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ABSTRACT

This work presents an extension of the classical LMS-

based Frost algorithm to include both the Normalized

LMS (NLMS) and the Binormalized Data-Reusing LMS

(BNDR-LMS) algorithms. Two simple versions of these

algorithms are derived for the Frost structure. These

new algorithms were applied to a DS-CDMA mobile re-

ceiver. The results showed a considerable speed up of

the convergence rate compared to the LMS Frost.

1 INTRODUCTION

A constrained adaptive �lter has several �elds of appli-

cations such as antenna array processing and interfer-

ence cancellation in direct-sequence code-division multi-

ple access (DS-CDMA) mobile communication systems.

The two traditional methods used in these applications

are the so called Frost [1] approach and the general side-

lobe canceler [2] (GSC) approach. The Frost scheme is

probably the most widely used technique due to the sim-

plicity of the LMS algorithm. Nevertheless, the main

drawback of the LMS algorithm is also present in Frost

scheme; that is, its performance depends strongly on

the eigenvalue spread of the input-signal autocorrela-

tion matrix. An alternative approach is the use of fast

least-squares techniques as proposed in [3]. Since the

Frost algorithm turns out to be the projection of the

conventional LMS result onto a constrained hyperplane,

a natural step would be to use the traditional normal-

ized LMS-like algorithms [4, 8] followed by a projection

just like in the LMS Frost case. This approach results

in a superior convergence rate compared to the LMS

Frost algorithm when the input signals are strongly cor-

related. This intuitive approach, however, lacks an op-

timization criterion and performs worse than the corre-

sponding GSC structure in some cases.

It was observed in our experiments that the LMS

Frost and the LMS GSC schemes give identical results
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[2]. This work �rst shows an alternative way of de-

riving the conventional NLMS and BNDR-LMS algo-

rithms. The same optimization approach is then used

to derive the constrained versions of these algorithms

for the Frost structure.

This paper is organized as follows. Section 2 presents

an alternative derivation of the conventional NLMS and

BNDR-LMS algorithms. In Section 3 the constrained

normalized algorithms are derived based on the ap-

proach used in the previous section. Section 4 shows

some simulation results in a typical �eld of application,

followed by conclusions.

2 DERIVATION OF THE NLMS AND THE

BNDR-LMS ALGORITHMS

In this section we show an alternative way of deriving

the NLMS and the BNDR-LMS algorithms. Let us start

with the normalized LMS. Suppose we have an LMS-like

algorithm that updates the coe�cient vector according

to the following expression.

w(k + 1) = w(k) + �kx(k) (1)

where w(k) is the coe�cient vector (of size (N +1)� 1

where N is the order of the adaptive �lter) at instant

k, x(k) is the input signal vector and �k is the vari-

able step-size (or convergence factor) which must be

chosen with the objective of achieving a faster conver-

gence. The strategy used here is to reduce the instan-

taneous squared error as much as possible since this is

a good and simple estimate of the mean squared error

(MSE) [4]. Since the instantaneous error is given by

e(k) = d(k) � xT (k)w(k)1, the instantaneous squared

error at instant k after the updating of the coe�cient

vector can be written as

e0
2
(k) = (d(k)� xT (k)w(k + 1))2

= (d(k)� xT (k)(w(k) + �kx(k)))
2 (2)

where the prime (0) indicates the a posteriori error. In

order to increase the convergence rate rate by choosing

an appropriate step-size, we take the partial derivative

1d(k) is the desired or reference signal



of e0
2
(k) with respect to �k and make it equal to zero,

obtaining

�k =
d(k)� xT (k)w(k)

xT (k)x(k)
(3)

which corresponds, as expected, to the traditional nor-

malized LMS algorithm.

In the BNDR-LMS algorithm, we update the coef-

�cient vector by adding the input-signal vectors x(k)

and x(k � 1) weighted by two step-sizes, �1k and �2k,

respectively.

w(k + 1) = w(k) + �1kx(k) + �2kx(k � 1) (4)

In this case, we minimize a cost function F (k) which
corresponds to the instantaneous squared error at in-
stant k plus the instantaneous squared error at instant
k�1 calculated with the coe�cient vector of instant k or
F (k) = (d(k)�xT (k)w(k))2+(d(k� 1)�xT (k� 1)w(k))2.
We next de�ne the F 0(k) as F (k) calculated with the
updated coe�cient vector.

