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ABSTRACT back-substitution procedure can be used to compute the coefficients.

Multichannel fast QR decomposition recursive least-squares (McLherefore, the applications are limited to output error based settings
FQRD-RLS) algorithms are well known for their good numerical (€-9., noise or echo cancellation), or to those requiring a decision-
properties and low computational complexity. However, these alfeedback estimate of the training signal (e.g., adaptive beamformer
gorithms have been restricted to problems seeking an estimate @perating in decision-directed mode). The absence of weights in
the output error signal. This is because their transversal weights aPC-FQRD-RLS algorithms makes the problem of system identifi-
embedded in the algorithm variables and are not explicitly availablesation non-trivial. For example, the beampattern (spatial response)
In this paper we present a novel technique that can extract the filté$ Not available in an adaptive beamformer implementation using an
weights associated with the MC-FQRD-RLS algorithm at any timéVC-FQRD-RLS algorithm.

instant. As a consequence, the range of applications is extended This paper addresses the problem of identifying the weight vec-
to include problems where explicit knowledge of the filter weightstor from the internal variables of the block MC-FQRD-RLS algo-
is required. The proposed weight extraction technique is used tithm. Thisweight extraction problem was solved for the single-
identify the beampattern of a broadband adaptive beamformer inchannel FQRD-RLS algorithms in [2]. The main results, summa-
plemented with an MC-FQRD-RLS algorithm. The results confirmrized by two lemmas, provide us with an algorithm that allows
that the extracted coefficients of the MC-FQRD-RLS algorithm areus at any time instant during adaptation to sequentially extract the
identical to those obtained by any RLS algorithm such as the inverssblumns of the Cholesky factor embedded in the MC-FQRD-RLS

QRD-RLS algorithm. algorithm. From the Cholesky factor we can obtain the true weights
of the underlying LS solution by reusing the known MC-FQRD-
1. INTRODUCTION RLS variables. We emphasize that the proposed method relies on

he knowledge of only vector updates present in the MC-FQRD-

Multichannel adaptive signal processing can be found in variou : .

o : o LS algorithms, as opposed to the matrix-embedded structure of the
applications such as broadband beamforming, equalization, Stere@dnvengtional QRD-RpL% described in [3]. The problem of parame-
phonic echo cancellation, and speech enhancement [1]. ’

When considering multichannel adaptive implementations, it i er |d_ent:f|cart]|on hzlas been addreslsed _|rr1][4]_usmg the duality be|Meden
often possible to directly apply standard single-channel algorithm t?iséngticctuignﬁ'h';?ggi?rll_ﬁ e?v%gg;[\ {E e'r: e[guﬁ]s tgf ztih?sorrga;?h at
to the multichannel problem, e.g., the numerically stable and fas lated t th. identificati ft Lfilt ight P %th
converging QR decomposition RLS algorithm (QRD-RLS). Even re relatea o the ioentification ot transversai fitter weighis and those
though such a solution would provide fast convergence, it may b f the multichannel extension of the lattice parameter identification

. e In [4] is currently under investigation.
computationally too complex due to a large number of coefficients. _ o
In order to obtain a computationally efficient solution, RLS-type al- _In the following we present the basic principles of the block
gorithms specially tailored for the multichannel setup are a goo®C-FQRD-RLS algorithm. Thereafter, the weight extraction (WE)
option. Two types of multichannel algorithms have been proposed!gorithm is derived. Simulation results are followed by conclu-
in the literature: 1)Block-type algorithms where the channels are Slons.
processed simultaneously, and; Suential algorithms that pro-
cess each channel individually [1].

In this paper, we focus on block-tymaultichannel fast QR de- 2. THE MULTICHANNEL FAST QR-DECOMPOSITION
composition RLS (MC-FQRD-RLS) algorithms, which enable par- ALGORITHM
allel implementation due to the joint processing of channels. The
MC-FQRD-RLS algorithms exhibit RLS like convergence and nu-This section presents the basic concepts of MC-QRD-RLS algo-
merical robustness at a lower complexity than the single-channeithms. Two versions of the MC-FQRD-RLS algorithms are re-
QRD-RLS. The main idea of MC-FQRD-RLS algorithms is to ex- viewed to aid the explanation of the weight extraction technique.
ploit the underlying time-shift structure of the input-signal vector of
each channel in order to replace matrix update equations with vector
update equations. By doing so, the computational complexity cap.1 Basic concepts of QR decomposition algorithms
be reduced fron&’(P?) of the standard QRD-RLS implementation
to ﬁ(MZP) of the block MC-FQRD-RLS algorithms, whePRds the Consider the mUlthhannel adaptive filter S(_atup in Fig. 1 viith
total number of filter coefficients arid is the number of channels. channels anl filter coefficients per channel, i.e., a totalRt= MN

