT method; 0.014% with Nppr = 200, and 0.005%
with Nppr = 2000 for the DFT! method. The errors attained
with the DFT! method are substantially lower than those with
the DFT method.

The respective 100 estimations of phase using DFT and DFT*
are shown in Fig. 2. For both methods, the same number of
points Nppr and window size have been used. Analogously
to the case of frequency estimation, a mean error €4 has been

IThe relative frequency error at the 7, th frame is defined by the rate between
the absolute value of the difference estimated value minus correct value and the
correct value, i.e., e (ny) = (|f(ns) — f(no)|/F(ns)) X 100%.

M NDET ey €4
Method (samples) | (points) (%) (Degrees)

200 0.8306 4.4086

60 2,000 0.2696 1.4309

20,000 0.0679 0.3606

200 0.8189 7.2944

DFT 100 2,000 0.2688 2.3949
20,000 0.0261 0.2329
200 0.8180 14.6496

200 2,000 0.2588 4.6359

20,000 0.0246 0.4411

200 0.0559 0.2907

60 2,000 0.0543 0.2831

20,000 0.0538 0.2802

200 0.0138 0.1217

DFT! 100 2,000 0.0131 0.1160
20,000 0.0130 0.1152

200 0.0024 0.1221

200 2,000 0.0024 0.0559

20,000 0.0015 0.0436

obtained as an average over the phase error.2 The mean phase
errors obtained were: 29.25° with Nppr = 200, and 6.57° with
Nprr = 2000 for the DFT method; 0.25° with Nppt = 200,
and 0.0912° with Nppr = 2000 for the DFT! method. A con-
siderable improvement has been be obtained in phase estimation
using the new method.

A statistical evaluation of frequency and phase estimation for
both methods, DFT and DFT!, was performed. For that, 1000
tones with frequencies randomly varying (with uniform distri-
bution) between 59.0 and 61.0 Hz were synthesized. Subse-
quently, the errors in the estimates of frequency and phase for
different DFT lengths and window sizes (M) were computed.
Table I summarizes the results.

It can be seen that when the DFT length increases, given a
constant window size, frequency and phase estimates improve
in both methods; this is due to the fact that the signal spec-
trum is sampled with higher resolution. Additionally, the DFT"
method provides a substantial improvement in frequency and
phase estimation when compared to the DFT method, for the
same Nppr. This effect can be seen in Table I: the DFT! es-
timates with lowest resolution (Nppr = 200) are better than
the DFT estimations with highest resolution (Npgpr = 20000).
For stationary signals, as in the present experiment, increasing
window size improves frequency estimation in both methods.
However, this parameter cannot grow unbounded if one needs
to detect abrupt phase changes, thus it should be kept low for
the target application.

IV. THE PROPOSED METHOD

As mentioned before, the power grid signal may be em-
bedded in recorded signals. Consequently, considering that
audio editing means removal or insertion of a portion of audio,
the same action is carried out in the embedded power grid

2The phase error at the n,th frame is defined as the absolute value of the
difference between the estimated value and the correct phase and is given as

es(ny) = [d(ny) = ¢(m)].
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signal. Following this reasoning, a method that attempts to
detect abrupt changes in the phase of the embedded ENF signal
is proposed here.

The method can be divided in two parts. The first part com-
prises a visual mechanism that allows the observation of the be-
havior of the estimated phase of the power grid signal. The other
part automatically discriminates between original and edited
signals by means of a decision ratio. The basic idea of this
method, without employing high-precision phase analysis, can
be found in [13] and [14].

A. Visual Method

The steps of the visual method are detailed below:

1) Down-sample the audio signal to a frequency fqs which,
as a suggestion, could be 1000 or 1200 Hz, depending on
the value of the nominal ENF being 50 or 60 Hz, respec-
tively. This synchronous sampling, besides reducing the
analysis computational burden, allows working with an
exact number of samples per cycle of the nominal ENF
(or, in the frequency domain, locating one DFT bin ex-
actly on the nominal ENF).

2) Use a very sharp linear-phase FIR filter to bandpass
the down-sampled signal. This filter should be centered
in the nominal ENF value, and have a passband width
between 0.6 and 1.4 Hz, depending on the ENF toler-
ance guaranteed by the electrical company. In the ex-
periments carried out in this work, a 10 000-coefficient
zero-phase filter has been employed (using Matlab func-
tion filtfilt to avoid delay).

