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® must be characterized as space-time processes
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1.2 Signals in Space and Time
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Let V() and VZ(-) be the gradient and Laplacian
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where: c Is the propagation speed, ﬁ IS the electric field
intensity, and x = [z y z]" is a position vector.
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Wave equation

From Maxwell’'s equations,

Ps s s
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where: c Is the propagation speed, ﬁ IS the electric field
intensity, and x = [z y z]" is a position vector.

Note: From this point onwards the terms wave and field will be used interchangeably.
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Now assume s(x,t) has a complex exponential form,
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where A Is a complex constant and k., k,, k., and w > 0
are real constants.
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Substituting the complex exponential form of s(x, t) into the
wave equation, we have
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Monochromatic plane wave

Substituting the complex exponential form of s(x, t) into the

wave equation, we have

1
kis(x,t) + kos(x,t) + k2s(x,t) = 2v

or, after canceling s(x, 1),

*s(x, t)

to be satisfied

7 constraints
2+ k2 + k2= = by the parameters
¢ of the scalar field
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For example, take the position at the origin

of the coordinate space:

x=1[0 0 0]T

s(0,t) = AeIw?




Monochromatic plane wave

From the constraints imposed by the complex exponential
form, S(X,t) — Aej(wt—k:xac—k:yy—kzz) IS

® monochromatic

# (plane>




Monochromatic plane wave

From the constraints imposed by the complex exponential
form, S(X,t) — Aej(wt—k:xac—k:yy—kzz) IS

® monochromatic

# (plane’
The value of s(x, t) is the same for all

points lying on the plane




Monochromatic plane wave

From the constraints imposed by the complex exponential
form, S(X,t) — Aej(wt—k:xac—k:yy—kzz) IS

® monochromatic

# (plane’
The value of s(x, t) is the same for all

points lying on the plane

k$x+kyy+kzz == C

where C'is a constant.
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Monochromatic plane wave

Defining the wavenumber vector k as
k= [k, k, k.]"

we can rewrite the equation for the monochromatic plane
wave as

_Aiwt—kTx The planes where s(x, )
@ = de > IS constant are perpendicular

to the wavenumber vector k
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Monochromatic plane wave

As the plane wave propagates, it advances a distance ox
In 0t seconds.

Therefore,
s(x,t) = s(x 4+ 0x,t + It)
- Aej(wt—ka) _ A@j [w(t—|—5t)—kT(x—|—5x)]

— wit — k'ox =0
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Monochromatic plane wave

Naturally the plane wave propagates in the direction of the
wavenumber vector, i.e.,

k and ¢x pointin the same direction.

Therefore,
k' ox = ||kl|[|6x||
Remember the [constraints:
— wot = ||kl|||ox|] k|2 = w?/c2

or, equivalently,




After T' = 27 /w seconds, the plane wave has completed
one cycle and it appears as it did before, but its wavefront
has advanced a distance of one wavelength, .



After T' = 27 /w seconds, the plane wave has completed

one cycle and it appears as it did before, but its wavefront
has advanced a distance of one wavelength, .

For ||6x|| =X and 6t =T = =&

)\HkH = s
w 1|

T =



After T' = 27 /w seconds, the plane wave has completed

one cycle and it appears as it did before, but its wavefront
has advanced a distance of one wavelength, .

For ||ox|| =X and ot ‘)

k
oAl

W

The wavenumber vector, k, may be considered a
spatial frequency variable, just as w is a
temporal frequency variable.



Monochromatic plane wave
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We may rewrite the wave equation as

s(x,t) = Aed@i=k"x)

_ Aejw(t—aTx)
where o = k/w is the slowness vector.

As ¢ = w/| k||, vector a has a magnitude which is the
reciprocal of c.




Periodic propagating periodic waves

Any arbitrary periodic waveform s(x,t) = s(t — a’ x) with
fundamental period wy can be represented as a sum:
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Periodic propagating periodic waves

Any arbitrary periodic waveform s(x,t) = s(t — a’ x) with
fundamental period wy can be represented as a sum:

s(x,t) = s(t — o’ x) Z S, einwo(t=—atx)

The coefficients are given by

I .
Sn = T/o s(u)e "% duy
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frequencies w = nwy and different wavenumber
vectors, k.



Based on the previous derivations, we observe that:

# The various components of s(x, t) have different

frequencies w = nwy and different wavenumber
vectors, k.

#® The waveform propagates in the direction of the
slowness vector a = k/w.
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More generally, any function constructed as the integral of
complex exponentials who also have a defined and
converged Fourier transform can represent a waveform
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where



Nonperiodic propagating waves

More generally, any function constructed as the integral of
complex exponentials who also have a defined and
converged Fourier transform can represent a waveform

1 [~ - T
—/ S(w)edt=ax) gy,

2T ) _ oo

S(w):/ s(u)e " du

We will come back| to this later...
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2. Sensor Arrays and Spatial
Filtering



2.1 Wavenumber-Frequency Space
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Space-time Fourier Transform

The four-dimensional Fourier transform of the space-time
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Space-time Fourier Transform

The four-dimensional Fourier transform of the space-time
signal s(x,t) is given by

S(k,w) :/ / s(x, t)e TR0 dx di

1 o o . T
s(x,t) = (277)4/ / S(k,w)e! @Kk duw



We have already concluded that if the space-time signal is
a propagating waveform such that s(x,t) = s(t — af x),
then its Fourier transform is equal to
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Space-time Fourier Transform

We have already concluded that if the space-time signal is
a propagating waveform such that s(x,t) = s(t — af x),
then its Fourier transform is equal to

S(k,w) = 5(w)d(k —way)

Remember the nonperiodic propagating wave| Fourier
transform?

This means that s(x, t) only has energy along the direction
of k = ko = wa In the wavenumber-frequency space.



