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1. Introduction and
Fundamentals
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In this course, signals and noise...

have spatial dependence

must be characterized as space-time processes

An array of sensors is represented in the figure below.
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1.2 Signals in Space and Time
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∂(·)
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−→ı y +
∂(·)
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=
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∂(·)
∂x
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and
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+
∂2(·)
∂y2

+
∂2(·)
∂z2

respectively.
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From Maxwell’s equations,

∇2−→E =
1

c2
∂2
−→
E

∂t2

or, for s(x, t) a general scalar field,

∂2s

∂x2
+
∂2s

∂y2
+
∂2s

∂z2
=

1

c2
∂2s

∂t2

where: c is the propagation speed,
−→
E is the electric field

intensity, and x = [x y z]T is a position vector.

“vector” wave equation

“scalar” wave equation

Note: From this point onwards the terms wave and field will be used interchangeably.
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Monochromatic plane wave

Now assume s(x, t) has a complex exponential form,



Monochromatic plane wave

Now assume s(x, t) has a complex exponential form,

s(x, t) = Aej(ωt−kxx−kyy−kzz)

where A is a complex constant and kx, ky, kz, and ω ≥ 0
are real constants.
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k2xs(x, t) + k2ys(x, t) + k2zs(x, t) =
1

c2
ω2s(x, t)

or, after canceling s(x, t),

k2x + k2y + k2z =
1

c2
ω2



Monochromatic plane wave

Substituting the complex exponential form of s(x, t) into the
wave equation, we have

k2xs(x, t) + k2ys(x, t) + k2zs(x, t) =
1

c2
ω2s(x, t)

or, after canceling s(x, t),

k2x + k2y + k2z =
1

c2
ω2

constraints to be satisfied
by the parameters
of the scalar field
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Monochromatic plane wave

From the constraints imposed by the complex exponential
form, s(x, t) = Aej(ωt−kxx−kyy−kzz) is

monochromatic

plane
For example, take the position at the origin

of the coordinate space:

x = [0 0 0]T

s(0, t) = Aejωt
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Monochromatic plane wave

From the constraints imposed by the complex exponential
form, s(x, t) = Aej(ωt−kxx−kyy−kzz) is

monochromatic

plane
The value of s(x, t) is the same for all

points lying on the plane

kxx+ kyy + kzz = C

where C is a constant.
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Monochromatic plane wave

Defining the wavenumber vector k as

k = [kx ky kz]
T

we can rewrite the equation for the monochromatic plane
wave as

s(x, t) = Aej(ωt−kTx) The planes where s(x, t)
is constant are perpendicular
to the wavenumber vector k
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Monochromatic plane wave
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in δt seconds.
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Monochromatic plane wave

As the plane wave propagates, it advances a distance δx
in δt seconds.

Therefore,

s(x, t) = s(x+ δx, t+ δt)

⇐⇒ Aej(ωt−kTx) = Aej[ω(t+δt)−kT (x+δx)]

=⇒ ωδt− kT δx = 0
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Monochromatic plane wave

Naturally the plane wave propagates in the direction of the
wavenumber vector, i.e.,

k and δx point in the same direction.

Therefore,

kT δx = ‖k‖‖δx‖

=⇒ ωδt = ‖k‖‖δx‖
or, equivalently,

‖δx‖
δt

=
ω

‖k‖

Remember the constraints?
‖k‖2 = ω2/c2
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Monochromatic plane wave

After T = 2π/ω seconds, the plane wave has completed
one cycle and it appears as it did before, but its wavefront
has advanced a distance of one wavelength, λ.

For ‖δx‖ = λ and δt = T = 2π
ω

,

T =
λ‖k‖
ω

=⇒ λ =
2π

‖k‖

The wavenumber vector, k, may be considered a
spatial frequency variable, just as ω is a
temporal frequency variable.
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Monochromatic plane wave

We may rewrite the wave equation as

s(x, t) = Aej(ωt−kTx)

= Aejω(t−αTx)

where α = k/ω is the slowness vector.



Monochromatic plane wave

We may rewrite the wave equation as

s(x, t) = Aej(ωt−kTx)

= Aejω(t−αTx)

where α = k/ω is the slowness vector.

As c = ω/‖k‖, vector α has a magnitude which is the
reciprocal of c.
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Periodic propagating periodic waves

Any arbitrary periodic waveform s(x, t) = s(t−αTx) with
fundamental period ω0 can be represented as a sum:

s(x, t) = s(t−αTx) =
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Sne
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Periodic propagating periodic waves

Any arbitrary periodic waveform s(x, t) = s(t−αTx) with
fundamental period ω0 can be represented as a sum:

s(x, t) = s(t−αTx) =
∞∑

n=−∞

Sne
jnω0(t−αTx)

The coefficients are given by

Sn =
1

T

∫ T

0

s(u)e−jnω0udu
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Periodic propagating periodic waves

Based on the previous derivations, we observe that:

The various components of s(x, t) have different
frequencies ω = nω0 and different wavenumber
vectors, k.