F
0(k) = (d(k)� xT (k)(w(k) + �1kx(k) + �2kx(k � 1)))2

+(d(k� 1)� xT (k � 1)(w(k) + �1kx(k) + �2kx(k � 1)))2 (5)

In the next step, we take the partial derivatives of F 0(k)
with respect to �1k and �2k and make them equal to
zero. After some algebraic manipulations we obtain

e1 = d(k)� xT (k)w(k)

e2 = d(k � 1)� xT (k � 1)w(k)

den = xT (k)x(k)xT (k � 1)x(k � 1)� (xT (k � 1)x(k))2

�1k =
e1x

T (k � 1)x(k � 1)� e2x
T (k � 1)x(k)

den

�2k =
e2x

T (k)x(k)� e1x
T (k � 1)x(k)

den
(6)

which together with (4) correspond to the binormalized

data-reusing LMS algorithm of [8].

3 THE CONSTRAINED ALGORITHMS

In linearly constrained adaptive �ltering, the J con-

straints are represented by the following linear system.

CTw(k) = f (7)

whereC is a (N+1)�J matrix containing the constraint

vectors, and f is a vector of J elements containing the

constraint values. One single constraint means that C

is a vector and f is a scalar.

In the LMS case (Frost structure), the resulting algo-

rithm is given by the projection of the coe�cient vector

(w(k + 1) unconstrained) onto the hyperplane de�ned

by (7). The constrained coe�cient vector is obtained

by �rst projecting the unconstrained solution onto the

homogeneous hyperplane CTw(k) = 0 with the help of

the projection matrix P = I �C(CTC)�1CT . Finally,

the resulting vector is moved back to the constraint hy-

perplane by adding the vector F = C(CTC)�1f .

w(k + 1) = PwLMS(k + 1) + F

= P [w(k) + �e(k)x(k)] + F (8)

where e(k) = d(k)� xT (k)w(k).

Our approach here for both the NLMS and the

BNDR-LMS algorithms is the projection of the uncon-

strained solution followed by the optimization of the

step-size(s) similar to what was done in the previous

section. Let us start with the NLMS algorithm.

w(k + 1) = PwNLMS(k + 1) + F

= P [w(k) + �kx(k)] + F (9)

Remembering that w(k) was forced to satisfy the con-

straint in (7) which means that Pw(k) + F = w(k), it

follows that (9) can be written as

w(k + 1) = w(k) + �kPx(k) (10)

Now comparing (1) and (10) we can see that they are

formally equivalent if we substitute the input vector by

a rotated version x0(k) = Px(k). Moreover, recalling

that P 2 = P , it follows that

e(k) = d(k)� xT (k)w(k)

w(k + 1) = P [w(k) +
e(k)x(k)

xT (k)Px(k)
] + F (11)

which correspond to the constrained NLMS algorithm.

The same approach can be applied to the BNDR-LMS

if we make

w(k + 1) = PwBNDR�LMS(k + 1) + F

= P [w(k) + �1kx(k) + �2kx(k � 1)] + F

= w(k) + �1kPx(k) + �2kPx(k � 1) (12)

and compare with (4). The equations of the constrained
BNDR-LMS algorithm are obtained as

e1 = d(k)� xT (k)w(k)

e2 = d(k � 1) � xT (k � 1)w(k)

den = x
T (k)Px(k)xT (k � 1)Px(k � 1) � (xT (k � 1)Px(k))2

�1k =
e1x

T (k � 1)Px(k � 1) � e2x
T (k � 1)Px(k)

den

�2k =
e2x

T (k)Px(k)� e1x
T (k � 1)Px(k)

den

w(k + 1) = P [w(k) + �1kx(k) + �2kx(k � 1)] + F

(13)

It is worth mentioning that these two constrained al-

gorithms give identical results when compared to the

NLMS and BNDR-LMS algorithms used in the GSC

structure. It is also interesting to remark that (11) and

(13) can be simpli�ed by admitting that Pw(k) + F =

w(k). This simpli�cation, however, can only be used

in an in�nite precision environment. In a �nite preci-

sion environment, round-o� errors will make the solution

drift away from the constraint hyper plane. To illustrate

this we plot the deviation of the constraint as function

of the number of iterations in a �nite precision environ-

ment. Figure 1 shows the deviation from the constraint



using 8 digit �xed-point arithmetic with and without

the above simpli�cation. Without the above simpli�ca-

tion, the result is very close to zero and does not appear

in the �gure since it is located along the horizontal axis.

As can be seen from the �gure, the accumulation of

round-o� errors increases the deviation with time.
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Figure 1: Deviation from constraint as function of the

number of iterations curves for the NLMS algorithm.

4 SIMULATION RESULTS

In this section, we describe two experiments carried out

to test the constrained algorithms derived in this paper.