3) Divide the filtered signal in blocks of N cycles of the
nominal ENF, each block overlapping the former by
(N¢ —1) cycles. The signal is then segmented in Npjock
blocks. In Fig. 3, blocks of N = 3 cycles of the nom-
inal ENF are shown.

4) Estimate the phase of every segmented block using DFT
or DFT?. Let ¢(n3) be the corresponding phase estimate
for the block index 7.

5) Plot phase values in degrees versus cycles of nominal
ENF for visual inspection.

B. Automatic Method

The automatic discrimination between edited and original
signals requires a feature that characterizes the detection of
abrupt phase changes in the power grid signal embedded in the
recorded audio, related to audio editing. The variation of the
estimated ENF phase for the n;th block under analysis

¢ () = p(ny) — p(ny, — 1) (12)
for 2 < ny < Npjock, 18 chosen onr this purpose.

Taking mg, as the average of ¢(np) from ny, = 2 to Npjock,
the proposed feature F' is then defined as

NBiock

2 [#(na) =y | 2} . (13)

F =100 log{N 1
Block —

b=

AUDIO SIGNAL

NOMINAL ENF
0o 1 2 3 4 5 Nene ! Nene
Cycles of Nominal ENF ()
Block(1):
Ng cycles of ENF Block(Ngiock):
Block(2): N¢ cycles of ENF
N¢ cycles of ENF Block(Ngjoek —1):

N¢ cycles of ENF

Block(3):

N cycles of ENF
—>

Fig. 3. Block fragmentation of an audio signal. Ngnr is the number of ENF
cycles in the audio signal; Ngiocx is the number of fragment blocks; N is the
number of ENF cycles in each block.

For the detection process, the hypothesis group {Ho, Hg}
is defined; Hp and Hg represent the hypothesis for an audio
signal being original and edited, respectively. A decision ratio
for the automatic detection can be expressed as

Hp
=
Ho

(14)

where +y is a threshold. For F' greater than v, it is decided that
the audio signal has been edited, i.e., hypothesis H g. Otherwise,
hypothesis Ho is favored.

Let Pp be the probability of detection, or hit (i.e., the audio
signal is considered as edited when it indeed has been edited),
Pr be the probability of false alarm (i.e., the audio signal is con-
sidered as edited when it has actually not been edited), and Py,
as the probability of a miss (i.e., the audio signal is considered
as not edited when it indeed has been edited). The expressions
for Pp, Pr, and Py are

Pp =P(H = Hg|Hg) = P(F > ~v|Hg)

Pr =P(H = Hg|Hp) = P(F > ~|Ho)
and

Py =P(H = Hp|Hg) = P(F < v|Hp).

Additionally, Pp = 1 — Py,. For optimal detection, the goal
is to obtain a value of ~ that maximizes the value of Pp. To es-
tablish this threshold, it is necessary to prepare a corpus of audio
signals including their original and edited (in a controlled way)
versions, and evaluate this database with the proposed method
for an extended range of -y values; with the corresponding values
of Py; and Pp, the so-called detection error tradeoff (DET)
curve [15] (Py as a function of Pp) is constructed. The point
in the curve where Py; = Pp is known as the equal error rate
(EER). The value of v that corresponds to the EER point will be
taken as the decision threshold in (14). The EER allows the char-
acterization of the detection system error by a single parameter,
since the lower this value the better is the system performance.
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Fig. 4. Histogram of phase change for the signals forming the corpus of edited
speech.

V. ASSESSING THE METHOD

In order to evaluate the proposed method, it was employed
to check the authenticity of digitally edited recordings. The
original recordings [digitized with 16-bit quantization and
sampling rates of 8 kHz in the case of telephone and 16 kHz
in the case of microphone signals (see additional details in
[16])] for the main evaluation were taken from two public
databases in Spanish, AHUMADA and GAUDI, obtained from
the website http://atvs.ii.uam.es/databases.jsp. The signals
chosen for the evaluation were checked and determined to be
neither digitally saturated nor having a low signal-to-noise ratio
(SNR). Since both databases came from Spain, the nominal
ENF associated with all signals was 50 Hz. Overall, 100 signals
(speech utterances) were used: 50 by female and 50 by male
speakers. They were edited in such a way that half of the
speech files had an audio portion deleted, while the other half
had a portion of audio inserted. Insertions were carried out
with a fragment of audio belonging to the same file in order to
avoid strong short-time spectral changes (due to, for example,
a difference in sampling rate), which could make the detection
easier. In [13], the authors address the problem of detecting
audio discontinuities from spectral distances.