The waveform propagates in the direction of the
slowness vector α = k/ω.
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Nonperiodic propagating waves

More generally, any function constructed as the integral of
complex exponentials who also have a defined and
converged Fourier transform can represent a waveform

s(x, t) = s(t−αTx) =
1

2π

∫ ∞

−∞

S(ω)ejω(t−αTx)dω

where

S(ω) =

∫ ∞

−∞

s(u)e−jωudu

We will come back to this later...
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2. Sensor Arrays and Spatial
Filtering
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2.1 Wavenumber-Frequency Space
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Space-time Fourier Transform

The four-dimensional Fourier transform of the space-time
signal s(x, t) is given by

S(k, ω) =

∫ ∞

−∞

∫ ∞

−∞

s(x, t)e−j(ωt−kTx)dxdt

temporal frequency

spatial frequency: wavenumber
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Space-time Fourier Transform

The four-dimensional Fourier transform of the space-time
signal s(x, t) is given by

S(k, ω) =

∫ ∞

−∞

∫ ∞

−∞

s(x, t)e−j(ωt−kTx)dx dt

s(x, t) =
1

(2π)4

∫ ∞

−∞

∫ ∞

−∞

S(k, ω)ej(ωt−kTx)dk dω
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Space-time Fourier Transform

We have already concluded that if the space-time signal is
a propagating waveform such that s(x, t) = s(t−αT

0 x),
then its Fourier transform is equal to

S(k, ω) = S(ω)δ(k− ωα0)
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Space-time Fourier Transform

We have already concluded that if the space-time signal is
a propagating waveform such that s(x, t) = s(t−αT

0 x),
then its Fourier transform is equal to

S(k, ω) = S(ω)δ(k− ωα0)

Remember the nonperiodic propagating wave Fourier
transform?

This means that s(x, t) only has energy along the direction
of k = k0 = ωα0 in the wavenumber-frequency space.
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2.2 Frequency-Wavenumber (WN) Response
and Beam patterns (BP)
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Signals at the sensors

An array is a set of N (isotropic) sensors located at
positions pn, n = 0, 1, · · · , N − 1

The sensors spatially sample the signal field at
locations pn

At the sensors, the set of N signals are denoted by

f(t,p) =








f(t,p0)

f(t,p1)
...

f(t,pN−1)
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Array output

N−1

h (t)

h (t)1 Σ

...

f (t,   )p

p
N−1

f (t,    ) 

f (t,   )p
1

y(t)

..
.

0

h   (t)

0



Array output

N−1

h (t)

h (t)1 Σ

...

f (t,   )p

p
N−1

f (t,    ) 

f (t,   )p
1

y(t)

..
.

0

h   (t)

0

y(t) =

N−1∑

n=0

∫ ∞

−∞

hn(t− τ)fn(τ,pn)dτ

=

∫ ∞

−∞

hT (t− τ)f(τ,p)dτ



Array output

N−1

h (t)

h (t)1 Σ

...

f (t,   )p

p
N−1

f (t,    ) 

f (t,   )p
1

y(t)

..
.

0

h   (t)

0

y(t) =

N−1∑

n=0

∫ ∞

−∞

hn(t− τ)fn(τ,pn)dτ

=

∫ ∞

−∞

hT (t− τ)f(τ,p)dτ

where h(t) = [ho(t) h1(t) · · · hN−1(t)]
T
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In the frequency domain, · · ·
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In the frequency domain, · · ·

Y (ω) =

∫ ∞

−∞

y(t)e−jωtdt

= HT (ω)F (ω)

where

H(ω) =

∫ ∞

−∞

h(t)e−jωtdt

F (ω) = F (ω,p) =

∫ ∞

−∞

f(t,p)e−jωtdt
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Plane wave propagating · · ·

Consider a plane wave propagating in the direction of
vector a:

a =





−sinθcosφ
−sinθsinφ
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Plane wave propagating · · ·

Consider a plane wave propagating in the direction of
vector a:

a =





−sinθcosφ
−sinθsinφ
−cosθ





If f(t) is the signal that would be received at the origin,
then:

f(t,p) =








f(t− τ0)

f(t− τ1)
...

f(t− τN−1)
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Plane wave (assuming φ = 90o)

plane wave

θ

−sinθ

z

y

a

p
n

a

u

e

y

z

α

θ
 1

−cos

e =?

e = cτn

⇒ τn = e
c BUT

e = ‖pn‖cos(α) = ‖u‖
︸︷︷︸

=1

‖pn‖cos(α)

∴ τn = −uTpn

c
= aTpn

c

τn is the time since the plane wave hits the sensor at location pn until it reaches point (0, 0).
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Back to the frequency domain

Then, we have:

F (ω) =








∫∞

−∞
e−jωtf(t− τ0)dt

∫∞

−∞
e−jωtf(t− τ1)dt

...
∫∞

−∞
e−jωtf(t− τN−1)dt








=








e−jωτ0

e−jωτ1

...
e−jωτN−1







F (ω)

Microphone-Array Signal Processing, c©Apolinárioi & Campos – p. 32/115
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Definition of Wavenumber

For plane waves propagating in a locally homogeneous
medium:

k =
ω

c
a =

2π

c/f
a =

2π

λ
a = −2π

λ
u

Wavenumber Vector ("spatial frequency")

Note that |k| = 2π
λ

Therefore

ωτn =
ω

c
aTpn = kTpn
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Array Manifold Vector

And we have

F (ω) =










e−jk
T
p0

e−jk
T
p1

...

e−jk
T
p

N−1










F (ω) = F (ω)vk(k)

Array Manifold Vector

In this particular example, we can use
hn(t) =

1
N
δ(t+ τn) such that

y(t) = f(t)

Following, we have the delay-and-sum beamformer.
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Delay-and-sum Beamformer

τ

Σ

...

