CONVERGENCE ANALYSIS OF THE BINORMALIZED
DATA-REUSING LMS ALGORITHM

J. A. Apolindrio Jr.12

M. L. R. de Campos!

P. S. R. Diniz?

nstituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil, campos@aquarius.ime.eb.br

2COPPE/UFRJ, Rio de Janeiro, RJ, Brazil, apolin@coe.ufrj.br and diniz@coe.ufrj.br

Abstract — A binormalized data-reusing least
mean squares (BNDR-LMS) adaptive filtering al-
gorithm has been recently proposed and has presen-
ted good results, particularly when the input sig-
nal is highly correlated. Simulations have shown
that with a computational complexity only slightly
higher than that of other normalized data-reusing
LMS algorithms, great improvement in convergence
speed can be achieved for a similar excess of mean
squared error after convergence. In this paper, the
BNDR-LMS algorithm is analyzed and conditions
for convergence of the mean of the coefficient vec-
tor are established. A comparative study is carried
out where the figures of merit of interest are con-
vergence speed, excess of mean squared error, and
computational complexity. Simulations are presen-
ted where the algorithm performance is confron-
ted with the performance of other normalized data-
reusing and the normalized LMS algorithms. Con-
clusions stating advantages of using the BNDR-LMS
algorithm are also provided.

I. INTRODUCTION

The least mean squares (LMS) algorithm is very pop-
ular and has been widely used due to its simplicity.
Its convergence speed, however, is highly dependent on
the eigenvalue spread of the input-signal autocorrela-
tion matrix (conditioning number) [1, 2]. Alternative
schemes which try to improve this performance at the
cost of minimum additional computational complexity
have been proposed and extensively discussed in the
past [1, 3, 4].

The data-reusing LMS (DR-LMS) algorithm [3],
which uses current desired and input signals repeatedly
within each iteration is one among such schemes. It
can be easily shown that in the limit of infinite data re-
uses per iteration the DR-LMS and the normalized LMS
(NLMS) algorithms yield the same solution [5]. Per-
formance can be further improved with the recently pro-
posed normalized and unnormalized new data-reusing

LMS (NNDR-LMS and UNDR-LMS) algorithms [6].

These algorithms reuse the data pair, namely desired
and input signals, from previous iterations as well.

In reference [6], a graphical description of NNDR-
LMS and UNDR-LMS algorithms was presented and
it was shown that this new class of data-reusing al-
gorithms had prospective better performance than the
NLMS algorithm in terms of convergence rate. The
geometric description also showed why improvement is
achieved when the number of reuses is increased. The
new binormalized data-reusing LMS (BNDR-LMS) al-
gorithm introduced in [7] employs normalization on two
orthogonal directions obtained from consecutive data
pairs within each iteration.

In all simulations carried out with colored input sig-
nals; the new algorithm presented faster convergence
than all other algorithms mentioned above (case of two
data pairs).

This paper is organized as follows. Section 2 sum-
marizes the LMS-like algorithms as well as a graph-
ical illustration of their coefficient updating. Section 3
presents the BNDR-LMS algorithm. In Section 4 the
convergence analysis is addressed. Section 5 contains
the simulation results and Section 6 draws some con-
clusions.

II. LMS, DR-LMS, NLMS AND NDR-LMS
ALGORITHMS

For the LMS algorithm, the coefficient vector w is up-
dated in the opposite direction of the gradient vector
(Vi []) obtained from instantaneous squared output er-
ror, l.e.,

wrys(k+1) = wrms(k) — pVule? (k)] (1)
where
e(k) = d(k) — a" (k)wrars (k) (2)

is the output error, d(k) is the desired signal, ®(k) is
the input-signal vector containing the N + 1 most re-
cent input-signal samples; and p is the step size. The
coeflicient-updating equation is

wLMS(k + 1) = wLMS(k) + /Mi’(k’)w(k’) (3)



For the DR-LMS with L data reuses, the coefficients
are updated as

wiga (k) = wi (k) + pes (k) (k) (4)

for i=0,..., L; where

ei(k) = d(k)—a" (k)wi(k), (5)
wo(k) = wpr-_rms(k), (6)

and
wpr-Lms(k+1) = wrpi1 (k). (7)

Note that if I = 0 these equations correspond to the
LMS algorithm.

