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ABSTRACT

This paper addresses the comparison between
data-reusing LMS algorithms and the Affine-Projections
algorithm. The Normalized New Data-Reusing LMS
(NNDR-LMS) algorithm, the Binormalized
Data-Reusing LMS (BNDR-LMS) algorithm, and the
Affine-Projections (AP) algorithm are briefly presented
within a common framework and their relationships are
clarified. Topics such as equivalence of algorithms,
graphical representation, and computational complexity
are discussed.

1. INTRODUCTION

In many adaptive-filtering applications conventional
gradient-type algorithms such as the least mean squares
(LMS) algorithm and the normalized LMS (NLMS) al-
gorithm do not present the necessary convergence speed.
On the other hand, for these applications Newton-type
algorithms and the recursive least squares (RLS) algo-
rithm may not be suitable for their exceeding compu-
tational complexity. Data-reusing LMS (DR-LMS) al-
gorithms and the affine-projections (AP) algorithm may
be compromise solutions for many among these applica-
tions.

New normalized data-reusing algorithms have been
recently proposed [1]-[5] and analyzed [6]-[8] in the lit-
erature. Similarities with the orthogonal-projections al-
gorithm [9] and the affine-projections algorithm [10]{11]
have been pointed out, but not investigated in detail to
yield a complete understanding of their relationship. Al-
though algorithm derivation and implementation is often
different for DR-LMS algorithms and for the AP algo-
rithm, their similarities certainly justify a thorough dis-
cussion and clarification under a unified approach. This
paper provides a discussion of the normalized new data-
reusing LMS (NNDR-LMS) algorithm [1][2], the binor-
malized data-reusing LMS (BNDR-LMS) algorithm, and
the affine-projections (AP) algorithm. It is organized
as follows. In Section 2 we briefly present the NNDR-
LMS, BNDR-LMS, and the AP algorithms. In Section
3 we clarify their relationships. In section 4 we dis-
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cuss computational complexity of the various implemen-
tations, and in Section 5 we draw conclusions.

2. THE ALGORITHMS

Data-reusing LMS adaptation algorithms, as opposed to
the conventional LMS algorithm, reutilize information
provided by the available (present or past) data in order
to achieve better convergence rates. It has been shown
[1]{2] that reusing past data pairs, i.e., input-signal vec-
tor and desired signal, is often advantageous compared
to repeatedly reusing the current version of the data pair.
Based on this idea, unnormalized and normalized DR-
LMS algorithms were proposed {1]. Extending this con-
cept, the BNDR-LMS algorithm was derived which also
utilizes current and past data pairs, but can achieve better
convergence rates at least for high signal-to-noise ratios.
Although the geometric interpretation of the
BNDR-LMS algorithm can be very clarifying, its deriva-
tion was based on the LMS algorithm where constraints
imposed by the normalization with respect to two data
pairs were added. The AP algorithm can be viewed as
a generalization to an arbitrary number of data pairs of
the normalized data-reusing concept of the BNDR-LMS
algorithm.

In this section the NNDR-LMS, the BNDR-LMS,
and the AP algorithms are briefly presented as they were
derived and proposed in the literature.

2.1. The NNDR-LMS Algorithm

The NNDR-LMS algorithm [1]{2] innovates with respect
to DR-LMS algorithms by utilizing data from previous
iterations. The algorithm equations are summarized be-
low.

If desired signal and input-signal vector at iteration
k are denoted by d(k) and x(k), respectively, for N data
reuses the coefficients are updated as

ei(k) —x(k — i)

wiga (k) = wilk) + o=
H
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Figure 1: Coefficient vector update:

Position 1. w(k);
Position 2. wyrams{k + 1) and first
step towards wynpr-rms(k + 1);
Position 3. WNNDR—LMS(k + 1)‘,
Position4. wanpr—rms(k + 1) and wap(k + 1).

fori =0,..., N, where

ei(k) = d(k) — xT (k)w;(k) 2

wo(k) = wynpr-LMs(K) 3)

and

wyNDR-LMs(k+1) = wni1(k) )

For every intermediate update, ¢, the algorithm takes a
normalized step towards the closest point belonging to
the hyperplane defined by the data pair [d(k — i), x(k —
i)] (see Fig.1). The algorithm is indeed a data-reusing al-
gorithm, but normalization with respect to different hy-
perplanes implies nonorthogonal projections.