The main disadvantage of MC-FQRD-RLS algorithms is thecoefficients. The MC-QRD-RLS algorithm minimizes the follow-
fact that the weight vector associated with the underlying weighteéd cost function with respect terp (k)
least-squares problem is embedded in the internal algorithm vari-
ables. Furthermore, they do not directly provide the variables al- K
lowing for a straightforward computation of the weight vector, as _ ki) q# (i) _ H (i 2 1a* (1) 12
is the case with the conventional QRD-RLS algorithm, where a §(k) = i;f |d* (i) =xp (i) wp(K)|“ = [le"(K)]] (1)



Y 01.p xH (k)
xlzl;; v d(k) Up(k) | = QoK) AY2Up(k—1) ©)
X2 *
e whereQg (k) € C(PT1*(P+1) is a sequence of Givens rotation ma-

trices which annihilates the input vecte(k) in (9) and can be par-
titioned as [7]

k Hk
=1 B o

The QRD-RLS algorithm is complete with the definition of the
priori error valuee(k) = €, (k) /y(k) wherey(k) is a scalar element

in matrix Qg (k), see (10).

2.2 Block MC-FQRD-RL Salgorithm based on backward pre-
diction error update

MC-FQRD-RLS algorithms update either thgriori or thea pos-
teriori backward prediction error vector [9]. Therefore we have
two versions of the backward prediction error update based MC-
FQRD-RLS algorithm, referred to as MC-FQRRI_B and MC-
FQRPOSB. The MC-FQRPRI_B algorithm updates vectep (k)
defined as

ap(k) = A Y2UpH (k—1)xp(k) = —gp(k)/y(k)  (11)

where is the forgetting factor denotes the conjugate, aatk) € \yhile the MC-FQRPOSB algorithm updates vectdp (k) given by
C(k+1)x1js thea posteriori error vector given as

Figure 1: Multichannel adaptive filter setup.

. AY2d* (k—1) AY2xH(k—1) The basic idea of the MC FQRD based algorithms is to replace
e’(k) = : N : wp(k) @) the update for matrixUsH (k) |n (9) with an update equation for
Ak/ZA*(O) Ak/z).(H( ) a vector, i.e., eitheap(k) or fp(k). The extended Cholesky matrix
P Up,1(k) € (C(P+M)X(P+M> is deflned as the Cholesky factor of the
=d"(k) - Xp(K)wp(k) extended input matriXp, 1(k) € Ckt1x(P+M) a5
whered (k) € Ck+1)*1 js the desired signal vectokp(k) € CPx1
is the m(ul)tichannel coefficient vect(xpg(k) e CPx? is( t)he multi- {O(I(Bl;i('\f()f(ffw} =Qpia(k=1)Xp 1 (k—1) 13)

channel input vector

T whereXp. 1 (k) is constructed by appending a column to the right
xp(k) = [x"(k) xT(k=1) ... x"(k=N+1)]" (3) of Xp(k— 1) consisting of corresponding past input values. Note
that the forward and backward prediction equations can be specified
T usingXp,1(k—1). Therefore, the triangularization &p, 1(k— 1)
x(k) =[xa(k) (k) oo xm(K)] (4)  can be approached from either a forward or a backward predic-
is theM x 1 input vector. The QRD-RLS algorithm uses an orthog_tion perspective. The extended Cholesky matrix is therefore written

onal rotation matrixQy (k) € Ck+Dx(+D) to triangularize matrix 25 [8]
Xp(k) as [6]

and

UpH (k—1) = Qjs (k—1)x
{0(k+1 P%XP:| Qp(K)Xp(K) ®) P+1 of ]
Up(k Opxm U, (k—2)
—H —HpH —H
where Up (k) € CP*P is the Cholesky factor of the deterministic [Ef(k—1)] —[E}(k=1)] "Dfp(k-1)Up" (k-2
autocorrelation matriRp (k) = XH (k) Xp(K). (14)