The NLMS algorithm normalizes the step-size such
that the relation =% (k)wyras(k+ 1) = d(k) is always
satisfied, 1.e.,

wyrms(k+1) =wypus(k) +
(8)
where ¢ 1s a very small number used to avoid division
by zero.
The NNDR-LMS algorithm is specified by the follow-
ing relations

i 8) =) o

for i=0,..., L; where

ei(k) = d(k) —aT (k)w;(k), (10)
wo(k) = wynpr-Lms(k), (11)

and
wNNDR-LMs(k+ 1) = wriq1(k). (12)

Fig. 1 illustrates geometrically the updating of the
coefficient vector for a two-dimensional problem for all
algorithms discussed above, starting with an arbitrary
w(k). Since we are interested in comparing algorithms
of similar complexity, it was considered the case of one
unique reuse, i.e., L = 1.

Let S(k) denote the hyperplane which contains all
vectors w such that % (k)w = d(k). In a noise-free
perfect-modeling situation, S(k) contains the optimal
coefficient vector, w,. Furthermore, it can be easily
shown that @(k) and, consequently, V,[e?(k)] are or-
thogonal to the hyperplane S(k).

The solution given by the DR-LMS algorithm,
wpr-LMms(k + 1), iteratively approaches S(k) by fol-
lowing the direction given by @(k) (see 3 in Fig. 1).
This solution would reach S(k) in the limit, as the
number of data reuses goes to infinity [6]. The NLMS

algorithm performs a line search to yield the solution
wyrms(k+1) € S(k) in a single step (see 4 in Fig. 1).

The algorithms presented in [6] use more than one
hyperplane, i.e., use previous data pairs (@, d), in order
to produce a solution w(k + 1) (see 5 and 6 in Fig. 1)
that 1s closer to w, than the solution obtained with
only the current data pair (x(k), d(k)). For a noise-free
perfect-modeling situation, w, is at the intersection of
N + 1 hyperplanes constructed with linearly independ-
ent input-signal vectors. In this case, the orthogonal-
projections algorithm [8] yields the solution w, in N +1
iterations. This algorithm may be viewed as a normal-
ized data-reusing orthogonal algorithm which utilizes
N + 1 data pairs (#, d).

S(k-1)

S(k)

Figure 1: Updating the coefficient vector:

1. w(k);

2. ’wLJ\/js(k—i—l)7 first step Of’wDR_LMs(k—I—l)
and wynpr—rms(k + 1);

3. wpr_rms(k+1);

4. ’wNLMs(k + 1) and first
step of ’wNNDR_LMs(k + 1);

5. wynpr—rms(k +1);

. wyNpr-rMms(k+1);

7. wgnpr—ms(k +1).
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In the next section, the new binormalized data-
reusing LMS algorithm will be described. This al-
gorithm combines data reusing, orthogonal projections
of two consecutive gradient directions, and normaliza-
tion in order to achieve faster convergence when com-
pared to other LMS-like algorithms. At each iteration,
the BNDR-LMS algorithm yields the solution w(k + 1)
which is at the intersection of hyperplanes S(k) and
S(k — 1) and at a minimum distance from w(k) (see 7
in Fig. 1). The algorithm can also be viewed as a sim-
plified version of the orthogonal projection algorithm
which utilizes just two previous consecutive directions.

III. THE BNDR-LMS ALGORITHM

In order to state the problem, we recall that the solu-
tion which belongs to S(k) and S(k —1) at a minimum



distance from w(k) is the one that solves

wlﬁifl) Jw(k +1) — w(k)|]” (13)
subjected to
a” (k)w(k + 1) = d(k) (14)
and
el (k- Dw(k+1)=d(k-1) (15)

The functional to be minimized is, therefore,

flw(k + 1)) = [w(k +1) — w(k)] [w(k +1) — w(k)]
A [T (k)w(k + 1) — d(k)]
+Az[z” (b — Dw(k + 1) — d(k — 1)] (16)

which, for linearly independent input-signal vectors
x(k) and ®(k — 1), has the unique solution

w(k+ 1) = w(k) + (A1 /2w(k) + (~Ao/2a(k - 1)

(17)
where /
num
-\ /2= 18
1/ den (18)
and P
num
—X2/2 = 19
2/ den (19)
with:

numl = [d(k) — &7 (k)w (k)] (k — a(k — 1)