2.2 Frequency-Wavenumber (WN) Response
and Beam patterns (BP)
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Signals at the sensors
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#® The sensors spatially sample the signal field at
locations p,,

#® At the sensors, the set of N signhals are denoted by

f(tva)

f(t,p) _ f(ta:pl)

i ft,py_1) _
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f(tR)—

hy(t)

f(tp )—=

h,(t)

_xz) - y(t)

f ('[,pN_l)—>

h,.(®)

i

-3 [

t_ T fn 7pn)d7—

:/ hT(t—T)f(T,p)dT

where h(t) = [h,(t) hi(t) - hy(t)]"

Array output



In the frequency domain,



Y(w) = /OO y(t)e 7tdt
= H" (Ww)F(w)
where
H(w) = / T h(b)e

In the frequency domain,



Plane wave propagating

#® Consider a plane wave propagating in the direction of
vector a:
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#® Consider a plane wave propagating in the direction of
vector a:

—sinbcoso |
a= | —sinbsing

—cost

# If f(¢) is the signal that would be received at the origin,
then:

f(t —70)

fp—| 0T

f(t —.TN—l)
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Plane wave (assuming ¢ = 90°)
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» 1S the time since the plane wave hits the sensor at location p,, until it reaches point (0, 0).



® Then, we have:

S
J e

[T e f(t — Tnvoq)dt

e_jWTO

e—jwﬁ

It — To)dt
(= m)dt

e_jWTN—l

Back to the frequency domain

F(w)



Definition of Wavenumber

#® For plane waves propagating in a locally homogeneous
medium:
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Definition of Wavenumber

#® For plane waves propagating in a locally homogeneous
medium:

Wavenumber Vector ("spatial frequency")

» Note that |k| = 2¢

® Therefore

W
T T
WTy = —a p, =k p,



Array Manifold Vector
# And we have

c—ik D,
Fw) = F(w) = F(w)vy (k)




Array Manifold Vector

® And we have

o—ik" D,
F(w) = : Flw) = F(w m

Array Manifold Vector|




Array Manifold Vector

#® And we have

e_jkTpO

ik’ p,
F(w) = : Flw) = F(w w

e_jkTpN—l

Array Manifold Vector]

# In this particular example, we can use
hn(t) = +0(t + 7,) such that

y(t) = f(t)

Following, we have the delay-and-sum beamformer.
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® A common delay is added in each channel to make the
operations physically realizable
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— y(®

Z|~
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Delay-and-sum Beamformer

f (t‘fo —=| +T

ftr, —=] +T l@—
f (g, —= *T /

® A common delay is added in each channel to make the
operations physically realizable

® Since F{h,(t)} = F{x0(t+m,)} =™
® We can write

— y(®

Z|~

Array Manifold Vector
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e/t — 1 h(t) —— H(w)e*!

® Space-time signals (base functions):

fult,p) = ) = K P

Note that wr, = k' p,,

o . f(t,p) = e vy (k)
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#® The response of the array to this plane wave Is:
y(t k) = H' (w)vg(k)e’™”
# After taking the Fourier transform, we have:
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#® The response of the array to this plane wave is:
y(t, k) = H" (w)vg, (k)e’*

# After taking the Fourier transform, we have:
Y(w, k) = H" (w)vg (k)

# And we define the Frequency-Wavenumber Response
Function:

Upsilon/\@w7 k) é HT<w)vk<k)

T (w, k) describes the complex gain of an array to an
Input plane wave with wavenumber k and temporal
frequency w.



® BEAM PATTERN is the Frequency Wavenumber
Response Function evaluated versus the direction:
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spherical coordinates angles 6 and ¢
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BEAM PATTERN is the Frequency Wavenumber
Response Function evaluated versus the direction:

Blw:6,6) =T (w, k)

Note that k = L a (0, ¢), and a is the unit vector with
spherical coordinates angles 6 and ¢

Let’s write a bandpass signal:

f(t,p,) = V2Re{f(t,p, )&’} . n=0,1,--- ,N —1

w,. corresponds to the carrier frequency and the

complex envelope f(t, p,) is bandlimited to the region
lw—w,. | < 21B,/2

N——

wr,



Bandlimited and Narrowband Signals

# Bandlimited plane wave:
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(signal arriving along the end-fire)



# Bandlimited plane wave:
f( 7pn) \/7R€{f<t — Tn)ejwc(t Tn)}’n — 07 1’ NP ’N — 1

® Maximum travel time (AT,,..) across the (linear) array:
travel time between the two sensors at the extremities
(signal arriving along the end-fire)

#® Assuming the origin is at the array’s center of gravity:

SV b, =0= 7, < AT



Bandlimited plane wave:
f( 7pn) \/7R€{f<t — Tn)ejwc(t Tn)}’n — 07 1’ “ . ’N _ 1

Maximum travel time (A7T,,...) across the (linear) array:
travel time between the two sensors at the extremities
(signal arriving along the end-fire)

Assuming the origin is at the array’s center of gravity:
> oo Py = 0= 7y < AT,

In Narrowband (NB) signals, B,AT,,.. < 1
= f(t —7.) = f(t) and
f(t,p,) = V2Re{f(t)e 7w eluet}



#® For NB signals, the delay is approximated by a
phase-shift:
= delayssum beamformer = PHASED ARRAY



For NB signals, the delay is approximated by a
phase-shift:
= delayssum beamformer = PHASED ARRAY

_ f()
f(tg, )—= g%t

f(t)

f (t_‘[l )—» gu())-[l

— y(©

Zr

f(t)

ft )= %™




#® For NB signals, the delay is approximated by a

phase-shift:
= delayssum beamformer = PHASED ARRAY

_ (0)
ftg, —m] ot

f(t)

ft1, —=] g9 —= y(t)

Zr

QT f(t)
f (t_TN—l )_> e M

#® The phased array can be implemented adjusting the
gain and phase to achieve a desired beam pattern



NB Beamformers
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# In narrowband beamformers: y(t, k) = w"” v, (k)e’

f(tg, )—=— Wo %M

t
Pt ] w yl()_ > —= y(t)
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NB Beamformers

# In narrowband beamformers: y(t, k) = w"” v, (k)e’

f(tg, )—=— Wo %M

t
Pt ] w yl()_ > —= y(t)




2.3 Uniform Linear Arrays (ULA)
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Uniformly Spaced Linear Arrays

Z (array axis = "endfire")

A

(grazing angle)

2




_ ULA
#® An ULA along axis z:




_ ULA
#® An ULA along axis z:

® Location of the elements:
{ Pen = (n—2)d, forn=0,1,--- ,N —1



#® An ULA along axis z:

S |

(azimuth angle)

°?
® Location of the elements:

{Pznz(n—%)d, forn=0,1,--- , N —1

0
#® Therefore, p, = 0
N




# Array manifold vector:

ik P,

ULA




# Array manifold vector:

vy, (k) = o~k P, ik D,

etJ

(N-1)
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o o

Scope: use the statistical representation of signal and
noise to design array processors that are optimal in a
statistical sense.

