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Abstract � A binormalized data�reusing least
mean squares �BNDR�LMS� adaptive �ltering al�
gorithm has been recently proposed and has presen�
ted good results� particularly when the input sig�
nal is highly correlated� Simulations have shown
that with a computational complexity only slightly
higher than that of other normalized data�reusing
LMS algorithms� great improvement in convergence
speed can be achieved for a similar excess of mean
squared error after convergence� In this paper� the
BNDR�LMS algorithm is analyzed and conditions
for convergence of the mean of the coe�cient vec�
tor are established� A comparative study is carried
out where the �gures of merit of interest are con�
vergence speed� excess of mean squared error� and
computational complexity� Simulations are presen�
ted where the algorithm performance is confron�
ted with the performance of other normalized data�
reusing and the normalized LMS algorithms� Con�
clusions stating advantages of using the BNDR�LMS
algorithm are also provided�

I� INTRODUCTION

The least mean squares �LMS� algorithm is very pop�
ular and has been widely used due to its simplicity�
Its convergence speed� however� is highly dependent on
the eigenvalue spread of the input�signal autocorrela�
tion matrix �conditioning number� ��� �	� Alternative
schemes which try to improve this performance at the
cost of minimum additional computational complexity
have been proposed and extensively discussed in the
past ��� 
� �	�

The data�reusing LMS �DR�LMS� algorithm �
	�
which uses current desired and input signals repeatedly
within each iteration is one among such schemes� It
can be easily shown that in the limit of in�nite data re�
uses per iteration the DR�LMS and the normalized LMS
�NLMS� algorithms yield the same solution �
	� Per�
formance can be further improved with the recently pro�
posed normalized and unnormalized new data�reusing
LMS �NNDR�LMS and UNDR�LMS� algorithms ��	�

These algorithms reuse the data pair� namely desired
and input signals� from previous iterations as well�
In reference ��	� a graphical description of NNDR�

LMS and UNDR�LMS algorithms was presented and
it was shown that this new class of data�reusing al�
gorithms had prospective better performance than the
NLMS algorithm in terms of convergence rate� The
geometric description also showed why improvement is
achieved when the number of reuses is increased� The
new binormalized data�reusing LMS �BNDR�LMS� al�
gorithm introduced in ��	 employs normalization on two
orthogonal directions obtained from consecutive data
pairs within each iteration�
In all simulations carried out with colored input sig�

nals� the new algorithm presented faster convergence
than all other algorithms mentioned above �case of two
data pairs��
This paper is organized as follows� Section � sum�

marizes the LMS�like algorithms as well as a graph�
ical illustration of their coe�cient updating� Section 

presents the BNDR�LMS algorithm� In Section � the
convergence analysis is addressed� Section 
 contains
the simulation results and Section � draws some con�
clusions�

II� LMS� DR�LMS� NLMS AND NDR�LMS
ALGORITHMS

For the LMS algorithm� the coe�cient vector w is up�
dated in the opposite direction of the gradient vector
�rw��	� obtained from instantaneous squared output er�
ror� i�e��

wLMS�k � �� � wLMS�k�� �rw�e
��k�	 ���

where
e�k� � d�k�� xT �k�wLMS�k� ���

is the output error� d�k� is the desired signal� x�k� is
the input�signal vector containing the N � � most re�
cent input�signal samples� and � is the step size� The
coe�cient�updating equation is

wLMS�k � �� � wLMS�k� � �e�k�x�k� ���



For the DR�LMS with L data reuses� the coe�cients
are updated as

wi���k� � wi�k� � �ei�k�x�k� �	�

for i � �� � � � � L� where

ei�k� � d�k�� xT �k�wi�k�� �
�

w��k� � wDR�LMS�k�� ���

and
wDR�LMS�k � �� � wL���k�� ���

Note that if L � � these equations correspond to the
LMS algorithm�
The NLMS algorithm normalizes the step�size such

that the relation xT �k�wNLMS�k� �� � d�k� is always
satis�ed� i�e��

wNLMS�k � �� � wNLMS�k� �
e�k�

xT �k�x�k� � �
x�k�

�
�
where � is a very small number used to avoid division
by zero�
The NNDR�LMS algorithm is speci�ed by the follow�

ing relations

wi���k� � wi�k��
ei�k�

xT �k � i�x�k � i� � �
x�k�i� ���

for i � �� � � � � L� where

ei�k� � d�k�� xT �k�wi�k�� ����

w��k� � wNNDR�LMS�k�� ����

and
wNNDR�LMS�k � �� � wL���k�� ����

Fig� � illustrates geometrically the updating of the
coe�cient vector for a two�dimensional problem for all
algorithms discussed above� starting with an arbitrary
w�k�� Since we are interested in comparing algorithms
of similar complexity� it was considered the case of one
unique reuse� i�e�� L � ��
Let S�k� denote the hyperplane which contains all

vectors w such that xT �k�w � d�k�� In a noise�free
perfect�modeling situation� S�k� contains the optimal
coe�cient vector� wo� Furthermore� it can be easily
shown that x�k� and� consequently� rw�e��k�	 are or�
thogonal to the hyperplane S�k��
The solution given by the DR�LMS algorithm�

wDR�LMS�k � ��� iteratively approaches S�k� by fol�
lowing the direction given by x�k� �see 
 in Fig� ���
This solution would reach S�k� in the limit� as the
number of data reuses goes to in�nity ��	� The NLMS

algorithm performs a line search to yield the solution
wNLMS�k��� � S�k� in a single step �see � in Fig� ���

The algorithms presented in ��	 use more than one
hyperplane� i�e�� use previous data pairs �x� d�� in order
to produce a solution w�k � �� �see 
 and � in Fig� ��
that is closer to wo than the solution obtained with
only the current data pair �x�k�� d�k��� For a noise�free
perfect�modeling situation� wo is at the intersection of
N � � hyperplanes constructed with linearly independ�
ent input�signal vectors� In this case� the orthogonal�
projections algorithm ��	 yields the solutionwo in N��
iterations� This algorithm may be viewed as a normal�
ized data�reusing orthogonal algorithm which utilizes
N � � data pairs �x� d��
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Figure �� Updating the coe�cient vector�

�� w�k��
�� wLMS�k���� 	rst step ofwDR�LMS�k���

and wUNDR�LMS�k � ���

� wDR�LMS�k � ���
�� wNLMS�k � �� and 	rst

step of wNNDR�LMS�k� ���
�� wUNDR�LMS�k � ���

� wNNDR�LMS�k � ���
�� wBNDR�LMS�k � ���

In the next section� the new binormalized data�
reusing LMS algorithm will be described� This al�
gorithm combines data reusing� orthogonal projections
of two consecutive gradient directions� and normaliza�
tion in order to achieve faster convergence when com�
pared to other LMS�like algorithms� At each iteration�
the BNDR�LMS algorithm yields the solution w�k���
which is at the intersection of hyperplanes S�k� and
S�k � �� and at a minimum distance from w�k� �see �
in Fig� ��� The algorithm can also be viewed as a sim�
pli�ed version of the orthogonal projection algorithm
which utilizes just two previous consecutive directions�

III� THE BNDR�LMS ALGORITHM

In order to state the problem� we recall that the solu�
tion which belongs to S�k� and S�k� �� at a minimum



distance from w�k� is the one that solves

min
w�k���

kw�k � ���w�k�k� ����

subjected to

xT �k�w�k � �� � d�k� ��	�

and
xT �k � ��w�k � �� � d�k � �� ��
�

The functional to be minimized is� therefore�

f �w�k � ��	� �w�k � ���w�k�	T �w�k � ���w�k�	
����x

T �k�w�k � �� � d�k�	

����x
T �k � ��w�k � ��� d�k� ��	 ����

which� for linearly independent input�signal vectors
x�k� and x�k � ��� has the unique solution