—[d(k = 1) — T (k = Dw(k)]aT (k)a(k — 1)
(20)
num2=[d(k — 1) — &7 (k — Dw(k)]a” (k) (k)

—[d(k) — 2" (k)w(k)]a" (k — Da(k)  (21)
den= wT(k)w(k)azT(k —Da(k-1)
—[=" (k)@ (k —1)]* (22)

The BNDR-LMS algorithm is described by equations
(17) to (22). This algorithm can be alternatively de-
rived from a purely geometric reasoning. The first step
is to reach a preliminary solution, w1 (k), which belongs
to S(k) and is at a minimum distance from w(k). This
is achieved by the NLMS algorithm starting from w(k),
le.,

e(k)
wl (k)x (k)
In the second step, wy (k) is updated in a direction or-

thogonal to the previous one, therefore belonging to
S(k), until the intersection with S(k — 1) is reached.

wy(k) = w(k) + x(k) (23)

This is achieved by the NLMS algorithm starting from
wy (k) and following the direction xi (k) which is the
projection of ®(k — 1) onto S(k).

w(k+ 1) = w (k) + ah(k) (24)

e (k)i (k)

where

and

er(k) = d(k — 1) — 2T (k — 1)w, (k) (26)

The use of ®i (k) obtained from @ (k — 1) assures that
the minimum-distance path is chosen. Note that the re-
quirement of linear independence of consecutive input-
signal vectors x(k) and ®(k — 1), necessary to ensure

existence and uniqueness of the solution, is also mani-
fested here.

As will be seen in the simulation results (see Table 2)
and 1s expected for the class of normalized algorithms,
the excess of the mean-square error (MSE) for the
BNDR-LMS algorithm as in equations (17) to (22) is
close to the variance of the observation noise (suppos-
ing no modeling error). Therefore, in order to control
this excess of MSE a step-size p may be introduced. Al-
though the maximum convergence rate is obtained with
= 1, the use of a smaller value for the step-size may
be required in applications where measurement error is

too high.

Recalling (25), we see that if (k) and ®(k — 1) are
linearly dependent, we cannot find =1 (k) € S(k). This
situation will be avoided with a simple “if” test. Let
us imagine that S(k) is parallel to S(k — 1) in Fig. 1
which is equivalent to the rare situation where @ (k) and
x(k — 1) are linearly dependent. Equation (23) can be
used without any problem and w(k + 1) can be made
equal to wi (k). This way we are taking an optimal
step onto S(k) and indeed the BNDR-LMS algorithm
corresponds — in this very specific case where @ (k) is
parallel to ®(k — 1) — to the NLMS algorithm. It is
also correct to say that for the case where the step-
size is one, p = 1, w(k) is already on the hyperplane
S(k —1) and nothing is left to be done, i.e., w(k+1) =
wi (k) = w(k).

The BNDR-LMS algorithm is summarized in Table 1.
A very small positive number € (we used o2/101° in
our experiments) is present in the algorithm to prevent
division by zero in cases where the signal input vector
18 zero.



Table 1: The Binormalized Data-Reusing LMS Al-
gorithm.

BNDR-LMS

€ = small value
for each k
{ @ = (k)
x =wx(k—1)
dy =d(k)
dy =d(k —1)
a = 213?332
b= :clT:cl
Cc = ZE;ZBQ
d =xfw(k)
if a? ==1c
{wik+1) = w(k) + u(ds — d)za/(b+ )
}

else

{e=alwk)
den =bc —a
A= (dic+ea —dc—da)/den
B = (d2b+ da — eb — dya)/den
w(k +1) = w(k) + p(Az, + Bxs)

}

}
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IV. CONVERGENCE ANALYSIS OF THE
COEFFICIENT VECTOR

In this section, we assume that an unknown FIR filter
with coefficient vector given by w, is to be identified by
an adaptive filter of same order, employing the BNDR-
LMS algorithm. It is also assumed that the input signal
and measurement noise are independent and identically
distributed zero mean white noise with variances o2
and o2, respectively.