We assume that the appropriate statistics are known.

Our objective of interest is to estimate the waveform of
a plane-wave impinging on the array in the presence of
noise and interfering signals.

Even if a particular beamformer developed in this
chapter has good performance, it does not guarantee
that its adaptive version (next chapter) will. However, if
the performance is poor, it is unlikely that the adaptive
version will be useful.
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Snapshot model in the frequency domain:

# In many applications, we implement a beamforming in
the frequency domain (w,, = w. + m4% and M varies
from —2- to £ if odd and from —&* to & — 1 if

w

XAT( (M—l)/2’k) YAT(w(M—l)/Z’k)

—)  N\B Beamformer
Inverse
: [0)]
Xt Fourier )<AT( m K ) YAT( WLk ) Discrete y(®)
——— TTANSTOM Al —  NB Beamformer Fourier —
M Frequencies Transform

(@ w2k Yo (@ ey )

NB Beamformer

# In order to generate these vectors, divide the
observation interval 7' in K disjoint intervals of duration

AT: (E—1)AT <t < kAT k=1,--- | K.
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AT must be significantly greater than the propagation
time across the array.

AT also depends on the bandwidth of the input signal.

Assume an input signal with BW B, centered in f.

In order to develop the frequency-domain snapshot
model for the case in which the desired signals and the
Interfering signals can de modeled as plane waves, we
have two cases: desired signals are deterministic or
samples of a random process.
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Let’s assume the case where the signal is nonrandom
but unknown; we initially consider the case of single
plane-wave signal.

Frequency-domain snapshot consists of signal plus
noise: X (w) = X, (w) + N(w)

The signal vector can be written as
X(w)=F(w)v(w: k) where F(w) is the
frequency-domain snapshot of the source signal and
v(w : ky) is the array manifold vector for a plane-wave
with wavenumber k..

The noise snapshot is a zero-mean random vector
N (w) with spectral matrix given by

Sn(CU) — Sc(w) —+ O'E}I



MVDR Beamformer

® We process X (w) with the 1 x N operator W (w):
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W
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® We process X (w) with the 1 x N operator W (w):

X (@ .
W )

Y@

# Distortionless criterion (in the absence of noise):

Y(w) = F(w)

= WH (W)X, (w) = Flw) W (w)v(w : k)

— W (wv(w: k) =1



MVDR Beamformer

® In the presence of noise, we have:

Y(w)=F(w)+ Y, (w)



MVDR Beamformer

# In the presence of noise, we have:
Y(w)=F(w)+ Y, (w)
#® The mean square of the output noise is:

E[[Ya(w)["] = W (w)Sn(w)W (w)
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® [n the MVDR beamformer, we want to minimize
E[|Y, (w)]?] subject to W (w)v(w : k,) =1

#® Using the method of Lagrange multipliers, we define
the following cost function to be minimized

F=W"w)S,(w)Wuw
+ A [WH(w)v(w: ks) — 1] + X [v" (w: k)W (w) — 1]
#® ..and the result (suppressing w and k) is

wh = Aw"7S, where A, = [0S w]

muodr —

® This result is referred to as MVDR or Capon
Beamformer.
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#® From the definition above, it is easy to show that:
Vaw (b w) = Vi (wb) = b

® Also Viy(w? Rw) = R"w + Rw



The gradient of £ with respect to w (real case):
_ i -
B

ow

Vit = | 7

¢
_8’11)]\[_1_

From the definition above, it is easy to show that:
Vaw (b w) = Vi (wb) = b

Also Vi (w' Rw) = R"w + Rw

which, when R I1s symmetric, leads to
Vw (w! Rw) = 2Rw
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# We now assume the complex case w = a + jb.
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We now assume the complex case w = a + jb.

The gradient becomes V¢ =

- which corresponds to Vipé = Vaé + jvbf

Let us define the derivative 8% (with respect to w):

- i B i -
dag ) By
9 ;0
o 1 aa1 ]abl
ow 2 .
;.
_8CLN_1 ]abN_l_
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#® The conjugate derivative with respect to w IS

- 0 0
330 —I_jago
ar T J a0,

0 - 0
_8aN_1 _|_']8bN_1_
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#® The conjugate derivative with respect to w IS

- 0 0
3(%0 —I_]ago
ar T J a0,

0 - 0
_(9CLN_1 _|_']8bN_1_

® Therefore, V& = V& + V€ is equivalent to 2-2

ow* "

#® The complex gradient may be slightly tricky if
compared to the simple real gradient. For this reason,
we exemplify the use of the complex gradient by
calculating V,, E[|e(k)|?].



The conjugate derivative with respect to w Is

- 0 0
3(%0 —I_]ago
ar T J a0,

0 - 0
_(9CLN_1 _|_']8bN_1_

® Therefore, V£ = V& + V€ is equivalent to 2.2,

The complex gradient may be slightly tricky if
compared to the simple real gradient. For this reason,
we exemplify the use of the complex gradient by
calculating V,, E[|e(k)|?].

ViwEle(k)e* (k)] = E{e”(k)[Vwe(k)] + e(k)[Viwe™ (k)] }
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Constrained Optimal Filtering
# \We compute each gradient ...