Pre-multiplying (2) withQp (k) gives
® whereE'; (k) andD¢q(k) are the rotated forward prediction error
and desired signal matrices, respectively. By post-multiplying (14)
Qp(K)e* (k) = {eql(k)} — {dql(k)} _ {0<k+1fP)xP} wp(k) (6)  With the extended multichannel input data vectpr 1 (k— 1) and

eqz(k) dez(k) Up(k) A~1/2 we obtain the update equation for vecti(k)
We emphasize thatq; (k) anddgp (k) are partitions of vectod* (k) ap(k—1)
after rotation, similarlyeq; (k) andeq(k) are partitions of vector ap 1(k)=A"1 2Q9f(k 1) { P r(K) } (15)

e*(k) after rotation. The cost function in (1) is minimized by choos-
in k) such thatdgo (k) — Up(k k) is zero, i.e.,
gwelk) (k) = Urllgwe(k) where r(k) = A~Y2[B)(k — 1) H&¢(k) and &(K) = y(k —
wp(k) = U;l(k)dqz(k) (7) 1)étqu(k). If we instead post-multiply (14), evaluated at time in-
stantk, with the vectorxp, 1(k— 1), we get the update equation for
The QRD-RLS algorithm updates vectdgp(k) and matrix  fp(K)

Un(K) as follows [6] 1 (K) = Q¢ (K) {fpg‘(;)”} (16)

) d*(k)
{3‘;12(( J Qo (k) L V2dp(k— 1>} @) wherep(k) = [E} (K)] & (k) andé; (k) = y(k— 1)@1qu (k).



Step 2 applyingQer (k) __ channel O
Table 1: The FQEPRIB algorithm based on backward prediction ——"" Lemma 2 . |---- channel 1
errors:P = MN is the total number of coefficientd] is the number - S
of channels, andll is the number of coefficients per channel. = T o
AR sl sl
for eachk N o]
{ ObtainingD g (K): Lo bl q_|
r~H H o bl ! =
efql(k) _ K—1 |: x" (k) } b b e =
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Figure 2: The procedure for updating/(k — 1) for weight extrac-
tion in MCFQRD-RLSa priori algorithm. The number of channels
M = 2. Note that the indices of some variables have been omitted.

Let us define & x 1 impulse vectody with a “1” at theith position

(1 <i<P). Note that vectoxp (k) in (3) comprises input vectors
from M channels. As can be seen from (3) and Fig. 1, the elements
corresponding to one channel are placed at ety position in
vectorxp (k). The jth element of the weight vector for thiga chan-

nel is given as

Opyx - Digp(k
E(f%)(hr() = Qo1 (K) { Ef/?%&))}
ObtainingQg (k):
1/y(k 1
M) = aato| ko)
Joint Process Estimation:
equ(k) | _ d* (k)
_dq;(k)} = Qe(k) b 1/2dq2(kf l)}

e(k) = e (k)/y(k) Woiy im(K) = wh (K—1)&+ jm
= dgp(k— 1)U (k= 1)&+jm (22)

=dfh(k—Duijm(k—1)

From the updated vectaip(k), the update equation for the ro-
tation matrixQg (k) is obtained as

49] ~uto]_ 2 an

Opx1

whereu; , jm (k— 1) is the(i + jM)th column of Uz (k—1). It can
be seen from (22) that the elements of coefficient vesig(k) can

be computed if all the column vectors bI;H(kf 1) are known.
Using the following two lemmas we show how all the column vec-

Similarly, the rotation matrix is also obtained from the updated vecthat the column vecton; (k— 1) can be obtained from;_1(k—1).

tor fp(K)
o] = @800 [ 249 18)

Opy 1 Lemmal. Letu] (k)= [uo(K) Ui_’p,]_(k)]T e CP*1 denote

the ith column of the upper triangular matrix Up" (k) € CP*P.
Given Qg (k— 1) € C(P+x(P+1) from Table 1, then uj (k — 2) can
be obtained from u;(k— 1) using the relation below
¢ } 3. (k) (1Y)
=Qi(k) |~ (19) 0 - .
{OMxl r(k) {A‘l/zui(ku)} =Qf(k-1) {ui(lf_l)},uzo,...,N—l (23)

