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Abstract: This paper examines the role of the Principal Components Analysis (PCA) on the performance of two classification
systems for text independent speaker verification: the Gaussian Mixture Model (GMM) and the AR-Vector Model. The use of
the PCA transform resulted in an improvement in the performance of the GMM for training times of60s and30s. However,
the advantage of using PCA was not observed for the AR-Vector model. For the case of10s training time, there was no
benefit in using PCA even with GMM. In this situation, the AR-Vector is superior for a10s test and worse for a3s test. In
this latter case, however, all systems yielded error rates above7%.

1. INTRODUCTION

Speech, being present everywhere from telephone nets to
personal computers, may be the cheapest form to supply a
growing need of providing authenticity and privacy in the
worldwide communication nets [1]. Speaker verification
is the task of verifying if a speech signal (utterance) be-
longs or not to a certain person, which means a binary deci-
sion. The decisions are carried out in the so-called speakers
open set [2] because the recognition is done in an unknown
speakers set (possible impostors). As to text dependency,
recognition can be dependent or independent. Systems de-
manding a predetermined word or phrase are text depen-
dent.

Two classification systems using PCA are investigated
in this paper: the GMM and the AR-Vector. The GMM [3]
combines the robustness and smoothing properties of the
parametric Gaussian model with the arbitrary modeling ca-
pability of a non-parametric VQ. The GMM can also be un-
derstood as a single state HMM (Hidden Markov Model),
having as observations mixtures of Gaussian PDFs (proba-
bility density functions). These components may model a
vast phonetic class to characterize the sound produced by a
person [4].

The AR-Vector—AR fromAuto-Regressive—is a model
capable of capturing information about the dynamics of
the speech for a given speaker which is interpreted as the
speaker articulatory capacity or, in other words, the way he
(or she) speaks as time goes by [5]. In speaker recognition

applications, the AR-Vector uses a distance measure in or-
der to compare two models.

The Principal Components Analysis (PCA) is used with
the purpose of decorrelating the training data. This leads
to easier statistical models and adds structural information
from the training data (eigenvalues of the covariance ma-
trix) in an effort to provide more discriminative features to
the speaker recognition system.

This paper is organized as follows. Section 2 and 3
briefly review the GMM and the AR-Vector, respectively.
The PCA is presented in Section 4. Section 5 contains de-
tails of the system setup and presents the simulation results.
Concluding remarks are given in Section 6.

2. THE GAUSSIAN MIXTURE MODEL

A mixture of Gaussian probability densities is a weighted
sum ofM densities, and is given byp(~xj�) =

PM

i=1 pibi(~x)

where~x is aD�1 random vector,bi(~x)i=1;:::;M are the den-
sity components, andpii=1;:::;M are the mixtures weights.

Each component density is aD variate Gaussian func-
tion with mean vector~�i and covariance matrixKi. The
complete Gaussian mixture density is parameterized by
mean vectors, covariance matrices, and a weighted mixture
of all component densities (� model). These parameters are
jointly represented by the notation� = fpi; ~�i;Kig; i =

1; :::;M .
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For a set of training data, the model parameters are de-
termined in order to maximize the likelihood of the GMM.

The algorithm presented in [3] is widely used for this
task. For a sequence ofT independent training vectorsX =

f~x1; :::; ~xT g, the likelihood of the GMM for modeling a
true speaker (model�) is calculated throughlog p(X j�) =
1

T

PT

t=1 log p(~xtj�). The scale factor1
T

is used in order
to normalize the likelihood according to the duration of the
utterance (number of feature vectors).

The speaker verification system requires a binary deci-
sion, accepting or rejecting a pretense speaker. Such a sys-
tem is represented in Fig. 1.
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Fig. 1. Speaker verification system using GMM.

The system uses two models which provide the normal-
ized logarithmic likelihood with input vectors~x1; :::; ~xT ,
one from the pretense speaker and another one trying to
minimize the variations not related to the speaker (back-
ground model), providing a more stable decision thresh-
old [2]. If the system output value (difference between the
two likelihoods) is higher than a given threshold� the speaker
is accepted; otherwise it is rejected. The background is built
with a hypothetical set of false speakers and modeled via
GMM (universal background model [6]). The threshold is
calculated on the basis of experimental results.