Vwe(k) =Vald(k) — w"x(k)] + jVpld(k) — wx(k)]

x(k) — x(k) = —2x(k)
# and

Ve (k) =V ld* (k) — w'x*(k)] + jV|d* (k) — w! x*(k)]



# \We compute each gradient ...

Vwe(k) =Vald(k) — w"x(k)] + jVpld(k) — wx(k)]

—x(k) — x(k) = —2x(k)
# and

Vwe' (k) =Va[d*(k) — w'x"(k)] + jVpld* (k) — w'x" (k)]
= —x"(k) +x* (k) 0
#® such that the final result is
ViwEle(k)e™ (k)] = — 2Ele" (k)x (k)]
= — 2E[x(k)[d(k) — w"x(k)]"}
= — 2 B[x(k)d" (k)] +2 E[x(k)x" (k)] w

J/

-~

p R
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# Which results in the Wiener solution w = R 'p.
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Which results in the Wiener solution w = R~ 'p.

When a set of linear constraints involving the
coefficient vector of an adaptive filter is imposed, the
resulting problem (LCAF)—admitting the MSE as the
objective function—can be stated as minimizing

E]le(k)|?] subject to C?w = f.
The output of the processor is y(k) = wx(k).

It Is worth mentioning that the most general case
corresponds to having a reference signal, d(k). Itis,
however, usual to have no reference signal as Iin
Linearly-Constrained Minimum-Variance (LCMV)
applications. In LCMV, if f = 1, the system Is often

referred to as Minimum-Variance Distortionless
Response (MVDR).



Constrained Optimal Filtering

® Using Lagrange multipliers, we form
¢(k) = Ele(k)e* (k)] + LERe[CHw — f] + LY Im[CHw — f]



® Using Lagrange multipliers, we form
¢(k) = Ele(k)e*(k)] + LERe[CHw — f] + LY Im[CHw — f]

® We can also represent the above expression with a complex
L given by L + jL; such that

¢(k) = Ele(k)e* (k)] + Re[ £ (CHw — f)]

_ Ble(k)e* (k)] + %LH(CHW £+ %LT(CTW* s



® Using Lagrange multipliers, we form
¢(k) = Ele(k)e*(k)] + LERe[CHw — f] + LY Im[CHw — f]

® We can also represent the above expression with a complex
L given by L + jL; such that

E(k) = Ele(k)e* (k)] + Re[£" (CTw — )]
_ Ble(k)e* (k)] + %LH(CHW £+ %LT(CTW* s
# Noting that e(k) = d(k) — wix(k), we compute:
Vi€ (k) = Vi {E[e(k)e*(k)] + %EH (CHw — ) + %ET(CTW* - f*)}

= E[-2x(k)e* (k)] + 0+ CL
= —2E[x(k)d* (k)] + 2E[x(k)x (k)]w + CL



® Byusing R = E[x(k)x" (k)] and p = E[d*(k)x(k)], the
gradient Is equated to zero and the results can be
written as (note that stationarity was assumed for the

Input and reference signals): —2p + 2Rw + CL =0
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gradient Is equated to zero and the results can be
written as (note that stationarity was assumed for the
Input and reference signals): —2p + 2Rw + CL =0

® Which leadstow = :R'(2p — CL)

o If we pre-multiply the previous expression by C* and
use Cfw = f, we find L:
L=2CHRIC)(CIRp-T)



By using R = E[x(k)x (k)] and p = E[d*(k)x(k)], the
gradient Is equated to zero and the results can be
written as (note that stationarity was assumed for the
Input and reference signals): —2p + 2Rw + CL =0

Which leads tow = sR!(2p — CL)

If we pre-multiply the previous expression by C* and
use Cfw = f, we find L:
L=2CHRIC)(CIRp-T)

By replacing £, we obtain the Wiener solution for the
linearly constrained adaptive filter:

Wt = R7'p + RT'C(CYRIC)I(f — CHR'p)
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#® The optimal solution for LCAF:
wo: = R7')p+ RIC(CHRIC) ! (f — CYR ™ 'p)

# Note that if d(k) = 0, then p = 0, and we have (LCMV):
Wopt = RTIC(CHRIC)~!f

#® Yetwith d(k) =0but f =1 (MVDR)
wo: = RTIC(CHRIC)™!
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wo: = RTIC(CHRIC)™!
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minimum output energy (MOE) and is given by
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The optimal solution for LCAF:
Wot = R™'p + R™'C(CHR'C)!(f - C*R'p)

Note that if d(k) = 0, then p = 0, and we have (LCMV):
Wopt = RTIC(CHRIC)~!f

Yet with d(k) = 0 but f =1 (MVDR)
wo: = RTIC(CHRIC)™!

For this case, d(k) = 0, the cost function is termed
minimum output energy (MOE) and is given by
Elle(k)]?] = wRw

Also note that in case we do not have constraints (C
and f are nulls), the optimal solution above becomes

the unconstrained Wiener solution R !p.
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We start by doing a transformation in the coefficient vector.

® LetT = |C B| such that

w:Tw:[CB][WU] = Cwy — Bw,,

_WL

# Matrix B is usually called the Blocking Matrix and we
recall that C*w = g such that
CHW = CHCWU — CHBWL — g.

o |f we impose the condition B¥ C = 0 or, equivalently,
CYB = 0, we will have wy = (CHC)'g.

® wy Is fixed and termed the guiescent weight vector;

the minimization process will be carried out only in the
lower part, also designated wggc = wy,.



# Itis shown below how to split the transformation matrix
Into two parts: a fixed path and an adaptive path.

reference signal P MN-p 1/

input 1/ L MN 1/ l

signal

=) [0 = = T |7 0 - C B| [ _

MN MN MN - | ~w(k
{ i MN| — L() MN-p

/
(a) (b)
P 1
C . reference signal
WK F
N p tl l"' + - l"'
2 2
MN-p 1/ ) input f )
B b (0 signa B P w(k
MN MN_p GSC
[ ) : (A




This structure (detailed below) was named the
Generalized Sidelobe Canceller (GSC).
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This structure (detailed below) was named the
Generalized Sidelobe Canceller (GSC).