In order to avoid the matrix inversion associated witk) and
p(Kk) in (15) and (16), respectively, we can use [9]

and

El_a y(K) wherez = — £ (k— 1)u; (k— 1) /y(k—1).
RARCICIPAA (20) HUSENY
T
where£ is ana priori unknown variable (dummy variable). The Lemma 2. Let uj(k) = [uio(k) uip-1(k)]" € CP** denote
MC-FQRPRLB algorithm is summarized in Table 1. For details the ith column of the upper triangular matrix Us"(k—1) € CP*P.
on the MC-FQRPOSB implementation, see [9]. As can be seen Gjven Qg (k) € CP+D*(P+1) from Table 1, then uj 4 jm(k—1) can
from Table 1, the weight VECtOWP(k) is not available. The next be obtained from w ./ : (k* 2) using thefollowing relation
section presents an algorithm that extracts the weight vector values +(-Om
of both algorithms. " . o B
{ _ _r(kk) 1} =Qor(k—1) {u'f_('flw(k(k)z)} ) (24)
3. THE MULTICHANNEL WEIGHT EXTRACTION uirjm(k—1) Tit(j-n™m
I e, e et s st mlater [/ "Dl . A 1= 4,
the coefficient values in a serial manner. oL — P A I = et et~
Consider thea priori output of the multichannel adaptive filter Jth column of —[E' (k)] ™.

yp(k) given by

Assuming vectoru;  (j_ym (K — 1) to be known, Lemmas 1
Yp(K) = wh (k—1)xp(k) = dgp(k— 1)U (k—1)xp(k)  (21)

and 2 can be used first to compute vectgr;_yu(k—2) and

torsu;(k— 1) can be obtained in a serial manner. The main result is

Lemma 1 was derived in [2] and is included here for sake of clarity.



tions are shown in Fig. 3. It can be observed that both algorithms
give the same solution for the beam pattern. Most importantly the
solution using a MC-FQRD-RLS algorithm followed by weight ex-
traction leads to a solution with much lower overall complexity.

Table 2: “Weight Extraction” algorithmM is the number of chan-
nels,N is the number of coefficients per chann@l= MN is the
total number of coefficients.

f‘|(k) =ef_|(k) forl = -M,...,—-1
U|(k—2) iOle forl = -M,...,—1
E| = [Ef(k—1)] "
foreachi=0:N—-1
foreachj=0:M -1

4.2 System identification

The multichannel system consistsdf= 3 channels antll = 6 taps
per channel. The SNR is 30 dB. The MC-FQRD-RLS algorithm
was used to identify the system. After convergence the weight ex-

{ traction algorithm was run to compute the filter weights. In order
Computeu; (k— 1) to verify how close the weights are to the true ones, an IQRD-RLS
¥ (k) - Wi (k—2) algorithm was used to identify the same system. The difference of
_ i+(j—1)M . . . . .
{uH-M(k—l} =Qot(k—1) { £t } weights from both the algorithms after 4000 iterations is seen to
Comjputezi im (K - be approximately-300 dB as shown in Fig. 4. This is within the
® +fpl\?k)u-+jm(k71) numerical accuracy of the software used in simulation (MATLAB).
Zipjm(K) = ==

y(K)
Computeu; (k—2)

0 —_OH(Kk_ z1jm(K)
[rl/zuiﬂwz)} = Qg(k—1) {umM(k—l)
Computeri jm (k)

Biyjm(k) = —Ei Do (k—Duiyju(k—2)
Compute the coefficients
wij (k= 1) = uft jy (k= 1)dga (k- 1)