4.1 Example 1

We �rst consider an example where the received signal

consists of three sinusoids in white noise. The example

is taken from [3] and the received signal is

u(n) = sin(0:3n�) + sin(0:325n�)

+ sin(0:7n�) + r(n) (14)

where r(n) is white noise with power such that the SNR

is 40 dB.

The �lter is constrained to pass components at fre-

quencies 0:1rad=s and 0:25rad=s undistorted. This re-

sults in a constraint matrix given by

CT =

2
664

1 cos(0:2�) : : : cos[(N � 1)0:2�]

1 cos(0:5�) : : : cos[(N � 1)0:5�]

1 sin(0:2�) : : : sin[(N � 1)0:2�]

1 sin(0:5�) : : : sin[(N � 1)0:5�]

3
775 (15)

and

F T = [1 1 0 0] (16)

The optimum �lter coe�cient vector is given by

wopt =

2
66666666666666664

�0:4132

0:2964

�1:0324

�0:2535

�0:5921

�0:7046

�0:6467

�0:8854

0:2681

�0:7307

�0:0580

3
77777777777777775

(17)

In this example, we compared the constrained BNDR-

LMS algorithm with the constrained NLMS algorithm,

and the algorithm proposed by Frost (LMS). Constant

step-sizes chosen to yield the fastest convergence were

used in all algorithms. For both the BNDR-LMS and

the NLMS algorithms, the step-size was set to one, and

for the Frost's algorithm we set � = 0:1.

The L2 norm of the coe�cient-error vectors of all algo-

rithms are depicted in Figure 2 as the result of an aver-

aging over 500 trials. We can clearly verify the superior

performance of the BNDR-LMS algorithm as compared

to the other algorithms.
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Figure 2: Coe�cient-vector deviation for the �rst ex-

periment.

4.2 Example 2

We next apply the constrained adaptive algorithms to

the case of a DS-CDMA downlink transmission system.

The received signal for a system with K simultaneous

users can be written as

x(k) =

KX
i=1

Aibi(k)si + n(k) (18)



where Ai is the amplitude of user i, si is the signature

sequence of the ith user, and bi(k) 2 f�1g is the trans-

mitted bit of the ith user. At the mobile receiver we are

only interested in detecting one user (here assumed to be

i = 1). One way of constructing the receiver coe�cients

is to minimize the mean variance under the constraint

that the desired user's code sequence can pass with unity

response. The problem is then to �nd a coe�cient vec-

tor w(k) that solves

min
w(k)

kxT (k)w(k)k2 subject to sT1w(k) = 1 (19)

where, using the notation of the previous section, we

see that the reference signal d(k) = 0, C = s1 and

f = 1. The system used in our experiment consists of

K = 5 users whose spreading sequences were Gold codes

of length 7 [6]. The signal-to-noise ratio (SNR) for the

desired user was set to 8dB and the interfering users

power was set to 10dB stronger than the desired user

power, i.e., 10log
�
Pi

P1

�
= 10.

In the simulation, we have used time varying step-size

in order to have a fast convergence rate and also a small

misadjustment. The choice of the step-sizes corresponds

to the optimal sequences presented in [7, 8].

Figure 3 shows the learning curves for the LMS,

NLMS and BNDR-LMS algorithms (average of 500

runs). The step-size for the LMS algorithm was chosen

to be � = 1:10�3 so that its misadjustment is compa-

rable with the two other algorithms where the adaptive

step-size where used. As can be seen from the �gure,

the performance of the normalized algorithms is supe-

rior to the LMS algorithm in terms of convergence rate.

Probably due to the input signal which in this exam-

ple is not correlated enough, the BNDR-LMS algorithm

could not have the best performance and the NLMS al-

gorithm is to be preferred in these cases. This assertion

is supported by our experience that even the RLS algo-

rithm has not shown much better performance than the

NLMS algorithm in this particular example. It is worth

mentioning that the GSC structure was also simulated

and presented identical learning curves.

5 CONCLUSIONS

This paper introduced the constrained NLMS and

BNDR-LMS algorithms using the so-called Frost struc-

ture. A straightforward method of obtaining the nor-

malized algorithms was presented and it was shown that

this method is also valid for the constrained normalized

algorithms. The resulting constrained normalized al-

gorithms using the Frost structure presented identical

results then the unconstrained counterparts using the

GSC structure. The algorithms were applied to CDMA

mobile reception and the simulation results showed a

fast convergence rate as well as a small misadjustment

when a time-varying step-size is used.
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Figure 3: Learning curves of the constrained algorithms.
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