w�k � �� � w�k� � �������x�k� � �������x�k � ��
����

where

����� � num�

den
��
�

and

����� � num�

den
����

with�

num�� �d�k�� xT �k�w�k�	xT �k � ��x�k � ��

��d�k � ��� xT �k � ��w�k�	xT �k�x�k � ��

����

num�� �d�k � �� � xT �k � ��w�k�	xT �k�x�k�

��d�k�� xT �k�w�k�	xT �k � ��x�k� ����

den�xT �k�x�k�xT �k � ��x�k � ��

��xT �k�x�k � ��	� ����

The BNDR�LMS algorithm is described by equations
���� to ����� This algorithm can be alternatively de�
rived from a purely geometric reasoning� The �rst step
is to reach a preliminary solution�w��k�� which belongs
to S�k� and is at a minimumdistance fromw�k�� This
is achieved by the NLMS algorithm starting fromw�k��
i�e��

w��k� � w�k� �
e�k�

xT �k�x�k�
x�k� ����

In the second step� w��k� is updated in a direction or�
thogonal to the previous one� therefore belonging to
S�k�� until the intersection with S�k � �� is reached�

This is achieved by the NLMS algorithm starting from
w��k� and following the direction x�� �k� which is the
projection of x�k � �� onto S�k��

w�k � �� � w��k� �
e��k�

x��
T
�k�x�� �k�

x�� �k� ��	�

where

x�� �k� �
�
I � x�k�xT �k�

xT �k�x�k�

�
x�k � �� ��
�

and

e��k� � d�k � ��� xT �k � ��w��k� ����

The use of x�� �k� obtained from x�k � �� assures that
the minimum�distance path is chosen� Note that the re�
quirement of linear independence of consecutive input�
signal vectors x�k� and x�k � ��� necessary to ensure
existence and uniqueness of the solution� is also mani�
fested here�

As will be seen in the simulation results �see Table ��
and is expected for the class of normalized algorithms�
the excess of the mean�square error �MSE� for the
BNDR�LMS algorithm as in equations ���� to ���� is
close to the variance of the observation noise �suppos�
ing no modeling error�� Therefore� in order to control
this excess of MSE a step�size �may be introduced� Al�
though the maximum convergence rate is obtained with
� � �� the use of a smaller value for the step�size may
be required in applications where measurement error is
too high�

Recalling ��
�� we see that if x�k� and x�k � �� are
linearly dependent� we cannot �nd x�� �k� � S�k�� This
situation will be avoided with a simple �if� test� Let
us imagine that S�k� is parallel to S�k � �� in Fig� �
which is equivalent to the rare situation where x�k� and
x�k � �� are linearly dependent� Equation ��
� can be
used without any problem and w�k � �� can be made
equal to w��k�� This way we are taking an optimal
step onto S�k� and indeed the BNDR�LMS algorithm
corresponds � in this very speci�c case where x�k� is
parallel to x�k � �� � to the NLMS algorithm� It is
also correct to say that for the case where the step�
size is one� � � �� w�k� is already on the hyperplane
S�k��� and nothing is left to be done� i�e�� w�k��� �
w��k� � w�k��

The BNDR�LMS algorithm is summarized in Table ��
A very small positive number � �we used ��x���

�� in
our experiments� is present in the algorithm to prevent
division by zero in cases where the signal input vector
is zero�



Table �� The Binormalized Data�Reusing LMS Al�
gorithm�

BNDR�LMS

� � small value
for each k
f x� � x�k�
x� � x�k � ��
d� � d�k�
d� � d�k � ��
a � x

T

� x�

b � x
T

� x�

c � x
T

� x�

d � xT�w�k�
if a� �� bc
f w�k � �� � w�k� � ��d� � d�x���b� ��
g
else
f e � xT�w�k�
den � bc � a�

A � �d�c� ea� dc� d�a��den
B � �d�b� da� eb� d�a��den
w�k � �� � w�k� � ��Ax� � Bx��

g
g

IV� CONVERGENCE ANALYSIS OF THE
COEFFICIENT VECTOR

In this section� we assume that an unknown FIR �lter
with coe�cient vector given by wo is to be identi�ed by
an adaptive �lter of same order� employing the BNDR�
LMS algorithm� It is also assumed that the input signal
and measurement noise are independent and identically
distributed zero mean white noise with variances ��x
and ��n� respectively�
We are interested in analyzing the convergence be�

havior of the coe�cient vector in terms of a step�size
�� Let �w�k� � w�k��w� be the error in the adapt�
ive �lter coe�cients as related to the ideal coe�cient
vector� For the BNDR�LMS algorithm as described in
���������� �w�k � �� is given by