3. THE AR-VECTOR MODEL

The AR-Vector is actually an extension of the LPC in the
sense that it carries out a prediction among vectors (not
samples), modeling the time evolving of the vectors (in our
case, the feature vectors of speech). The orderp AR-Vector
model for a sequence ofN vectors of dimensionm � 1,
in time domain, is given byXn =

Pp

k=1AkXn�k + En,
whereXn andEn are dimensionm�1 vectors, withE rep-
resenting the linear prediction error, andAk being anm�m
prediction matrix. The set of prediction matrices can be rep-
resented by an m � (p + 1) matrix
A = [A0 A1 A2 � � � Ap], with A0 = I (identity
matrix).

From the vectorsXn, we can define an estimate of the
autocorrelation matrixRk =

PN�k

n=0 XnX
T
n+k, whereN is

the number of vectorsXn available for the estimation. Note

thatRk results in am�m matrix.
Ak are obtained by solving the following set of equa-

tions:
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From the previous equation, if we define thepM � pM

Toeplitz autocorrelation matrix asRRR, thepM �M coeffi-
cient matrix asAAA, and thepM �M autocorrelation matrix
on the right-hand side asR, we haveAAA =RRR�1R. OnceRRR
is a Toeplitz matrix, a well known computationally efficient
algorithm (Levinson-Durbin recursion) can be used to solve
the set of equations.

The utilization of the AR-Vector in speaker recognition
requires the use of some measure to evaluate the similarity
between two autoregressive models. The use of the Itakura
distance with the AR-Vector is presented in [5]. Assuming
a stored modelAAA previously estimated from a given speaker
and a modelBBB from a pretense speaker, three distance mea-
sures between these two models are defined for their respec-
tive autocorrelation matrices. In this work we will employ
the symmetric distance, defined by

dsym =
1

2
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The speaker verification system provides a binary output, ac-
ceptance or rejection of a pretense speaker. Hence, an estimation
of a threshold�, based on true and false utterances, is required.
This threshold is estimated with thetrue distances, i.e., the two
models under comparison are from the same person, and with the
false distancesgiven by the pretense speaker model compared to
the other models not belonging to him.

From these distances, the threshold is estimated taking into
account false acceptance errors and false rejection errors. When
a speaker is to be analyzed, he (or she) will be accepted if the
resulting distance is lower than the threshold. He (or she) will
be rejected otherwise. Fig. 2 presents the AR-Vector verification
system.

The autoregressive model produces a smoothed model of the
evolving features, capturing information from the dynamics of the
speaker.

4. PRINCIPAL COMPONENTS ANALYSIS

Principal Components Analysis (PCA) is a linear mapping tech-
nique widely used in pattern recognition [7]. This technique ex-
tracts the features of a random vector from its projection over a
set of base vectors. Considering a dimensionN � 1 random vec-
torX, the set of featuresY can be extracted fromX as follows:
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Fig. 2. AR-Vector Speaker Verification System.

Y = ���TX, where��� is a matrix formed by the base vectors,
���1;���2; � � � ;���N , which extracts the features fromX via the lin-
ear combination of its components. If these base vectors���i are
the eigenvectors of the covariance matrix ofX, then the resulting
feature extraction is calledprincipal component analysis[8]. This
procedure also corresponds to the discrete version of theKarhunen-
Loéve Transform.

The base vectors���i can be used to representX in a dimen-
sionM lower than the original (M < N ). Once���i are mutually
orthogonal,X can be reconstructed fromY using the following
expression:X̂ = ���Y.

In PCA, the eigenvectors���i are organized in the transforma-
tion matrix��� in such a way that all eigenvectors indices are in
a descending order corresponding to their respective eigenvalues
(v1 � v2 � � � � � vN ). Once���i are the eigenvectors of the co-
variance matrix ofX, then the reconstruction mean square error is
minimal for any givenM . The transformation performed by ma-
trix ��� will force the decorrelation of the random variables of the
transformed vectorY, resulting in a diagonal covariance matrix.

The use of PCA in this work aims at the generation of di-
agonal covariance matrices, with decorrelated data and without
features dimension reduction. Each speaker will have an associ-
ated transformation matrix. Therefore, each of these transforma-
tion matrices—e.g.���L for speakerL—will be dependent on the
covariance matrix of its correspondent speaker. The speaker trans-
formation matrix���L is generated during the training phase and
will be stored for the transformation to be carried out during the
test phase.