1
N

..
. y(t)

f (t−  )
0

f (t−   )1

f (t−    )N−1
+τN−1

+τ1

+τ0τ

τ

A common delay is added in each channel to make the
operations physically realizable

Since F {hn(t)} = F
{

1
N
δ(t+ τn)

}
= ejωτn

We can write

HT (ω) =
1

N
vH

k(k)

Array Manifold Vector
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LTI System

ejωt h(t) H(ω)ejωt

Space-time signals (base functions):

fn(t,p) = ejω(t−τn) = ej(ωt−k
T
p

n
)

Note that ωτn = kTpn

∴ f(t,p) = ejωtvk(k)

Microphone-Array Signal Processing, c©Apolinárioi & Campos – p. 36/115
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Frequency-Wavenumber Response Function

The response of the array to this plane wave is:

y(t,k) = HT (ω)vk(k)e
jωt

After taking the Fourier transform, we have:

Y (ω,k) = HT (ω)vk(k)

And we define the Frequency-Wavenumber Response
Function:

Υ(ω,k) , HT (ω)vk(k)Upsilon

Υ(ω,k) describes the complex gain of an array to an
input plane wave with wavenumber k and temporal
frequency ω.
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Beam Pattern and Bandpass Signal
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Beam Pattern and Bandpass Signal

BEAM PATTERN is the Frequency Wavenumber
Response Function evaluated versus the direction:

B(ω : θ, φ) = Υ(ω,k)

Note that k = 2π
λ
a(θ, φ), and a is the unit vector with

spherical coordinates angles θ and φ

Let’s write a bandpass signal:

f(t,pn) =
√
2Re{f̃(t,pn)e

jωct}, n = 0, 1, · · · , N − 1

ωc corresponds to the carrier frequency and the
complex envelope f̃(t,pn) is bandlimited to the region

|ω − ωc
︸ ︷︷ ︸

ωL

| ≤ 2πBs/2
ωc

2πBs
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Bandlimited and Narrowband Signals

Bandlimited plane wave:
f(t,pn) =

√
2Re{f̃(t− τn)e

jωc(t−τn)}, n = 0, 1, · · · , N − 1

Maximum travel time (∆Tmax) across the (linear) array:
travel time between the two sensors at the extremities
(signal arriving along the end-fire)

Assuming the origin is at the array’s center of gravity:
∑N−1

n=0 pn = 0 ⇒ τn ≤ ∆Tmax

In Narrowband (NB) signals, Bs∆Tmax ≪ 1

⇒ f̃(t− τn) ≃ f̃(t) and
f(t,pn) =

√
2Re{f̃(t)e−jωcτnejωct}
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Phased-Array

For NB signals, the delay is approximated by a
phase-shift:
⇒ delay&sum beamformer ≡ PHASED ARRAY



Phased-Array

For NB signals, the delay is approximated by a
phase-shift:
⇒ delay&sum beamformer ≡ PHASED ARRAY

τ

Σ
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1
N

..
. y(t)
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f(t)

0 0
j

e
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j

e
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Phased-Array

For NB signals, the delay is approximated by a
phase-shift:
⇒ delay&sum beamformer ≡ PHASED ARRAY

τ

Σ

...

1
N

..
. y(t)

f(t)

f(t)

f(t)

0 0
j

e
+  ω τ

0 1
j

e
+  ω τ

0 N−1
j

e
+  ω τf (t−    )N−1

f (t−   )1

0
f (t−  )τ

τ

The phased array can be implemented adjusting the
gain and phase to achieve a desired beam pattern
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In narrowband beamformers: y(t,k) = wHvk(k)e
jωt

y(t)Σ

...

w*
0

w*
1

w*
N−1

..
.

f (t−    )N−1

f (t−   )1

0
f (t−  )τ

τ

τ

y (t)

y (t)

0

1

N−1
y  (t)



NB Beamformers

In narrowband beamformers: y(t,k) = wHvk(k)e
jωt

y(t)Σ

...

w*
0

w*
1

w*
N−1

..
.

f (t−    )N−1

f (t−   )1

0
f (t−  )τ

τ

τ

y (t)

y (t)

0

1

N−1
y  (t)

Υ(ω,k) = wH

︸︷︷︸

H
T
(ω)

vk(k)
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2.3 Uniform Linear Arrays (ULA)
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Uniformly Spaced Linear Arrays

(grazing angle)

_
(broadside angle)

r

d

φ

θ

z (array axis = "endfire")

y

x

2
θ = π − θ_
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ULA
An ULA along axis z: N−1

d

z

y

x

(azimuth angle)

φ

θ

(polar angle)

0

1

Location of the elements:
{
pzn = (n− N−1

2
)d, for n = 0, 1, · · · , N − 1

pxn = pyn = 0

Therefore, pn =





0

0

(n− N−1
2

)d
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ULA

Array manifold vector:

vk(k) =












e−jk
T
p0

...

e−jk
T
p

n

...

e−jk
T
p

N−1












[kx ky kz ]







0

0
[

n− N−1
2

]

d









ULA

Array manifold vector:

vk(k) =
[

e−jk
T
p0 e−jk

T
p1 · · · e−jk

T
p

N−1

]T

∴ vk(k) = vk(kz) =









e+j
(N−1)

2
kzd

e+j(N−1
2

−1)kzd

...
e−j(N−1

2
)kzd
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Outline

1. Introduction and Fundamentals

2. Sensor Arrays and Spatial Filtering

3. Optimal Beamforming

4. Adaptive Beamforming

5. DoA Estimation with Microphone Arrays
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3. Optimal Beamforming
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3.1 Introduction
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Introduction

Scope: use the statistical representation of signal and
noise to design array processors that are optimal in a
statistical sense.

We assume that the appropriate statistics are known.

Our objective of interest is to estimate the waveform of
a plane-wave impinging on the array in the presence of
noise and interfering signals.

Even if a particular beamformer developed in this
chapter has good performance, it does not guarantee
that its adaptive version (next chapter) will. However, if
the performance is poor, it is unlikely that the adaptive
version will be useful.
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3.2 Optimal Beamformers
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MVDR Beamformer

Snapshot model in the frequency domain:

In many applications, we implement a beamforming in
the frequency domain (ωm = ωc +m 2π

∆T
and M varies

from −M−1
2

to M−1
2

if odd and from −M
2

to M
2
− 1 if

even).
X

Discrete
Fourier
Transform

∆TX

∆T
X

∆T

∆TY

∆TY ω
(M−1)/2

(                  ),k

ω m

∆TY

Fourier
Transform at
M Frequencies

NB Beamformer

NB Beamformer

NB Beamformer

(                )

ω ,k−(M−1)/2
(                   ) 

ω
(M−1)/2

ω ,k−(M−1)/2

,k(                  )

ωm ,k(              )

(                   ) 

,k y(t)
(t)X Inverse

In order to generate these vectors, divide the
observation interval T in K disjoint intervals of duration
∆T : (k − 1)∆T ≤ t < k∆T, k = 1, · · · ,K.
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MVDR Beamformer

∆T must be significantly greater than the propagation
time across the array.