�w�k � �� � �w�k� � ��num� � num���den ����

Replacing num�� num� and den in the above equa�
tion by ���� to ����� and recalling that in our system
identi�cation problem d�k� is given by xT �k�w��n�k��
it is easy to �nd that

�w�k � �� � �I � � term�	�w�k� � � term� ��
�

where

term� � �x�k�xT �k�xT �k � ��x�k � ���den

�x�k�xT �k � ��xT �k�x�k � ���den

�x�k � ��xT �k � ��xT �k�x�k��den

�x�k � ��xT �k�xT �k � ��x�k��den

����

and

term� � n�k�xT �k � ��x�k � ��x�k��den

�n�k � ��xT �k�x�k � ��x�k��den

�n�k � ��xT �k�x�k�x�k � ���den

�n�k�xT �k � ��x�k�x�k � ���den

����

The expected value of this error vector is given by

E��w�k���	 � E��w�k�	��E�term�� term�	 ����

Since n�k� and x�k� are samples from independent
random processes� then E�term�	 � �� Moreover� if we
replace ���� in �
��� we will see that � E�term�	 has
four expressions which will be named exp�� to exp���
In order to simplify these expressions� the following re�
lations will be used�

E�xT �k � i�x�k � i�	 � �N � ����x ����

E��xT �k�x�k � ����	 � �N � �����x�
� ����

xT �k � ���w�k� � �� � ��xT �k � ���w�k � ��

��n�k � �� ��	�

The expressions above can be easily obtained with
the use of the independence assumption ��	 and the
BNDR�LMS algorithm equations�
If we assume that R � ��xI � �w�k� is statistically in�

dependent of x�k�xT �k�� and that E�v�s	 � E�v	�E�s	
for large values of N � where v is a vector and s is a
scalar� the expressions exp�� to exp�� can be written as

exp�� � ��E
�
x�k�xT �k�xT �k � ��x�k � ���w�k�

den

�

� � �E�x�k�xT �k��w�k�	

E�xT �k�x�k� � �xT �k�x�k�����
xT �k���x�k���	

� ��E��w�k�	

N
��
�

exp�� � �E

�
x�k�xT �k � ��xT �k�x�k � ���w�k�

den

�



� ��� � ��E�
x�k�xT �k�x�k� ��xT �k � ���w�k� ��

den
�

���E�x�k�xT �k�x�k � ��n�k � ���den	

� ���� ��R�E��w�k � ��	

�N � ������x�
� � �N � �����x�

�

�
���� ��E��w�k � ��	

N �N � ��
����

exp�
 � ��E
�
x�k � ��xT �k � ��xT �k�x�k��w�k�

den

�

� ��E
�
xT �k�x�k�x�k � ��xT �k � ���w�k�

den

�

� ����� ���N � ����xRE��w�k � ��	

N �N � �����x�
�

� ����� ��E��w�k � ��	

N
����

Finally� the last expression is obtained with the
already used assumptions as well as by making use of
the fact that E �E �g�x�y� j x		 � E �g�x�y�	�

exp�� � �E

�
x�k � ��xT �k�xT �k � ��x�k��w�k�

den

�

� �E

�
x�k � ��xT �k � ��x�k�xT �k��w�k�

den

�

� �E�x�k � ��xT �k � ����xI�w�k�	

E�den	

�
���� ��RE��w�k�	

N �N � ����x

�
���� ��E��w�k � ��	

N �N � ��
��
�

Substituting �

���
�� in �
���

E��w�k � ��	 � aE��w�k�	 � bE��w�k � ��	 ����

where a � N��
N

and b � ���N��������
N�N���

�

Each component of the above vector will have a dif�
ference equation of the type f�k� � a f�k����b f�k�
�� � c ��k� with c � f���� The system �or transfer�
function is obtained by taking the Z transform of this
di�erence equation�

F �z� �
c z�

z� � a z � b
�	��

By using the �nal value theorem�� we can see that
f��� tends to zero if F �z� is stable� The condition
of convergence is then obtained for values of the step�
size � such that the poles of F �z� in ���� fall inside
the unit circle� Once this is achieved� the convergence
of the algorithm in the mean is guaranteed� We know
that � � � indicates that the initialization vector w���
will be propagated� We are then interested in �nding a
�max such that F �z� remains stable� The poles of F �z�
are

zpoles �
a�pa� � �b

�
�	��

Since the term inside the square root is always pos�

itive� we have two real poles z� � a�
p
a���b
� and

z� � a�pa���b
� � Moreover� it is possible to state that

z� 	 � and z� 
 �� if a� � �b 	 �� � a�� since a is
always positive and smaller than one� Replacing a and
b by their expressions we obtain ���N ������N � 	 ��
Based on the assumption of a large value of N � we can
state from the expression above the condition of con�
vergence as

� 	 � 	 � �	��

V� SIMULATION RESULTS

In order to test the BNDR�LMS algorithm� simulations
were carried out for a system identi�cation problem�
The system order was N � ��� the input signal was
correlated noise with a conditioning number around 


and the input signal to measurement noise ratio SNR
was �
�dB� The learning curves �MSE in dB� for the
NLMS� the NNDR�LMS �one reuse� and the BNDR�
LMS algorithms are depicted in Fig� �� corresponding
to an average of ��� realizations� It is worth mentioning
that in all experiments� the step�size � was set to �
in order to achieve the fastest convergence rate of the
BNDR�LMS algorithm�
In this example we can clearly verify the superior

performance of the BNDR�LMS algorithm in terms of
speed of convergence when compared to the NLMS
and the NNDR�LMS algorithms �with one single re�
use�� Simulations for the conventional LMS algorithm
and for the DR�LMS algorithm were also carried out
for the same setup� but their performances were� as ex�
pected� inferior than that of the NLMS algorithm and
the results were omitted from Fig� ��
In order to test the performance of the algorithms

in terms of mean�square error after convergence� we
measured the excess of MSE �MSE � MSEmin� in dB�
The MSEmin is the variance of the measurement noise�
set equal to ���� in this experiment� The results

�f��� � limz���z � ���F �z�
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Figure �� Learning curves of the following algorithms�
NLMS� NNDR�LMS and BNDR�LMS�

are summarized in Table � where we can also observe
the excess of MSE in dB for a nonstationary environ�
ment� In this case� measurement noise was set to zero
and the system �plant� coe�cients varied according to
w�k� � w�k � �� � v� where v was a random vector
with zero mean and variance equal to ����� As we can
see from Table �� in both stationary and nonstationary
environments� the BNDR�LMS algorithm performed
closely to NLMS and NNDR�LMS algorithms�

Table �� Excess Mean�Square Error�

Algorithm �MSE � MSEmin�dB
Type Stationary Nonstationary

NLMS �
���� �
���

NNDR�LMS �
���� �
����
BNDR�LMS �
���� �
���


In terms of computational complexity� Table 
 shows
the comparisons among these three algorithms� Note
that p � N � � is the number of coe�cients�

Table �� Comparison of computational complexity�

ALG� ADD MULT� DIV�

NLMS 
p�� 
p �
NNDR�LMS �p�� �p �
BNDR�LMS �p�
 �p�� �

VI� CONCLUSIONS

This paper presented the analysis of the convergence
in the mean of the BNDR�LMS algorithm and showed

that the coe�cient vector tends in average to the op�
timal coe�cient vector provided that the step�size is
between � and �� This algorithm is also known to
have faster convergence than a number of other LMS�
like algorithms when the input signal is highly cor�
related� A geometric interpretation of the algorithm
was also provided showing that the coe�cients are up�
dated in two normalized steps following orthogonal dir�
ections� The relationship between the BNDR�LMS al�
gorithm and the orthogonal�projections algorithm was
clari�ed� Simulations carried out in a system identi�ca�
tion application showed that the BNDR�LMS algorithm
compared favorably with other LMS�like algorithms in
terms of speed of convergence� Moreover� the more
correlated is the input signal� the better is the perform�
ance of the new algorithm� This improvement is more
clearly observed in cases of a very small measurement
noise such as the example depicted in Fig� ��
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