It is important to mention that the editing was carried out
without regard to the phase changes ocurring in the power grid
signal, in an attempt to emulate the way most files are digitally
edited. Therefore, the phase changes resulted in a random dis-
tribution among the speech files, as depicted in Fig. 4. This his-
togram shows a relatively uniform distribution between —180°
and +180°. That means that all graduations of difficulty are cov-
ered by the edited databases, as would happen in real life.

In the following, the values of the different variables used in
the proposed method to detect audio editing from ENF disconti-
nuity are detailed. Because of the ENF nominal value, 50 Hz for
this evaluation, the sampling frequency after decimation was set
to fgs = 1000 Hz. The value passband width of the tuned filter
around the nominal ENF was chosen to be 0.8 Hz. Additionally,
window size values N¢o were chosen as 3, 5, and 10 cycles of
the nominal ENF (1 cycle = 20 ms of signal); and DFT length
values Nppr were chosen as 200, 2000, and 20 000 points.

TABLE II
EVALUATION OF AUDIO AUTHENTICITY FOR THE TEST AUDIO CORPUS (100
ORIGINAL AND 100 EDITED SIGNALS). N REPRESENTS THE ANALYSIS
WINDOW SIZE IN CYCLES OF THE NOMINAL ENF

Method N¢c NpgT EER (%)

200
2,000
20,000
200
2,000
20,000
200
2,000
20,000

200
2,000
20,000

200
2,000
20,000

200
2,000
20,000

3 (60 samples)

DFT 5 (100 samples)

10 (200 samples)

3 (60 samples)

DFT! 5 (100 samples)

10 (200 samples)

[o el s] o) e Mo fo)Ne Je) | NeleNo) [l Mo BN o lo))

Table II summarizes the results obtained by the automatic
discrimination method according to the decision rule expressed
in (14). It can be seen that the use of DFT! yields more stable,
almost constant results: around 6% EER in the audio editing
decision, regardless of No and Nppr values (the exception,
EER = 8%, occurs for the only case where the DFT length
is not greater than the window size).

After examination of the results in Table II, allowing for some
safety margin in both parameters without increasing too much
of the computational load, a cautious choice is to use the DFT!
method with a window size of 5-10 ENF cycles and Nppr =
2000 points. Next, a particular case using the DFT! method with
this choice (N¢ = 10 cycles and Nppp = 2000) is further de-
tailed. Fig. 5 presents the histograms of feature F’ for both edited
and original signals in the test audio corpus as well as the lo-
calization of -y, the optimum decision threshold for the detection
process. It can be seen that the distribution of original signals are
reasonably separated from the distribution of edited signals.

The DET curve (P versus Pr) as well as the localization of
the EER point (6%) for this particular case are shown in Fig. 6.

In an attempt to show results of the visual aid provided by
the proposed method, two examples of audio editing of signals
from the test audio corpus are presented. The preset is the same
at that used for the particular case previously detailed.

Fig. 7 presents an example where an audio portion has been
deleted from a speech file. The phase estimation for the original
ENF signal has rectilinear behavior, whereas the edited signal
has an abrupt phase change at the edit point P; (in this case, a
positive change).

Fig. 8 presents an example where an audio portion has been
inserted into a speech file. There are, in this case, two edit points:
P; and P;. Consequently, we can observe two phase changes in
the edited signal (the first one negative, the second one positive).

Phase estimation using the DFT!-based method exhibits
better resolution than using the DFT-based method (specially
in the regions where phase transitions occur). This greater
accuracy in phase estimation improves the visual aid.
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Fig. 5. Histograms of feature F* for the test audio corpus. The DFT!-based
phase estimation method was used, with a window size of 10 cycles of the nom-
inal ENF and Nppr = 2000 points.
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Fig. 6. DET curve: Py, versus Py for the test audio corpus. The DFT' -based
phase estimation method was used, with a window size of 10 cycles of the nom-
inal ENF and Nprr = 2000 points.