∆T also depends on the bandwidth of the input signal.

Assume an input signal with BW Bs centered in fc

In order to develop the frequency-domain snapshot
model for the case in which the desired signals and the
interfering signals can de modeled as plane waves, we
have two cases: desired signals are deterministic or
samples of a random process.
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MVDR Beamformer

Let’s assume the case where the signal is nonrandom
but unknown; we initially consider the case of single
plane-wave signal.

Frequency-domain snapshot consists of signal plus
noise: X(ω) = Xs(ω) +N (ω)

The signal vector can be written as
Xs(ω) = F (ω)v(ω : ks) where F (ω) is the
frequency-domain snapshot of the source signal and
v(ω : ks) is the array manifold vector for a plane-wave
with wavenumber ks.

The noise snapshot is a zero-mean random vector
N (ω) with spectral matrix given by
Sn(ω) = Sc(ω) + σ2

ωI

Microphone-Array Signal Processing, c©Apolinárioi & Campos – p. 53/115



MVDR Beamformer

We process X(ω) with the 1×N operator WH(ω):

Yω (  )ω
(  )ω

X
W

H
(  )



MVDR Beamformer

We process X(ω) with the 1×N operator WH(ω):

Yω (  )ω
(  )ω

X
W

H
(  )

Distortionless criterion (in the absence of noise):

Y (ω) = F (ω)

= WH(ω)Xs(ω) = F (ω)WH(ω)v(ω : ks)

=⇒WH(ω)v(ω : ks) = 1
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MVDR Beamformer

In the presence of noise, we have:

Y (ω) = F (ω) + Yn(ω)

The mean square of the output noise is:

E[|Yn(ω)|2] = WH(ω)Sn(ω)W (ω)
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MVDR Beamformer
In the MVDR beamformer, we want to minimize

E[|Yn(ω)|2] subject to WH(ω)v(ω : ks) = 1

Using the method of Lagrange multipliers, we define
the following cost function to be minimized

F = WH(ω)Sn(ω)Wω

+ λ
[
WH(ω)v(ω : ks)− 1

]
+ λ∗

[
vH(ω : ks)W (ω)− 1

]

...and the result (suppressing ω and ks) is

WH
mvdr = Λsv

HS−1
n where Λs =

[
vHS−1

n v
]−1

This result is referred to as MVDR or Capon
Beamformer.
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Constrained Optimal Filtering

The gradient of ξ with respect to w (real case):

∇wξ =








∂ξ

∂w0
∂ξ

∂w1
...
∂ξ

∂wN−1








From the definition above, it is easy to show that:
∇w(bTw) = ∇w(wTb) = b

Also ∇w(wTRw) = RTw +Rw

which, when R is symmetric, leads to
∇w(wTRw) = 2Rw
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We now assume the complex case w = a+ jb.

The gradient becomes ∇wξ =








∂ξ

∂a0
+ j ∂ξ

∂b0
∂ξ

∂a1
+ j ∂ξ

∂b1
...

∂ξ

∂aN−1
+ j ∂ξ

∂bN−1








· · · which corresponds to ∇wξ = ∇aξ + j∇bξ

Let us define the derivative ∂
∂w

(with respect to w):

∂
∂w

= 1
2








∂
∂a0

− j ∂
∂b0

∂
∂a1

− j ∂
∂b1

...
∂

∂aN−1
− j ∂

∂bN−1
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Constrained Optimal Filtering

The conjugate derivative with respect to w is

∂
∂w∗

= 1
2








∂
∂a0

+ j ∂
∂b0

∂
∂a1

+ j ∂
∂b1

...
∂

∂aN−1
+ j ∂

∂bN−1








Therefore, ∇wξ = ∇aξ + j∇bξ is equivalent to 2 ∂ξ

∂w∗
.

The complex gradient may be slightly tricky if
compared to the simple real gradient. For this reason,
we exemplify the use of the complex gradient by
calculating ∇wE[|e(k)|2].
∇wE[e(k)e∗(k)] = E{e∗(k)[∇we(k)] + e(k)[∇we

∗(k)]}
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Constrained Optimal Filtering

We compute each gradient ...

∇we(k) =∇a[d(k)−wHx(k)] + j∇b[d(k)−wHx(k)]

=− x(k)− x(k) = −2x(k)
and

∇we
∗(k) =∇a[d

∗(k)−wTx∗(k)] + j∇b[d
∗(k)−wTx∗(k)]

=− x∗(k) + x∗(k) = 0

such that the final result is

∇wE[e(k)e∗(k)] =− 2E[e∗(k)x(k)]

=− 2E[x(k)[d(k)−wHx(k)]∗}
=− 2E[x(k)d∗(k)]

︸ ︷︷ ︸

p

+2E[x(k)xH(k)]
︸ ︷︷ ︸

R

w
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Which results in the Wiener solution w = R−1p.

When a set of linear constraints involving the
coefficient vector of an adaptive filter is imposed, the
resulting problem (LCAF)—admitting the MSE as the
objective function—can be stated as minimizing
E[|e(k)|2] subject to CHw = f .

The output of the processor is y(k) = wHx(k).