- FQRD
— — IQRD

—20} 4

|

60}~

=

Antenna gain

80}

thenuj; jm(k— 1), respectively. Therefore all the column vectors
corresponding to théh channel are obtained by iterating through
all the possible values gf Consequently, we obtain all the weights
for the ith channel. Note that in order to obtain the column vec-
tor ujjm (k— 1) corresponding to a particular channel, we need to
initialize (24) given in Lemma 2 properly, which means choosing
the appropriate column of matrf} (k —1)]~". A schematic for
obtaining the column vectors is given in Figure 2. It is shown that
starting fromug(k— 1), first the columnug(k—2) is obtained using  Figure 3: Comparison of beam pattern obtained with the IQRD-
Lemma 1 and themy (k— 1) using Lemma 2. Both of them corre- RLS algorithm and the MC-FQRD-RLS algorithm with weight ex-
spond to channel 1. These column vectors can be used to computaction.
the weight coefficientsyy(k — 1) andwy (k— 1) respectively. The
other channels from 2 tbl are treated in the same way to compute
the corresponding weight coefficients. There are a totRlweéight 5. CONCLUSIONS
coefficients, so that we nedtliterations to compute the whole co-
efficient vector. The multichannel weight extraction algorithm is This paper showed how to reuse the internal variables of the MC-
summarized in Table 2. FQRD-RLS algorithms to extract the weights in a serial man-
The number of operations required to completely extract all théer. The presented technique enables new applications of the MC-
coefficients is given in Table 3. For comparison, the computationadFQRD-RLS algorithms which are different to the standard output-
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costs of the MC-FQRD-RLS algorithm basedanpriori backward
prediction errors and the inverse QRD-RLS algorithm are given.

error type applications. The new weight extraction technique was
used in a beamforming and in a system identification setup to make
the weight vector explicitly available. The results were compared

with those using a design based on the inverse QRD-RLS algorithm.

4., SIMULATIONS L - h . -
It was verified that identical results are obtained using the proposed

This section investigates the equivalence of the weights obtainegesign method at a much lower computational cost.
using weight extraction and inverse QRD-RLS algorithm in two
applications. First the beampattern identification of a broadband
beamformer is considered. The second application is a multichan-
nel system-identification application. Proof of Lemma 1:
The update equation f@;" (k—2) in the inverse QRD-RLS algo-
rithm is given by

6. APPENDIX

4.1 Broadband beamforming

A uniform linear array withM = 4 antenna elements with spacing
equal to halivavelength is used in a system wikh= 4 signals, one
being the desired signal with direction of arrivl@nd the rest are
interference signals with direction of arrivals35®, 45°, and 5@
respectively. The number of coefficients per channél is 6. The oy e veH e TT-HL I
SNR for the interfering signals was set to 40 dB and 5 dB for theWhere_z(k l_) B ¥_ (k—D)f5 (k 1?UP_ (k—1). Pre-multiplying
desired signal. The inverse QRD-RLS and MC-FQRD-RLS algoPoth sides witlQg (k— 1) and considering each column we get
rithms are used for adapting the beamformer. The Weight Extrac-
0 _OH z
b Y2y (k— 2)} =Qp(k-1) {ui

zH(kfl) _ OTX
{U.s“awl)} =Qok—1) {Afl/ZUls“?k—zj (2)

tion algorithm is used to extract the weights of the MC-FQRD-RLS

(k—1)
algorithm. The beampatterns for both algorithms after 4000 itera-

(k— 1)} (26)
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Figure 4. Comparison of difference of the weights obtained with

the IQRD-RLS algorithm and the MC-FQRD-RLS algorithm with
weight extraction.

wherez (k— 1) is theith element of vectoz(k)
z(k—1) = —f5 (k= Dui(k—1)/y(k—1) @7

and the elements of vectfis(k— 1) andy(k— 1) are obtained from
the rotation matrixQg(k— 1) as

[%/8:: iﬂ =Qe(k—1) {Oplx J (28)

whereri_ (k) = —[E} (k)] "D, (Kjui_1(k—1). From (32), the
first M columns correspond to initialization. In (33) we have
u_j(k—2) =Onmx1 andr’j(k) = ef _j(k), wherees _j(K) is the
jth column of—[E (k)] M.

Table 3: Operations required for weight extraction (WH)is the
number of channeld\ is the number of coefficients per channel,
P = MN is the total number of coefficients.

ALG. MULT DIV SORT
MCFQR | 4PMZ+11PM PM +P PM+P
+9P+55M? | +15M24+M | +M
+75M+1 +1
WE (5PM + 5P M 0
(per weighti) +M2)i
WE 5P?M -+ 5P? M 0
(total) +PM?2
IQRD-RLS | 3P24+2P+1 2P P
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