5. SYSTEM SETUP AND SIMULATION RESULTS

This section details the setup and the results of the speaker verifica-
tion system implemented in our experiments. The utterances were
recorded with8KHz as sampling rate, electret microphones, and
in a low noise environment. We have used36 speakers,23 males
and13 females, from which5 males (M) and5 females (F) were

selected exclusively to form the background and, therefore, did
not participate in the tests. Each speaker uttered200 sentences, in
Brazilian Portuguese, extracted from [9]. We have used15 mel-
cepstrum coefficients (MCC) [10], with20ms windows and50%
overlapping. The silence between words were eliminated. The
number of Gaussians for the GMM was set to32 while AR-Vector
used order2 with the symmetric Itakura distance (previous exper-
iments have shown its better performance for this configuration).
We have used60, 30, and10s of speech signal for training and
30, 10, and3s for testing. Each background speaker contributed
with 6 seconds of speech (without silence). The setting of the deci-
sion threshold was established in order to equally minimize the er-
ror rate between false acceptance—FA (to accept someone which
does not correspond to the true speaker)—and false rejection—FR
(to reject someone which corresponds to the true speaker). This
procedure resulted in an equal error rate (EER) measure [2].

The results obtained with the32Gaussians GMM will be com-
pared to the order2 AR-Vector using symmetric Itakura distance,
using both MCC and MCCPCA (PCA transformed MCC vectors).
The performance with60s of training can be seen in Table 1. For
30s test, both classification systems have presented no errors. We
can observe that the use of PCA on the MCC feature vectors re-
sulted in an improvement which was more visible for the GMM
than for the AR-Vector. Moreover, the performance of the GMM
was better than the performance of the AR-Vector for10s and3s
of testing time, mainly in the latter case. With only3s test there is
not enough amount of data for an adequate modeling of the AR-
Vector which produced errors at a rate around10%.

Table 1. Performance of the GMM versus the AR-Vector,
with and without PCA, for60s training.

tests(% )
System 30s 10s 3s

EER EER EER
GMM - MCC 0 0.44 1.38

GMM - MCCPCA 0 0.38 1.23
AR-Vector - MCC 0 1.22 10.00

AR-Vector - MCCPCA 0 1.21 9.98

Table 2 presents the results for30s of training. These results
show that the PCA technique still favors the GMM but the same is
not true for the AR-Vector. For30s test, the AR-Vector has pre-
sented no errors,1:15% better than the GMM with PCA. With10s
test, the performance of the AR-Vector is approximately the same
as the GMM with MCC but inferior to the GMM with MCCPCA.
For 3s test, the performance of the AR-Vector is almost3 times
lower than the GMM.

In Table 3 the results for the lowest training time are presented.
They resulted in the highest error rates of both classification sys-
tems. When the training time is10s, the use of the PCA presented
no significant improvement—and eventually loss of performance.
The AR-Vector presented better results as compared to the GMM
for the case of10s test, but with an error rate around4% higher
for 3s test.



Table 2. Performance of the GMM versus the AR-Vector,
with and without PCA, for30s training.

tests(% )
System 30s 10s 3s

EER EER EER
GMM - MCC 1.23 1.54 3.08

GMM - MCCPCA 1.15 1.28 2.73
AR-Vector - MCC 0 1.60 10.25

AR-Vector - MCCPCA 0 1.60 10.34

Table 3. Performance of the GMM versus the AR-Vector,
with and without PCA, for10s training.

tests(% )
System 10s 3s

EER EER
GMM - MCC 4.57 7.25

GMM - MCCPCA 4.47 7.39
AR-Vector - MCC 3.20 11.85

AR-Vector - MCCPCA 3.24 11.84

Throughout the analysis of the results presented here, we can
clearly note that the amount of time for training and for testing has
a strong influence. The larger they are the more statistics they are
offering and, consequently, the more precise the modeling carried
out by the GMM and AR-Vector will be. The use of PCA resulted
in an improvement in the performance for the GMM, specially for
higher training times. In the case of the AR-Vector, however, the
improvement in performance, when existing, was negligible.

6. CONCLUDING REMARKS

This paper presented the performance of GMM and AR-Vector
using PCA in text independent speaker verification systems. The
results have shown the efficiency of both classification systems for
different training and testing times. The best performance (no er-
rors) with the lower computational complexity was obtained with
the MCC AR-Vector procedure with30s for training and testing.

The use of PCA and GMM provided performance gains for
the highest training times. The best performance with the lowest
testing times (10 and3s) was obtained with the MCCPCA-GMM,
with 60 and30s of training, and with errors from0:38 to 2:73%.

The best performance with the lowest time of training and test
corresponded to the AR-Vector with10s training and testing—
with errors around3:2%. The use of PCA introduced no improve-
ment with10s training time for any of the two classification mod-
els.
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