VI. PRACTICAL ISSUES

The well-behaved ENF variation of the Spanish corpus
(signals from AHUMADA and GAUDI edited) yielded very
nice results. But what if the proposed method is to be used in
real-life situations where signals are degraded in a number of
ways? To answer this question, two additional local corpora
were prepared, containing recordings in Portuguese as spoken
in Rio de Janeiro, Brazil: Carioca 1 (digitized with 16-bit
quantization and a sampling rate of 44 100 Hz) and Carioca 2
(16 bits and 11050 Hz), both with the same structure of the
edited Spanish corpus: a total of 100 original and 100 edited
signals. As Brazilian speech databases, their nominal ENF is
60 Hz.

Carioca 1 speech signals were recorded with low background
noise and without saturation. The EER obtained for this corpus
was 7%. This result, only slightly worse than the one obtained
for the Spanish corpus, could be due to the slightly faster vari-
ation of the ENF contained in Carioca 1 recordings. Although
in both cases the ENF has a similar deviation around their nom-
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Fig. 7. Visualization of a fragment deletion. Points /7, and P bound the por-
tion eliminated from the original signal. Consequently, P; is the edited point
within the signal. The nominal ENF is 50 Hz and the passband width of the
bandpass filter is 0.8 Hz. The phase estimation methods used a window size of
10 cycles of the nominal ENF and Nppr = 2000 points. (a) Original signal.
(b) Edited signal. (c) Phase estimation using DFT. (d) Phase estimation using
DFT!.

inal values, the ENF in Spain seems to vary more slowly than
the ENF recorded in the city of Rio de Janeiro. Since the differ-
ence in EER was very small (1%), no further investigation was
carried out; nevertheless, this result reinforces the expectation
that the performance of the proposed method would degrade in
a region without a tight control over the ENF.

The Carioca 2 corpus was prepared under unfavorable condi-
tions: among its 100 signals, 21 exhibited a moderate degree of
saturation; and the corpus average SNR was around 30 dB (the
average SNR of the Spanish corpus was estimated in 35 dB).
The resulting EER for this corpus was 15%. In the following
subsections, both effects will be addressed individually.

A. Effect of Background Noise

The Spanish corpus was used to carry out this study. Defining
s as the clean speech and npackground as the background noise,
both mutually uncorrelated by assumption, the original SNR is
given as

E[s?

SNRori inal = .
& E [(nbackground)2]

15)
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Fig. 8. Visualization of a fragment insertion of length P> — P, . P, is the inser-
tion point in the original signal. Consequently, P; and P, are the edited points
within the signal. The nominal ENF is 50 Hz and the passband width of the
bandpass filter is 0.8 Hz. The phase estimation methods used a window size of
10 cycles of the nominal ENF and N = 2000 points. (a) Original signal.
(b) Edited signal. (c) Phase estimation using DFT. (d) Phase estimation using
DFT'.

0 100

In order to estimate the original SNR, a voice activity detector
(VAD) algorithm [17] was employed to separate active speech
regions from background noise.

In order to alter the SNR, zero mean uncorrelated noise 1,44
has been added to the signals, such that

E[s?]

SNR = E [(nbackground)Z] + E [(nadd>2] ’

(16)

The next step is to obtain an error rate as a function of the SNR.
For that, the value of E[(n.qq)%] was varied and the proposed
method for audio authenticity (using the DFT-based phase es-
timation technique) was applied to the Spanish corpus.
Three types of noise were employed:
* NOISE 1: White Gaussian noise.
* NOISE 2: Low-frequency colored noise obtained from
white noise filtered through Hyp(z) = (1/(1 — 0.9271)).
* NOISE 3: High-frequency colored noise obtained from
white noise filtered through Hgp(2) = (1/(1+0.9271)).
Assuming a frequency sampling of 8000 Hz, the frequency
responses of both filters Hyp(z) and Hyp(z), are shown
in Fig. 9.

—NOISE2|
--=NOISE 3 :

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency: f(Hz)

Fig. 9. Frequency response curves corresponding to Hyp(z) and Hyp(z) for
NOISE 2 and NOISE 3, respectively. The curves were plotted as a function of
the frequency f, in hertz, assuming a sampling rate of 8000 Hz.