We are interested in analyzing the convergence be-
havior of the coefficient vector in terms of a step-size
p. Let Aw(k) = w(k) — wq be the error in the adapt-
ive filter coefficients as related to the ideal coefficient
vector. For the BNDR-LMS algorithm as described in
(17)-(19), Aw(k + 1) is given by

Aw(k+ 1) = Aw(k) + p(numi + num2)/den  (27)

Replacing numi, num2 and den in the above equa-
tion by (20) to (22), and recalling that in our system
identification problem d(k) is given by & (k)wq +n(k),
it 1s easy to find that

Aw(k + 1) = [T+ pu termi]Aw(k) + p term2  (28)
where

—x(k)x’ (k)a® (k — 1)x(k — 1)/den

terml =

ta(k)x" (k — 1) & (k)x(k — 1)/den
—a(k — Dal (k- 12T (k)a(k)/den
ta(k — Da® (k)T (k — 1)x(k)/den
(29)
and
term2 = n(k)a’ (k — Da(k — )x(k)/den
—n(k — DT (k)x(k — Da(k)/den
Hn(k — Da (k) (k)x(k — 1)/den
—n(k)al (k — Da(k)x(k — 1)/den
(30)
The expected value of this error vector is given by
EAw(k+1)] = E[Aw(k)]+ pE[term !+ term2] (31)

Since n(k) and z(k) are samples from independent
random processes, then E[termZ = 0. Moreover, if we
replace (29) in (31), we will see that u E[terml] has
four expressions which will be named exp.1 to exp.4.
In order to simplify these expressions, the following re-
lations will be used:

Bl (k- i)ae(k—i)] = (N+1)o> (32)

El(2" (k) (k —1))*] = (N +1)(07) (33)

2T (k—DAwk) = (1 —pal (k- 1)Awk—1)

+un(k — 1) (34)

The expressions above can be easily obtained with
the use of the independence assumption [1] and the
BNDR-LMS algorithm equations.

If we assume that R = ¢2I, Aw(k) is statistically in-
dependent of ®(k)xT (k), and that E[v/s] ~ E[v]/E]s]
for large values of NV, where v is a vector and s is a
scalar, the expressions exp.1 to exp.4 can be written as

x(k)zT (k)z? (k — Da(k — 1)Aw(k)

den

expl = —uk

pEl (k) (k) Aw (k)]

(ET (k) E(k—1))2

X

_uE[ANw(k’)] (35)

X

x(k)zT (k- 1)zT(k)z(k — 1)Aw(k)

den

exp.2 = puk



x(k)eT (B)a(k — Vel (k- DAw(k - 1)

den

= u(1 — W

]

+1 2 Bla (k)T (k)a(k — 1)n(k — 1)/ den]
(1 — ) R B[Aw(k — 1)
(N +1)%(07)* = (N +1)(03)?

p(1 = ) E[Aw(k — 1)]
NN +1)

(36)

exp.3 = w(k— D’ (k - 1)93T(/<7):13(/<7)Aw(k)]

den

_NE[

_uE [:BT(k')az(k’)w(k — 1)zt (k- I)Aw(k')]

den

(L= ) (N + 1)o2 RE[Aw(k — 1]
N(N + 1)(62)?

X

— _ﬂ(l - /’L)E[Aw(k — 1)] (37)
N

Finally, the last expression is obtained with the
already used assumptions as well as by making use of
the fact that F [E [g(=,y) | ®]] = Eg(=,y)].

4 =
cep den

B [az(k —Dxf(k)=T (k - 1):13(]{7)Aw(k)]

den

— [az(k — l)wT(k — 1)w(k)wT(k)Aw(k)]

pElx(k — D&l (k- o2 IAw(k)]

E[den]

X

p(1 = ) RE[Aw(k)]
N(N + 1)o2

p(1 = ) E[Aw(k — 1)]
N(N+1)

(38)

Substituting (35)—(38) in (31),

ElAw(k + 1)] = aE[Aw(k)] + bE[Aw(k —1)] (39)

Nt and b = — AV=1)(1—w)
N N(N+1)

Each component of the above vector will have a dif-
ference equation of the type f(k) = a f(k—1)+0b f(k—
2) + ¢ d(k) with ¢ = f(0). The system (or transfer)
function is obtained by taking the Z transform of this
difference equation.

where a =

(40)