F% (k) d(k)

F
X (k) +
x0=BxKW f -
B ey w(k-1) 7 (K)

GSC

/ GSC e(k)

It is always possible to have the overall equivalent
coefficient vector which is given by w = F — Bwggc.

If we pre-multiply last equation by B and isolate
Wasc, We find Waso — —(BHB)_lBHW.

Knowing that T = [C B| and that T#T = I, it follows
that P =1 — C(C”C)~'C” = B(B”B)B”.
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A simple procedure to find the optimal GSC solution
comes from the unconstrained Wiener solution applied

to the unconstrained filter: wgsc_opr = ResePasc

From the figure, it is clear that:
RGSC — E[XGSC’XgSC] — E[BHXXHB] — BHRB

The cross-correlation vector is given as:
Pasc = Eldggcxasc]
= B{[F"x — d|[B"x]}
= E[-BYd*x + B"xx"F]
— —BYp + BERF

. and WaSC—_—OPT — (BHRB)_1<—BHP + BHRF)



# A common case is when d(k) = 0:
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# A common case is when d(k) = 0:
- d () =Fx(k)

X (K)

(960 f -
B e w(k-1)

GSC

[

# \We have dropped the negative sign that should exist
according to the notation used. Although we define
easc(k) = —e(k), the inversion of the sign in the error
signal actually results in the same results because the
error function is always based on the absolute value.



# A common case is when d(k) = 0:
- d () =Fx(k)

X (k)
=Bkt -
B b w(k-1)

GSC

[

# \We have dropped the negative sign that should exist
according to the notation used. Although we define
easc(k) = —e(k), the inversion of the sign in the error
signal actually results in the same results because the
error function is always based on the absolute value.

# In this case, the optimum filter wopr IS:
F - Bwcsc_opr = F — B(BHRB)_lBHRF —
RIC(CYR™'C)~!f (LCMV solution)
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® Let us recall the paper by Griffiths and Jim where the
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Choosing the blocking matrix: B plays an important
role since its choice determines computational
complexity and even robustness against numerical

iInstability.

Since the only need for B Is having its columns forming
a basis orthogonal to the constraints, B”C = 0, a

myriad of options are possible.

Let us recall the paper by Griffiths and Jim where the

term GSC was coined; let
1 1 1100 00

Cl=100001111

0 000 O0O0O0O0

000 0°
00 00
1 1 1 1|

With simple constraint matrices, simple bloc
matrices satisfying B! C = 0 are possible.

KINg



#® For this particular example, the paper presents two
possibilities. The first one (orthogonal) is:



#® For this particular example, the paper presents two

possibilities. The first one (orthogonal) is:
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#® And the second possiblility (non-orthogonal) is:



#® And the second possiblility (non-orthogonal) is:

BI =

1

0 1 -1

0
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#® SvD: the blocking matrix can be produced with the
following Matlab command lines,
[U,S,V]=svd(C);
B3=U(:;,p+1:M

B3 is given by:
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*N); % p=N In this case
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0.00 0.00
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0.00
0.00
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—0.25
0.75
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[Q.R]=ar(C);
B4=Q(;,p+1:M *N);

B, was identical to B; (SVD).

Two other possibilities are: the one presented in
[Tseng Griffiths 88] where a decomposition procedure
IS Introduced In order to offer an effective
Implementation structure and the other one concerned
to a narrowband BF implemented with GSC where B is
combined with a wavelet transform [Chu Fang 99].
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QRD: the blocking matrix can be produced with the
following Matlab command lines,

[Q.R]=ar(C);
B4=Q(;,p+1:M *N);

B, was identical to B; (SVD).

Two other possibilities are: the one presented in
[Tseng Griffiths 88] where a decomposition procedure

IS Introduced in order to offer an effective
Implementation structure and the other one concerned

to a narrowband BF implemented with GSC where B is
combined with a wavelet transform [Chu Fang 99].

Finally, a new efficient linearly constrained adaptive
scheme which can also be visualized as a GSC
structure can be found in [Campos&Werner&Apolinario
IEEE-TSP Sept. 2002].
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4. Adaptive Beamforming



4.1 Introduction
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® Scope: instead of assuming knowledge about the
statistical properties of the signals, beamformers are
designed based on statistics gathered online.
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® Scope: instead of assuming knowledge about the
statistical properties of the signals, beamformers are
designed based on statistics gathered online.

o Different algorithms may be employed for iteratively
approximating the desired solution.

® We will briefly cover a small subset of algorithms for
constrained adaptive filters.
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#® Linearly constrained adaptive filters (LCAF) have found
application in numerous areas, such as spectrum
analysis, spatial-temporal processing, antenna arrays,
Interference suppression, among others.

#® LCAF algorithms incorporate into the solution
application-specific requirements translated into a set
of linear equations to be satisfied by the coefficients.

s For example, if direction of arrival of the signal of
Interest is known, jammer suppression can take
place through spatial filtering without the need of
training signal, or in systems with
constant-envelope modulation (e.g., M-PSK), a
constant-modulus constraint can mitigate multipath
propagation effects.