50 1.

—e—NOISE 1
# -NOISE 2
NOISE 3

45 et : -

40 20 =
35

30 + B

EER (%)
7/

25

20

15 =

10
5

21 26 31
SNR (dB)

6 11 16

Fig. 10. Effect of background noise: EER in the task of audio authentication as
a function of the SNR. The system error without adding extra noise is 6%, and
the original SNR is 35 dB.

Fig. 10 presents the (equal) error rates as a function of the
SNR when the proposed method is evaluated with additive
NOISES 1, 2, and 3. Note that, when the noise has high energy
in low frequencies (those components that affect directly the
ENF, 50 Hz in this case), the background noise effect is much
stronger. Therefore, NOISE 2 (whose curve has a logarithmic
shape) is the most harmful to the authentication method, fol-
lowed by NOISE 1 (linear shape) and NOISE 3 (exponential
shape).

B. Effect of Saturation

In order to analyze the effect of the nonlinearity caused by
saturation on the audio authenticity method proposed here, the
Spanish corpus was used once more. Initially, a VAD algorithm
[17] was applied to all signals. Then, a percentage of the active
voice samples (referred to here as saturation level) are clipped to
a suitably chosen maximum value. Fig. 11 presents an example
of a signal with 3% saturation level.

By varying the saturation level and applying the audio authen-
tication method to the Spanish corpus, the curve EER versus sat-
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Fig. 11. Example of a signal with 3% saturation level, i.e., with 3% of the
samples in active (shaded) regions clipped to a maximum level.
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Fig. 12. Effect of saturation: EER in the task of audio authentication as a func-
tion of the saturation level. The system error without artificial nonlinearity is
6%.

uration shown in Fig. 12 was obtained. It can be observed that,
considering the active voice intervals defined by the shaded re-
gions, saturation levels above 0.5% considerably affected the
performance of the authentication method. Also, perceptually
speaking, this value corresponds to a high level of saturation.

From what have been studied in this section, assuming that

the effect of the unfavorable conditions were linear, one could
expect to have, for the Carioca 2 corpus, an overall EER given
by the sum of the EER for the Spanish corpus (6%) with 3 extra
terms:

* 1% due to ENF variation—recalling that the experiment
with Carioca 1 database, which shares its ENF characteris-
tics with Carioca 2 database, resulted in an additional error
of 1% over the Spanish database results;

* 5% due to background error—computing the difference be-
tween EERs for 30- and 35-dB SNR in Noise 1 plot of
Fig. 10;

* the remaining 3% due to saturation in some signals—a rea-
sonable speculation, not denied by inspection of Fig. 12.

VII. CONCLUSION

The proposed technique to detect audio editing has yielded
favorable results. The idea of finding abrupt phase changes in
the power grid signal provides an accurate visual characteriza-
tion. This visual aid helps in determining the editing points and
inferring the type of editing (whether insertion or deletion of
audio segments). Additionally, the use of a decision feature al-

lows an automatic discrimination between original and edited
signals. In the computer experiments, the error attained by the
detection process over clean audio signals was 6%. This small
value of EER was probably due to those cases where the editing
process caused insignificant ENF phase changes (around 0° in
the histogram of Fig. 4).

The use of the DFT! method, here adapted to estimate phase
with high accuracy, yielded improved resolution in the visual
characterization (especially in the regions where the phase tran-
sitions are located) as well as good regularity in the automatic
discrimination. The use of the DFT*-based technique instead
of the traditional DFT-based technique is justifiable due to its
higher accuracy results with a smaller number of points, thus
not increasing computational overhead.

Practical issues related mainly to the effects of nonlinearity
and low SNR were independently analyzed.

Considering the presence of power grid signals in some
recorded signals, the proposed technique for evaluating audio
authenticity can be a useful tool in the field of forensic pho-
netics. The method described herein becomes even more
important in those cases when there is no ENF database avail-
able.

It is worth mentioning that several extraneous phenomena ei-
ther acoustically generated, or inherent to ac transmission or the
recording system itself (e.g., transients, power-line spikes and
surges, coding artifacts, etc.) may affect the recording under
analysis, thus impacting the detection performance. A careful
evaluation of those effects should be object of future research.
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