2.2. The BNDR-LMS Algorithm

The BNDR-LMS algorithm extends the idea of the
NNDR-LMS algorithm for the particular case of two data
reuses. The algorithm also applies normalization with
respect to different hyperplanes defined by previous data
pairs. However, the normalized update is taken towards
the point belonging to the intersection of hyperplanes de-
fined by the present and the previous data pairs. In this
case, directions are given by orthogonal projections (see
Fig.1).
The coefficients are updated as follows:

wk+1)=w(k)+u /\—lx(k) + :\QEX(]C -1)

2
®)
where p is the step-size,
Mo [dR) ~ 2T Rwk)]lzt - 2
2 lz(®)Plle(k - DI? - [T (k)z(k - 1)]?
_ [dk - 1) — 2T (k — Dw(k)]zT (k — D)z (k)
lz(k)|I?lz(k — DII? = [x7 (k)z(k — 1)) ©
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and

Ar _ [k = 1) — 2T(k — Dw(k)]ll=(k)|?
2 le®)Plzk - DI - [T (k)2 (k - 1))?
[d(k) — 2" (R)w(k)]aT (k — Dz (k)
lz(B)1P|lz(k - DI]? = [T (k) (k - 1))? -

If we acknowledge that optimality with respect to the
previous data pair is carried on to the next iteration (u =
1), i.e,, xT(k — 1)w(k) = d(k — 1), then a simplified
version of the algorithm may result as follows:

w(k+1) =w(k) + ﬁx(k) + A

3 Fx(k—1) (®)
where
X[l ~xTRwbllxe =P
2 xBIPlxk = DI — X (B)x(k ~ 1)]?
and
Xy —[d(k) = xT(k)w(k)xT (k — 1)x(k)

2 [Ix®IPlIxE - DI = X (®k)x(k - 1)]?
(10)

2.3. The AP Algorithm

The AP algorithm relates to the NLMS and BNDR-LMS
algorithms directly as it is a generalization for N data
reuses of an algorithm that yields at every iteration k a
solution that belongs to the intersection of hyperplanes
defined by the present and all IV previous data pairs. The
coefficients are updated as follows:

w(k+1) =w(k—1) + uX(k)t(k) an
where

t(k) = [XT (k)X (k) +0I) " e(k) (12)

e(k) = d(k) — X" (k)w(k) (13)

and, for L = N +1 projections, the desired-signal vector
and input-signal matrix are, respectively,

d(k)
d(k - 1)
= . (14)
dk - L+1)
and
X(k) = [x(k) x(k-1) x(k - L+1)]
(15)

with x(k) denoting the input-signal vector, i.e.,

x(k) = [z(k) =z(k—1) o(k—M+1)]"

(16)



3. THE AP ALGORITHM FOR TWO
PROJECTIONS

In this section the AP-algorithm update equations are
rewritten for the particular case of L = 2. It is shown
that the BNDR-LMS algorithm is the AP algorithm for
the particular case of two projections and § = 0, as the
NLMS algorithm is the AP algorithm for the particular
case of one projection.

For L = 2, then (14) and (15) become, respectively,

(k) = [ d(i(f)l)] (17)
and
X(k) = [x(k) x(k-1)] (18)

Therefore, (13) is given by

e(k) = [E (2(5)1)} (19)

where e(k ~ 1) denotes the a posteriori error at iteration
k-1,ie.,

ek=1)=d(k — 1) = xT(k - )w(k)  (0)

For § = 0, t(k) becomes

x> xT(k)x(k —1)] 7"
CH e
xT(k)x(k — 1) [jx(k - 1)
~ ;{ l[x(k ~ 1)I2 —xT(k)x(/e—n] ok
T A(k) —xT(k)x(k — 1) {Ix (k)|

1 r(k)HX(k — D2 = e(k = V)xT (k)x(k — 1)]
AR [ etk — DIx(®)? - e(k)xT (k)x(k — 1)
@)

where

A(k) = [lx(®) | llx(k = DI? = [xT (k)x(k - 1)*
(22)

and (11)—(16) may be rewritten as (5)—(7).