It is worth mentioning that the most general case
corresponds to having a reference signal, d(k). It is,
however, usual to have no reference signal as in
Linearly-Constrained Minimum-Variance (LCMV)
applications. In LCMV, if f = 1, the system is often
referred to as Minimum-Variance Distortionless
Response (MVDR).
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Using Lagrange multipliers, we form
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Using Lagrange multipliers, we form

ξ(k) = E[e(k)e∗(k)] +L
T
RRe[CHw − f ] +L

T
I Im[CHw − f ]

We can also represent the above expression with a complex

L given by LR + jLI such that

ξ(k) = E[e(k)e∗(k)] +Re[LH(CHw − f)]

= E[e(k)e∗(k)] +
1

2
L

H(CHw − f) +
1

2
L

T (CTw∗ − f∗)

Noting that e(k) = d(k)−wHx(k), we compute:

∇wξ(k) = ∇w

{

E[e(k)e∗(k)] +
1

2
L

H(CHw − f) +
1

2
L

T (CTw∗ − f∗)

}

= E[−2x(k)e∗(k)] + 0+CL

= −2E[x(k)d∗(k)] + 2E[x(k)xH(k)]w +CL
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Constrained Optimal Filtering

By using R = E[x(k)xH(k)] and p = E[d∗(k)x(k)], the
gradient is equated to zero and the results can be
written as (note that stationarity was assumed for the
input and reference signals): −2p+ 2Rw +CL = 0
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Constrained Optimal Filtering

By using R = E[x(k)xH(k)] and p = E[d∗(k)x(k)], the
gradient is equated to zero and the results can be
written as (note that stationarity was assumed for the
input and reference signals): −2p+ 2Rw +CL = 0

Which leads to w = 1
2
R−1(2p−CL)

If we pre-multiply the previous expression by CH and
use CHw = f , we find L:
L = 2(CHR−1C)−1(CHR−1p− f)

By replacing L, we obtain the Wiener solution for the
linearly constrained adaptive filter:
wopt = R−1p+R−1C(CHR−1C)−1(f −CHR−1p)
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Constrained Optimal Filtering

The optimal solution for LCAF:
wopt = R−1p+R−1C(CHR−1C)−1(f −CHR−1p)

Note that if d(k) = 0, then p = 0, and we have (LCMV):
wopt = R−1C(CHR−1C)−1f

Yet with d(k) = 0 but f = 1 (MVDR)
wopt = R−1C(CHR−1C)−1

For this case, d(k) = 0, the cost function is termed
minimum output energy (MOE) and is given by
E[|e(k)|2] = wHRw

Also note that in case we do not have constraints (C
and f are nulls), the optimal solution above becomes
the unconstrained Wiener solution R−1p.
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The GSC

We start by doing a transformation in the coefficient vector.

Let T = [C B] such that

w = Tw̄ = [C B]

[
w̄U

−w̄L

]

= Cw̄U −Bw̄L

Matrix B is usually called the Blocking Matrix and we
recall that CHw = g such that
CHw = CHCw̄U −CHBw̄L = g.

If we impose the condition BHC = 0 or, equivalently,
CHB = 0, we will have w̄U = (CHC)−1g.

w̄U is fixed and termed the quiescent weight vector;
the minimization process will be carried out only in the
lower part, also designated wGSC = w̄L.
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The GSC

It is shown below how to split the transformation matrix
into two parts: a fixed path and an adaptive path.

reference signal

 input

reference signal

signal

 input
signal

Σ
−

+

−

MN

p MN−p

MN−p

p

B
−

C

+

−

F

B

Σ

Σ−

1

+
1

MN
Σ
+

−  ≡
MN

MN

MN

1

T
+

− Σw(k)

B

MN
p

MN

p

MN−p

1

1

C

Σ
+

− Σ
− +

(k)
GSC

w

(c)

(a) (b)

(d)
MN−p

w(k)

wU(k)

w (k)
L

wU(k)

w (k)
L
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The GSC

This structure (detailed below) was named the
Generalized Sidelobe Canceller (GSC).
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The GSC

This structure (detailed below) was named the
Generalized Sidelobe Canceller (GSC).

+

−

F

B

Σ

HF

Σ

(k)x

− +

y(k)(k)

(k)

=

(k)x
H

B x(k)

GSC

GSC
x

y
e(k)

d(k)

(k−1)
GSC

w

It is always possible to have the overall equivalent
coefficient vector which is given by w = F−BwGSC .

If we pre-multiply last equation by BH and isolate
wGSC , we find wGSC = −(BHB)−1BHw.

Knowing that T = [C B] and that THT = I, it follows
that P = I−C(CHC)−1CH = B(BHB)BH .
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The GSC

A simple procedure to find the optimal GSC solution
comes from the unconstrained Wiener solution applied
to the unconstrained filter: wGSC−OPT = R−1

GSCpGSC

From the figure, it is clear that:
RGSC = E[xGSCx

H
GSC ] = E[BHxxHB] = BHRB

The cross-correlation vector is given as:

pGSC = E[d∗GSCxGSC ]

= E{[FHx− d]∗[BHx]}
= E[−BHd∗x+BHxxHF]

= −BHp+BHRF

· · · and wGSC−OPT = (BHRB)−1(−BHp+BHRF)
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The GSC
A common case is when d(k) = 0:
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according to the notation used. Although we define
eGSC(k) = −e(k), the inversion of the sign in the error
signal actually results in the same results because the
error function is always based on the absolute value.



The GSC
A common case is when d(k) = 0:

+

−
Σ

HF (k)x

(k) =

(k)x
H

B x(k)
GSC
x

y (k)
GSC

GSC
e (k)

B

F
d (k) = 
GSC

(k−1)
GSC

w

We have dropped the negative sign that should exist
according to the notation used. Although we define
eGSC(k) = −e(k), the inversion of the sign in the error
signal actually results in the same results because the
error function is always based on the absolute value.