By using the final value theorem', we can see that

f(o0) tends to zero if F(z) is stable. The condition
of convergence is then obtained for values of the step-
size p such that the poles of F(z) in (40) fall inside
the unit circle. Once this is achieved, the convergence
of the algorithm in the mean is guaranteed. We know
that g = 0 indicates that the initialization vector w/(0)
will be propagated. We are then interested in finding a
Hmaz Such that F(z) remains stable. The poles of F'(z)

are
_ax+a?44b

“poles = T 9 (41)

Since the term inside the square root is always pos-

itive, we have two real poles z; = 7‘1"'\/;2"'46 and

Zy = (1_7“;2"'46. Moreover, it is possible to state that
z1 < 1and 2z > —1if a®> +4b < (2 — a)? since a is
always positive and smaller than one. Replacing a and
b by their expressions we obtain p((N —1)u—2N) < 0.
Based on the assumption of a large value of N, we can
state from the expression above the condition of con-
vergence as

O<p<?2 (42)

V. SIMULATION RESULTS

In order to test the BNDR-LMS algorithm, simulations
were carried out for a system identification problem.
The system order was N = 10, the input signal was
correlated noise with a conditioning number around 55
and the input signal to measurement noise ratio SN R
was 150dB. The learning curves (MSE in dB) for the
NLMS, the NNDR-LMS (one reuse) and the BNDR-
LMS algorithms are depicted in Fig. 2, corresponding
to an average of 200 realizations. It is worth mentioning
that in all experiments, the step-size p was set to 1
in order to achieve the fastest convergence rate of the
BNDR-LMS algorithm.

In this example we can clearly verify the superior
performance of the BNDR-LMS algorithm in terms of
speed of convergence when compared to the NLMS
and the NNDR-LMS algorithms (with one single re-
use). Simulations for the conventional LMS algorithm
and for the DR-LMS algorithm were also carried out
for the same setup, but their performances were, as ex-
pected, inferior than that of the NLMS algorithm and
the results were omitted from Fig. 2.

In order to test the performance of the algorithms
in terms of mean-square error after convergence, we
measured the excess of MSE (MSE - MSE,,;,,) in dB.
The MSE,;,, is the variance of the measurement noise,
set equal to 107% in this experiment. The results

1f(oo) =lim.1(z — 1).F(z)
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Figure 2: Learning curves of the following algorithms:

NLMS, NNDR-LMS and BNDR-LMS.

are summarized in Table 2 where we can also observe
the excess of MSE in dB for a nonstationary environ-
ment. In this case, measurement noise was set to zero
and the system (plant) coefficients varied according to
w(k) = w(k — 1) + v, where v was a random vector
with zero mean and variance equal to 1075, As we can
see from Table 2, in both stationary and nonstationary
environments, the BNDR-LMS algorithm performed
closely to NLMS and NNDR-LMS algorithms.

Table 2: Excess Mean-Square Error.

Algorithm (MSE - MSEmm)dB
Type Stationary | Nonstationary
NLMS -59.09 -39.15

NNDR-LMS -59.40 -39.42
BNDR-LMS -58.60 -39.45

In terms of computational complexity, Table 3 shows
the comparisons among these three algorithms. Note
that p = N + 1 is the number of coefficients.

Table 3: Comparison of computational complexity.

[ ALG. [ ADD | MULT. | DIV, |
NLMS 3p-1 3p 1
NNDR-LMS || 6p-2 6p 2
BNDR-LMS || 7p+3 | 7p+2 2

VI. CONCLUSIONS

This paper presented the analysis of the convergence
in the mean of the BNDR-LMS algorithm and showed

that the coefficient vector tends in average to the op-
timal coefficient vector provided that the step-size is
between 0 and 2. This algorithm is also known to
have faster convergence than a number of other LMS-
like algorithms when the input signal is highly cor-
related. A geometric interpretation of the algorithm
was also provided showing that the coefficients are up-
dated in two normalized steps following orthogonal dir-
ections. The relationship between the BNDR-LMS al-
gorithm and the orthogonal-projections algorithm was
clarified. Simulations carried out in a system identifica-
tion application showed that the BNDR-LMS algorithm
compared favorably with other LMS-like algorithms in
terms of speed of convergence. Moreover, the more
correlated is the input signal, the better is the perform-
ance of the new algorithm. This improvement is more
clearly observed in cases of a very small measurement
noise such as the example depicted in Fig. 2.
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