Extending the results for the case L = 3 is trivial
and would yield a trinormalized data-reusing LMS algo-
rithm.

4. THE NNDR-LMS ALGORITHM FOR ONE
DATA REUSE

In the previous section we showed that the AP-algorithm
update equations can be rewritten such that the BNDR-
LMS algorithm update equations result. In this section
we show that the NNDR-LMS algorithm update equa-
tions can be rewritten in order to establish the relation-
ship between the NNDR-LMS and AP algorithms.

The coefficient-update equations for the NNDR-LMS
algorithm may be written in the same format as (11)—
(16). For the particular case of N = 1, i.e., one data
reuse, we have

1
lIx (B2 (k = D)|?

y { l[x(k — DjI* 0 } [ e(k) }
=xT(k)x(k = 1) |Ix(®)II?] [e(k 1)
(23)

or, equivalently,

w(k +1) = w(k) + X (k)

w(k + 1) = w(k) + X(k)
k(I 0

T e }
«T(k)x(k-1) |x(k -1 e(k—1)
(24)

Note that the equivalent to the projections matrix in
this case is a matrix which is not symmetric, as in the AP
algorithm. Extension to the case of V = 2, i.e., two data
reuses, is trivial and yields the following update equation
for the coefficient vector:

w(k +1) = w(k) + X(k)

[ (k)12 0 0

x| xT(k)x(k — 1) Ilx(k = 1)I2 0

xT(k)x(k —2) xT(k—-Dx(k—-2) |x(k—2)|?

[ e(k)
x le(k—1)

Le(k —2)

(25)

where

e(k —2) = d(k —2) — xT(k — 2)w(k) (26)

Note also that the projection matrix (25) that shall be in-
verted is regular with respect to order update, therefore
it can be efficiently inverted if a large number of reuses
is utilized. In that case, however, it may be more advan-
tageous to employ different projection matrices, e.g., the
tridiagonal correlation matrix shown below

R e(k)
Rky=M"" |e(k—1) @7
ek —2)
with M equal to
(k)1 xT(k)x(k - 1) 0
xT(k)x(k — 1) lx(k — 1)1 xT(k — 1)x(k — 2)
0 xT(k ~ )x(k ~2) Ilx(k = 2)|12

The advantages and implementation of the algorithm em-
ploying the projection matrix proposed in (27) are under
investigation.
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5. COMPUTATIONAL COMPLEXITY

As far as computational complexity is concerned, there
are several possible implementations of the
above-mentioned algorithms, especially if fast implemen-
tations and efficient inversion techniques of the projec-
tion matrix R(k) are considered. In Table I the computa-
tional complexity of the NNDR-LMS, BNDR-LMS, and
AP algorithms is compared. In this case the AP algo-
rithm was considered in its conventional form, but em-
ploying the Levinson method for matrix inversion.

TABLE |
COMPARISON OF COMPUTATIONAL COMPLEXITY

[ ALG. [ MULT |

NNDR-LMS 6p
BNDR-LMS || 6p+8
AP(L =2) || 4p+28

The computational complexity of the AP algorithm
was presented in [11] as 2pL + K;p,L%. In order to
obtain the above value K, was made equal to 7 (as-
suming the use of the generalized Levinson algorithm)
and L = 2. In this same reference another efficient im-
plementation of the AP algorithm was proposed.

6. CONCLUSIONS

The relationship between data-reusing LMS algorithms
and the affine-projections algorithm was clarified. By
means of a structured approach based on the AP algo-
rithm equations, possible alternative implementation of
the DR-LMS algorithms were suggested and new algo-
rithms that are possibly faster than the NLMS algorithm
and yet less complex than the NNDR-LMS and AP algo-
rithms were also discussed. Computational complexity
and different possible implementations of the algorithms
were also addressed.
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