In this case, the optimum filter wOPT is:
F−BwGSC−OPT = F−B(BHRB)−1BHRF =

R−1C(CHR−1C)−1f (LCMV solution)
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role since its choice determines computational
complexity and even robustness against numerical
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The GSC

Choosing the blocking matrix: B plays an important
role since its choice determines computational
complexity and even robustness against numerical
instability.

Since the only need for B is having its columns forming
a basis orthogonal to the constraints, BHC = 0, a
myriad of options are possible.

Let us recall the paper by Griffiths and Jim where the
term GSC was coined; let

CT =





1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1





With simple constraint matrices, simple blocking
matrices satisfying BTC = 0 are possible.

Microphone-Array Signal Processing, c©Apolinárioi & Campos – p. 70/115
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For this particular example, the paper presents two
possibilities. The first one (orthogonal) is:



The GSC

For this particular example, the paper presents two
possibilities. The first one (orthogonal) is:

BT
1 =


















1 1 −1 −1 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0

1 −1 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 −1 −1 0 0 0 0

0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 0 0 0 1 −1 1 −1
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And the second possibility (non-orthogonal) is:



The GSC

And the second possibility (non-orthogonal) is:

BT
2 =


















1 −1 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 1 −1
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The GSC

SVD: the blocking matrix can be produced with the
following Matlab command lines,

[U,S,V]=svd(C);
B3=U(:,p+1:M * N); % p=N in this case



The GSC

SVD: the blocking matrix can be produced with the
following Matlab command lines,

[U,S,V]=svd(C);
B3=U(:,p+1:M * N); % p=N in this case

BT
3 is given by:
























−0.50 −0.17 −0.17 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.25 −0.42 0.08 0.08 0.75 −0.25 −0.25 −0.25 0.00 0.00 0.00 0.00

0.25 −0.42 0.08 0.08 −0.25 0.75 −0.25 −0.25 0.00 0.00 0.00 0.00

0.25 −0.42 0.08 0.08 −0.25 −0.25 0.75 −0.20 0.00 0.00 0.00 0.00

0.25 −0.42 0.08 0.08 −0.25 −0.25 −0.25 0.75 0.00 0.00 0.00 0.00

0.25 0.08 −0.42 0.08 0.00 0.00 0.00 0.00 0.75 −0.25 −0.25 −0.25

0.25 0.08 −0.42 0.08 0.00 0.00 0.00 0.00 −0.25 0.75 −0.25 −0.25

0.25 0.08 −0.42 0.08 0.00 0.00 0.00 0.00 −0.25 −0.25 0.75 −0.25

0.25 0.08 −0.42 0.08 0.00 0.00 0.00 0.00 −0.25 −0.25 −0.25 0.75
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QRD: the blocking matrix can be produced with the
following Matlab command lines,

[Q,R]=qr(C);
B4=Q(:,p+1:M * N);
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QRD: the blocking matrix can be produced with the
following Matlab command lines,

[Q,R]=qr(C);
B4=Q(:,p+1:M * N);

B4 was identical to B3 (SVD).
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The GSC

QRD: the blocking matrix can be produced with the
following Matlab command lines,

[Q,R]=qr(C);
B4=Q(:,p+1:M * N);

B4 was identical to B3 (SVD).

Two other possibilities are: the one presented in
[Tseng Griffiths 88] where a decomposition procedure
is introduced in order to offer an effective
implementation structure and the other one concerned
to a narrowband BF implemented with GSC where B is
combined with a wavelet transform [Chu Fang 99].

Finally, a new efficient linearly constrained adaptive
scheme which can also be visualized as a GSC
structure can be found in [Campos&Werner&Apolinário
IEEE-TSP Sept. 2002].
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4. Adaptive Beamforming
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4.1 Introduction
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Introduction

Scope: instead of assuming knowledge about the
statistical properties of the signals, beamformers are
designed based on statistics gathered online.

Different algorithms may be employed for iteratively
approximating the desired solution.

We will briefly cover a small subset of algorithms for
constrained adaptive filters.
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Introduction

Linearly constrained adaptive filters (LCAF) have found
application in numerous areas, such as spectrum
analysis, spatial-temporal processing, antenna arrays,
interference suppression, among others.

LCAF algorithms incorporate into the solution
application-specific requirements translated into a set
of linear equations to be satisfied by the coefficients.

For example, if direction of arrival of the signal of
interest is known, jammer suppression can take
place through spatial filtering without the need of
training signal, or in systems with
constant-envelope modulation (e.g., M-PSK), a
constant-modulus constraint can mitigate multipath
propagation effects.

Microphone-Array Signal Processing, c©Apolinárioi & Campos – p. 79/115



4.2 Constrained FIR Filters
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Broadband Array Beamformer

1

M

2 Σ

Σ
Algorithm:

w
min ξ(k)
s.t. C w=fH

1x (k)
w (k)

w (k)

w (k)

d(k)

y(k)

+
e(k)

-

x (k)2

x (k)M
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Optimal Constrained MSE Filter

We look for

min
w

ξ(k) s.t. CHw = f ,

where

ξ(k) = E [|e(k)|2]
C is the MN × p constraint matrix

f is the p× 1 gain vector
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Optimal Constrained MSE Filter

The optimal beamformer is

w(k) = R−1p+R−1C
(
CHR−1C

)−1 (
f −CHR−1p

)

where:

R = E
[
x(k)xH(k)

]
and p = E [d∗(k)x(k)]

w(k) =
[
wT

1 (k) w
T
2 (k) · · · wT

M(k)
]T

x(k) =
[
xT
1 (k) x

T
2 (k) · · · xT

M(k)
]T

xT
i (k) = [xi(k) xi(k − 1) · · · xi(k −N + 1)]
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The Constrained LS Beamformer
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min
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λk−i|d(i)−wHx(i)|2
]

s.t. CHw = f

with λ ∈ (0, 1],
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The Constrained LS Beamformer