4.2 Constrained FIR Filters
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X, (K)

Wlf(k)

Broadband Array Beamformer

e

X,(K)

w(K)

\

WK

K
Algorithm: -
K d(k
R (k) _+( )

s.t. C'w=f




Optimal Constrained MSE Filter

We look for
min&(k) st Clw =f,

%%

where

® {(k) = Elle(k)
® Cisthe M N x p constraint matrix
® fisthe p x 1 gain vector



Optimal Constrained MSE Filter

The optimal beamformer is
w(k) =R 'p+R'C (C'R™'C) " (f - C"R'p)
where:
® R =FE [x(k)x" (k)] and p = E [d*(k)x(k)]
o w(k)=[wl(k) wi(k) - wi(k)]"
o x(k) = [x{(k)x3 (k) --- x5;(k)]"
® xXT(k) = [zi(k) zi(k — 1) - 2;(k— N +1)]



The Constrained LS Beamformer

In the absence of statistical information, we may choose

B k
min [£(k) =) MNd(i) — wPx(i)[*| st. CHw =f
N 1=0
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k
min [£(k) =) MNd(i) — wPx(i)[*| st. CHw =f
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In the absence of statistical information, we may choose

k
min [£(k) =) MNd(i) — wPx(i)[*| st. CHw =f

W .
1=0

with A € (0, 1], which gives, as solution,

+R(K)C (CTRI(K)C) ™ [f — CTR(k)p(k)]

where
R(k) = >0 M=ix(i)x" (i), and p(k) = Yo N=id* (i)x(4).
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A (cheaper) alternative cost function is
min [£(k) = [[w(k) — w(k — 1)||” + ule(k)]?] s.t. C'w(k) =f,

which gives, as solution,

w(k) = w(k — 1) + pe* (k) {I —c(cHo)™! CH} x(k),

where e(k) = d(k) — w (k — 1)x(k), p is a positive small
constant called step size.



A (cheaper) alternative cost function is
min [£(k) = [[w(k) — w(k — 1)||” + ule(k)]?] s.t. C'w(k) =f,

which gives, as solution,

w(k) =P |w(k —1)+ pe*(k)x(k)] + F,

where e(k) = d(k) — w (k — 1)x(k), p is a positive small
constant called step size, P = C (CHC)_1 CH, and
F=C(CPC) f.



The Constrained AP Algorithm

We may wish to trade complexity for speed of convergence:
min [{(k) = [|w(k) — w(k — 1)|I°] st {CH( EZ‘; (:)f d(k)
where

® d(k) = [d(k) d(k—1) --- d(k = L+1)]"

® X(k)=[x(k)x(k—1) -+ x(k—L+1)"
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We may wish to trade complexity for speed of convergence:

min [{(k) = [|w(k) — w(k — 1)|I°] st {CH( EZ‘; (:)f d(k)

which gives, as solution,
w(k)=P|w(k—1) 4+ uX(k)t(k)]|+F

where
® e(k)=d(k) — X" (k)w"(k — 1)

® t(k) = [XH(k)PX (k)] " e*(k)
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5. DOA Estimation with
Microphone Arrays



5.0 Signal Preparation
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non-negative frequency components.



It is usual to find a delayed signal represented by a
multiplication of the signal with exponential e/“°"

First thing to note: when this is the case, the signal is
narrow band with a center frequency in wy (in the
continuous-time domain, it corresponds to a carrier
frequency Qg = f.wo)

But, most importantly, the delay is well represented
only if the signal is also analytic, i. e., having only
non-negative frequency components.

An analytic signal, mathematically, can be obtained by
multiplying its Fourier transform by the continuous
Heaviside step function:

[ 0,w <0
Xo(e') = 2X (e u(w),u(w) =< 1,w=0
L LLbw >0




® Letxz(n)=s(n)cos(won), s(n) having a maximum

frequency component (w,,) much lower than wy:

Bandbase signal

1.5
o
N—"
w 05
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_05 Il Il Il Il Il Il Il Il
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Carrier signal
1.5 T
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Modulated signal
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If 2(n) = s(n)e’**™, then
r(n)e 70T = s(n)ef o) ~ p(n — 1) if T < 1/wp,

But if z(n) = s(n)cos(won), then z(n)e 7«0 =£ x(n — )

We can make
5(2”) plwon 4 @e—jwon such that

\ . J/ \ . J/
TV TV

24 (n) v (n)
r(n —7) R x e 41 (n)etT = s(n)cos(wo(n — 7))

r(n) = s(n)cos(won) =

.- - but, how to obtain z_ (n) or a scaled copy? Using
the Hilbert Transform x4 (n) = HT{x(n)} where

7X (&), -1 < w < 0
XH(ij) — X(ij),w =0
— i X (&), 0<w<m
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# Knowing that
z(n)=xz_(n)+xy(n)=F H{X_ (%) + X ()}, we
compute y(n) = z(n) + jrg(n)

® yn)= | - -
FUX(e) + X4 () + X () = jXo ()]}

N

N

XH(ejw)

= F X (&) + Xo () — X_ () + X, ()

® Therefore y(n) = 2F X, (e’)} = s(n)e?“o™ which is
analytic!



o Consider z,,(t) the signal from the m-th microphone
(prior to the A/D converter) corresponding to audio
from D sources (directions 6, to 6p) plus noise:

T (t) = s1(t — Tu(01)) + - + sp(t — T (0p)) + N (1)



o Consider z,,(t) the signal from the m-th microphone
(prior to the A/D converter) corresponding to audio
from D sources (directions 6, to 6p) plus noise:

T (t) = s1(t — Tu(01)) + - + sp(t — T (0p)) + N (1)

® Assuming 7,,(64) = T7,(64) In s (7,,(64) in nUumber of
samples), after the A/D converter and {.} + jH7T{.} to
make It an analytic signal, we could write
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o Consider z,,(t) the signal from the m-th microphone
(prior to the A/D converter) corresponding to audio
from D sources (directions 6, to 6p) plus noise:

T (t) = $1(t = Tm(61)) + -+ + 5p(t = T (0p)) + 1 (1)

® Assuming 7,,(64) = T7,(64) In s (7,,(64) in nUumber of
samples), after the A/D converter and {.} + jH7T{.} to
make It an analytic signal, we could write

Qjm(n) — Sl(n)e_jWOTm(el) _|_ ... _|_ Sp (n)e_jWOTm(eD) _|_ nm(n)
# For an array with A microphones, we would have:

X(ﬂ):¢8(n)—|—ﬂ\<7}l

Mx1 MXD py1q Mx1



5.1 Signal model
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# Assume, initially, we have D narrowband signals
coming from unknown directions:

\

; _ . : L y(n)
/ . . . nt, O
*p(t) O U A o 1T |2 a1 (1)




# Assume, initially, we have D narrowband signals

s1(t)

=
_~

SD(t)

coming from unknown directions:

C|331(t) /D o T L z1(n)
: . : L y(n)

O A . HT | ()

e Iw0T1(01) g1 (n) 4 - - 4+ =990 T1OD) 55 (n) 4+ ny(n)

e Iw0™M (O g1 (n) + - - 4 e I90™™M (D) 55 (n) 4+ nps(n) |



# Assume, initially, we have D narrowband signals

coming from unknown directions:

=
_~

SD(t) T

s1(t) Qxl—(tL A/D > HT %
: . : y(n)

O A . HT | ()

e Iw0T1(01) g1 (n) 4 - - 4+ =990 T1OD) 55 (n) 4+ ny(n)

e Iw0™M (O g1 (n) + - - 4 e I90™™M (D) 55 (n) 4+ nps(n) |

® Such that the output signal can be written as
y(n) = hx(n) = h" [As(n) + n(n)]
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direction 6, then
x(n) = s(n)a(f) + n(n)
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If we now assume one single signal, s(n), coming from
direction 6, then
x(n) = s(n)a(f) + n(n)

And the output signal becomes
y(n) = h’a(#)s(n) + h'n(n)

If we make h*’a(#) = 1, the output signal would
correspond to y(n) = s(n) + h'n(n)

-~

noise

Also note that E|y(n)|?] = h¥ R, h, R, = E[x(n)x"(n)]




5.2 Non-parametric methods: BF (beamforming
a.k.a. Delay & Sum) and Capon
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obtain E[|y(n)|?] = h'h

# Minimizing E[|y(n)|?] = h¥h s.t. h¥a(f) = 1, the result,
after using Lagrange multiplier, taking the gradient,

and equating to zero, is h = a(#)/M which leads to
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# If x(n) were spatially white, i.e. R, = I, we would
obtain E[|y(n)|?] = h'h

# Minimizing E[|y(n)|?] = h¥h s.t. h¥a(f) = 1, the result,
after using Lagrange multiplier, taking the gradient,

and equating to zero, is h = a(#)/M which leads to

afl ()R a0
Elly(n)?] = 24720

#® Omitting factor # we estimate the autocorrelation

matrix as R, = &> x(n)x*(n) and find the
direction of interest by varying ¢ and obtaining the

peak in| Pps(0) = a’(§)R,a(h)




#® In the method known as Capon, we minimize
Elly(n)|?] = h R, h subject to h”a(f) = 1



#® In the method known as Capon, we minimize
Elly(n)|?] = h R, h subject to h”a(f) = 1

#® Using Lagrange multiplier, we write
¢ = h#R,h + A(ha(d) — 1), and make V¢ = 0 such

R;la 0
that h = 52205




#® In the method known as Capon, we minimize
Elly(n)|?] = h R, h subject to h”a(f) = 1

#® Using Lagrange multiplier, we write
¢ = h#R,h + A(ha(d) — 1), and make V¢ = 0 such

R;la 0
that h = 7GRt

# Replacing the above coefficient vector in E||y(n)|?], we

obtain E[|y(n)|*] = aH(e)Iigla(e)




In the method known as Capon, we minimize
Elly(n)|?] = h R, h subject to h”a(f) = 1

Using Lagrange multiplier, we write
¢ = h#R,h + A(ha(d) — 1), and make V¢ = 0 such

R;la 0
that h = 7GRt

Replacing the above coefficient vector in Ef|y(n)[*], we

obtain E[|y(n)|*] = aH(e)Iigla(e)

Therefore, in the Capon DoA, we estimate
R, = + >3 x(n)x"(n) and find the direction of
Interest by varying # and obtaining the peak In

1

Peapon(0) = aH(@)f{gla(Q)




5.3 Eigenvalue-Based DoA
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Coming back to the previous model of D sources, we
write x(n) = As(n) + n(n)

We assume D < M (number of signals lower than the
number of sensors); this method is known as
parametric for we make this assumption

Also note that A is M x D,sis D x 1, and n(n) is
M x 1

We then write R, = E |x(n)x"(n)| = AR,A” + R,
this last matrix becoming R,, = 21 when assuming
spatially white noise; R, is the D x D autocorrelation
matrix of the signal vector, i.e., £ [s(n)s” (n)]



o R, =AR,AY + R, with D < M implies that
AR,A" is singular (rank D), its determinant is equal to
zero and, therefore, det [R, — 021 =0 and o2 is a
(minimum) eigenvalue with multiplicity M — D
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o R, =AR,AY + R, with D < M implies that
AR,A" is singular (rank D), its determinant is equal to
zero and, therefore, det [R, — 021 =0 and o2 is a
(minimum) eigenvalue with multiplicity M — D

#® Spectral decomposition of matrix R,: vector e,, being
an eigenvector of R, means that R,e,, = \,.e,,.
Collecting all eigenvectors in matrix E, we may write
= R, = EAEY

# Dividing matrix E in two parts, the first D columns and
the last N = M — D columns, we have:

E=[§1---eg§D+1---ez\{]=[Es Ey]

Eg E N




MUSIC
# Noting that EE? =1, we can write EEY + EyEY =1
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N-dimensional noise subspace
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#® The columns of Eg span the D-dimensional signal
subspace while the columns of E span the
N-dimensional noise subspace

#® A vector in the signal subspace is a linear combination
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Noting that EEX = I, we can write EsEY + EyEY =1

The columns of Eg span the D-dimensional signal
subspace while the columns of E span the
N-dimensional noise subspace

A vector in the signal subspace is a linear combination
of the columns of E5. An example:

D
S weeq =Eex,x = [x1---xp]’

We can find the distance d from a vector v to the signal
subspace Eg by obtaining x that minimizes

d = |v — Egx|; the result is d*> = vIEyERv
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# Its inverse will present peaks. In algorithm MUSIC, we

estimate D from the eigenvalues of R,; from its
eigenvectors, we form Eg and E,, and by varying 6,
we shall find peaks in the directions of #; to dp In
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The squared distance from vector a(6) to the signal
subspace (spanned by Eg) is d* = a" (§)EyE&a(0)