In the absence of statistical information, we may choose

min
w

[

ξ(k) =
k∑

i=0

λk−i|d(i)−wHx(i)|2
]

s.t. CHw = f

with λ ∈ (0, 1], which gives, as solution,

w(k) = R−1(k)p(k)

+R−1(k)C
(
CHR−1(k)C

)−1 [
f −CHR−1(k)p(k)

]
,

where

R(k) =
∑k

i=0 λ
k−ix(i)xH(i), and p(k) =

∑k

i=0 λ
k−id∗(i)x(i).
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]
s.t. CHw(k) = f ,

which gives, as solution,
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[
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(
CHC

)−1
CH

]
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where e(k) = d(k)−wH(k − 1)x(k), µ is a positive small

constant called step size.



The Constrained LMS Algorithm

A (cheaper) alternative cost function is

min
w

[
ξ(k) = ‖w(k)−w(k − 1)‖2 + µ|e(k)|2

]
s.t. CHw(k) = f ,

which gives, as solution,

w(k) = P [w(k − 1) + µe∗(k)x(k)] + F,

where e(k) = d(k)−wH(k − 1)x(k), µ is a positive small

constant called step size, P = C
(
CHC

)−1
CH , and

F = C
(
CHC

)−1
f .

Microphone-Array Signal Processing, c©Apolinárioi & Campos – p. 85/115



The Constrained AP Algorithm

We may wish to trade complexity for speed of convergence:

min
w

[
ξ(k) = ‖w(k)−w(k − 1)‖2

]
s.t.

{
XT (k)w∗(k) = d(k)

CHw(k) = f ,

where

d(k) = [d(k) d(k − 1) · · · d(k − L+ 1)]T

X(k) = [x(k) x(k − 1) · · · x(k − L+ 1)]T
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ξ(k) = ‖w(k)−w(k − 1)‖2

]
s.t.

{
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which gives, as solution,



The Constrained AP Algorithm

We may wish to trade complexity for speed of convergence:

min
w

[
ξ(k) = ‖w(k)−w(k − 1)‖2

]
s.t.

{
XT (k)w∗(k) = d(k)

CHw(k) = f ,

which gives, as solution,

w(k) = P [w(k − 1) + µX(k)t(k)] + F

where

e(k) = d(k)−XT (k)w∗(k − 1)

t(k) =
[
XH(k)PX(k)

]−1
e∗(k)
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5. DOA Estimation with
Microphone Arrays
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5.0 Signal Preparation
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It is usual to find a delayed signal represented by a
multiplication of the signal with exponential ejωoτ

First thing to note: when this is the case, the signal is
narrow band with a center frequency in ω0 (in the
continuous-time domain, it corresponds to a carrier
frequency Ω0 = fsω0)

But, most importantly, the delay is well represented
only if the signal is also analytic, i. e., having only
non-negative frequency components.

An analytic signal, mathematically, can be obtained by
multiplying its Fourier transform by the continuous
Heaviside step function:

Xa(e
jω) = 2X(ejω)u(ω), u(ω) =







0, ω < 0

1, ω = 0

1, ω > 0
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Let x(n) = s(n) cos(ω0n), s(n) having a maximum
frequency component (ωm) much lower than ω0:
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If x(n) = s(n)ejω0n, then
x(n)e−jω0τ = s(n)ejω0(n−τ) ≈ x(n− τ) if τ ≪ 1/ωm
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+
s(n)

2
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︸ ︷︷ ︸
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If x(n) = s(n)ejω0n, then
x(n)e−jω0τ = s(n)ejω0(n−τ) ≈ x(n− τ) if τ ≪ 1/ωm

But if x(n) = s(n)cos(ω0n), then x(n)e−jω0τ 6= x(n− τ)

We can make

x(n) = s(n)cos(ω0n) =
s(n)

2
ejω0n

︸ ︷︷ ︸

x+(n)

+
s(n)

2
e−jω0n

︸ ︷︷ ︸

x−(n)

such that

x(n− τ) ≈ x+e
−jω0τ + x−(n)e

+jω0τ = s(n)cos(ω0(n− τ))

· · · but, how to obtain x+(n) or a scaled copy? Using
the Hilbert Transform xH(n) = HT {x(n)} where

XH(e
jω) =







jX(ejω),−π < ω < 0

X(ejω), ω = 0

−jX(ejω), 0 < ω < π
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Knowing that
x(n) = x−(n) + x+(n) = F−1 {X−(e

jω) +X+(e
jω)}, we

compute y(n) = x(n) + jxH(n)
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Knowing that
x(n) = x−(n) + x+(n) = F−1 {X−(e

jω) +X+(e
jω)}, we

compute y(n) = x(n) + jxH(n)

y(n) =

F−1{X−(e
jω) +X+(e

jω) + j[jX−(e
jω)− jX+(e

jω)
︸ ︷︷ ︸

XH (ejω)

]}

= F−1{X−(e
jω) +X+(e

jω)−X−(e
jω) +X+(e

jω)}

Therefore y(n) = 2F−1{X+(e
jω)} = s(n)ejω0n which is

analytic!
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Signal Model

Consider xm(t) the signal from the m-th microphone
(prior to the A/D converter) corresponding to audio
from D sources (directions θ1 to θD) plus noise:
xm(t) = s1(t− τ̄m(θ1)) + · · · + sD(t− τ̄m(θD)) + nm(t)
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Signal Model

Consider xm(t) the signal from the m-th microphone
(prior to the A/D converter) corresponding to audio
from D sources (directions θ1 to θD) plus noise:
xm(t) = s1(t− τ̄m(θ1)) + · · · + sD(t− τ̄m(θD)) + nm(t)