When 6 belongs to {6, - - - 0}, this distance should be
close to zero

Its inverse will present peaks. In algorithm MUSIC, we

estimate D from the eigenvalues of R,; from its
eigenvectors, we form Eg and E,, and by varying 6,
we shall find peaks in the directions of #; to dp In

1 1
Pyusio(0)

" &y al(0)ENEa()

If Rg IS required, we compute
Rs = (A7A) AY (R, — o2I) A (AFA)™



5.4 GCC-Based DoA

Microohone-Arrav Sianal Processing. (¢) Apolinarioi & Campos — p. 106/115
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M microphones of an array are in oLt

positions p; t0 py: P
ﬁI Mic 1 positioned at p;

—u. unit vector in the
direction of propagation 0

9: grazing angle
(Z - elevation angle)

¢: horizontal angle
(azimuth)

sin O cos gb M— "

U= | sinfsmo —

cos ¢
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# Note that d,,; = u’ (p,, — p;)
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We are interested in the TDoOA
between mics m and [

T (In number of samples)
IS to be obtained from
the peak of 7, .. (7)

Pap (T) = Elzm(n)zi(n — 7))
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hits microphone m (7,,,; < 0):

E\ ‘ \ \
\_S/ Om—\A— ~— e
8

0 20 40 60 80 100

mn
5 | |
VN
£ 0 e . , \ R
~
H 5 - ! ! |
0 20 40 60 80 100

50

ot



® When the sound frontwave first GCC

hits microphone m (7,,,; < 0):
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An estimate for the correlation can be given as:

Foma (T) =Y Tm(n)x(n — T) = T (7) * 2(—T)

The cross-power spectrum density (CPSD):
Ry (¢7%) = Flam (1) ¥ a1(—7)} = X (&) Xy (e77¥)

We may assume the model
T(n) = s(n) x h,(n) + n,(n) and similarly for z;(n)

Hence, considering very small additive error and real
sequences, we find
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An estimate for the correlation can be given as:

Foma (T) =Y Tm(n)x(n — T) = T (7) * 2(—T)

The cross-power spectrum density (CPSD):

Ry (¢7%) = Flam (1) ¥ a1(—7)} = X (&) Xy (e77¥)
We may assume the model

T(n) = s(n) x h,(n) + n,(n) and similarly for z;(n)

Hence, considering very small additive error and real
sequences, we find

Rypz (€7) ~ |S(€7%) P H,, (e7%) Hy (¢7*) and
lf‘xmxl (7‘) ~ % ffw [—]m(ejw)Hl*<€jw)fzs<€jw)€jw7dw

Which motivates the GCC:

1 " 5 W WT
TxGmxz <T) — %/W¢<w)R:cm:cz<€] )ej dw
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® Classical cross-correlation:

p(w) =1

® Maximum Likelihood (ML):

_ | X (e79) ||| X (7))
Ylw) = Ry, (€7%) Rayy, (€7)+ Ry (€7%) Ry (€7)




Types of 1) (w)

® Classical cross-correlation:

p(w) =1

® Maximum Likelihood (ML):
(W) | X (e7) [ X3 (7))

— ~

R, (€7%) Rayy, (€99) 4Ry, (€9%) R, (€9%)

o Ry, () = | Xpn(e?)]?

s Ry (™) = [ Xy(e)]?

o f{nm (ejw) = ‘Nm(ejw)‘Q (estimated during silence interval)

A

o Rnl(ejw) = ‘Nl(ejw)|2 (estimated during silence interval)
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#® Replacing this function in the expression of Txmxl (7):

pPHAT (1) = L (7 me1 (€)oot doy in which,

Ty 21 =7 Ry, (639))]

after making R,, ., (¢/%) = |S(e7°)|2H,, (/) H (&%),
we have TPHAT(T) 1 (7 6j(<sz—<zHl+w7r)dw

T L] 2 J—7




® PHAT (Phase Transform):
_ 1
¢<w) T |R£Cmfb’l (ejw) |

#® Replacing this function in the expression of Txmxl (7):

PHAT(\ _ 1 (7 Benz (%) o7
Fomar () = 27 J 2o 5 5y €7 dw I which,

after making R,, ., (¢/%) = |S(e7°)|2H,, (/) H (&%),
we have TPHAT(T) — L1 (7 oi(<Hm—<H+wn) g,

Tm ] 2w J —1

#® For the PHAT, in case of having
hm(n) = a,d(n) and hy(n) = ad(n — AT),
the cross-correlation would be
rPHAT (1) = §(7 4+ A7) = peakin 7, = —AT

(a perfect indication of a temporal delay!)
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® We define a cost function:
_ _ 9 - _ 2
Wlth 7_-ml — 7—’rnl/fs and A]_?)’rnl — (pm _ pl)/vsound

# We then find u that minimizes ¢ by making V¢ = 0:
Au=>b

where A = ApApi, + - + AP -1)MAP 1y m
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Assuming we have all possible
(M (M —1)/2) delays 7,,;, we want angles ¢ and ¢

We define a cost function: ;
_ _ 2 _ _
Wlth 7_-ml — 7—’rnl/fs and A]_?)’rnl — (pm _ pl)/vsound

We then find u that minimizes &£ by making V£ = O:
Au=>b

where A = ApApi, + - + AP -1)MAP 1y m
and b = 7, Apis + - + 7_'(M_1)MAI_)(M—1)M

And this unit vector is givenasu= | u, | = A~'b




Azimuth and elevation

#® Knowing u and also the fact that it corresponds to
- sinfcoso |
sinflsing |, ---

cos 6



# Knowing u and also the fact that it corresponds to
- sinfcoso |
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cos 0

#® .. we compute the azimuth:
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uCC




# Knowing u and also the fact that it corresponds to
- sinfcoso |
sinfsing |, ---

cos 0

#® .. we compute the azimuth:

Uy
¢ = arctan —
uCC

® And the elevation:

elevation = 90° — 6 = 90° — arccos u,,




Last slide ®

Thank you!
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