Assuming τ̄m(θd) = Tτm(θd) in s (τm(θd) in number of
samples), after the A/D converter and {�}+ jHT {�} to
make it an analytic signal, we could write
xm(n) = s1(n)e

−jω0τm(θ1)+ · · ·+ sD(n)e−jω0τm(θD)+nm(n)

For an array with M microphones, we would have:

x(n)
︸︷︷︸

M×1

= A
︸︷︷︸

M×D

s(n)
︸︷︷︸

D×1

+n(n)
︸︷︷︸

M×1
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5.1 Signal model

Microphone-Array Signal Processing, c©Apolinárioi & Campos – p. 95/115



Assume, initially, we have D narrowband signals
coming from unknown directions:
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Assume, initially, we have D narrowband signals
coming from unknown directions:
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+ X

X

+

x1(t)

xM (t)

x1(n)

xM (n)

h∗

1

h∗

M

y(n) = hHx(n)

j

j

HT

HT

A/D

A/Ds1(t)

sD(t)

x(n) =








e−jω0τ1(θ1)s1(n) + · · ·+ e−jω0τ1(θD)sD(n) + n1(n)

...

e−jω0τM (θ1)s1(n) + · · ·+ e−jω0τM (θD)sD(n) + nM (n)










Assume, initially, we have D narrowband signals
coming from unknown directions:

+

+ X

X

+

x1(t)

xM (t)

x1(n)

xM (n)

h∗

1

h∗

M

y(n) = hHx(n)

j

j

HT

HT

A/D

A/Ds1(t)

sD(t)

x(n) =








e−jω0τ1(θ1)s1(n) + · · ·+ e−jω0τ1(θD)sD(n) + n1(n)

...

e−jω0τM (θ1)s1(n) + · · ·+ e−jω0τM (θD)sD(n) + nM (n)








Such that the output signal can be written as

y(n) = hHx(n) = hH [As(n) + n(n)]
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If we now assume one single signal, s(n), coming from
direction θ, then
x(n) = s(n)a(θ) + n(n)
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noise



If we now assume one single signal, s(n), coming from
direction θ, then
x(n) = s(n)a(θ) + n(n)

And the output signal becomes
y(n) = hHa(θ)s(n) + hHn(n)

If we make hHa(θ) = 1, the output signal would
correspond to y(n) = s(n) + hHn(n)

︸ ︷︷ ︸

noise

Also note that E[|y(n)|2] = hHRxh, Rx = E[x(n)xH(n)]
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5.2 Non-parametric methods: BF (beamforming
a.k.a. Delay & Sum) and Capon
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DS DoA

If x(n) were spatially white, i.e. Rx = I, we would
obtain E[|y(n)|2] = hHh

Minimizing E[|y(n)|2] = hHh s.t. hHa(θ) = 1, the result,
after using Lagrange multiplier, taking the gradient,

and equating to zero, is h = a(θ)/M which leads to

E[|y(n)|2] = aH(θ)Rxa(θ)
M2

Omitting factor 1
M2 , we estimate the autocorrelation

matrix as R̂x = 1
N

∑N

n=1 x(n)x
H(n) and find the

direction of interest by varying θ and obtaining the

peak in PDS(θ) = aH(θ)R̂xa(θ)
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Capon
In the method known as Capon, we minimize
E[|y(n)|2] = hHRxh subject to hHa(θ) = 1
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Capon
In the method known as Capon, we minimize
E[|y(n)|2] = hHRxh subject to hHa(θ) = 1

Using Lagrange multiplier, we write
ξ = hHRxh+ λ(hHa(θ)− 1), and make ∇hξ = 0 such

that h = R−1
x a(θ)

aH(θ)R−1
x a(θ)

Replacing the above coefficient vector in E[|y(n)|2], we
obtain E[|y(n)|2] = 1

aH(θ)R−1
x a(θ)

Therefore, in the Capon DoA, we estimate
R̂x = 1

N

∑N

n=1 x(n)x
H(n) and find the direction of

interest by varying θ and obtaining the peak in

PCAPON (θ) =
1

aH(θ)R̂−1
x a(θ)
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5.3 Eigenvalue-Based DoA
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MUSIC

Coming back to the previous model of D sources, we
write x(n) = As(n) + n(n)

We assume D < M (number of signals lower than the
number of sensors); this method is known as
parametric for we make this assumption

Also note that A is M ×D, s is D × 1, and n(n) is
M × 1

We then write Rx = E
[
x(n)xH(n)

]
= ARsA

H +Rn,
this last matrix becoming Rn = σ2

nI when assuming
spatially white noise; Rs is the D ×D autocorrelation
matrix of the signal vector, i.e., E

[
s(n)sH(n)

]
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(minimum) eigenvalue with multiplicity M −D

Spectral decomposition of matrix Rx: vector em being
an eigenvector of Rx means that Rxem = λmem.
Collecting all eigenvectors in matrix E, we may write
RxE = EΛ = [e1 · · · eM ]diag {[λ1 · · · λM ]}
⇒ Rx = EΛEH



MUSIC
Rx = ARsA

H +Rn with D < M implies that
ARsA

H is singular (rank D), its determinant is equal to
zero and, therefore, det [Rx − σ2

nI] = 0 and σ2
n is a

(minimum) eigenvalue with multiplicity M −D

Spectral decomposition of matrix Rx: vector em being
an eigenvector of Rx means that Rxem = λmem.
Collecting all eigenvectors in matrix E, we may write
RxE = EΛ = [e1 · · · eM ]diag {[λ1 · · · λM ]}
⇒ Rx = EΛEH

Dividing matrix E in two parts, the first D columns and
the last N =M −D columns, we have:
E = [e1 · · · eD

︸ ︷︷ ︸

ES

eD+1 · · · eM
︸ ︷︷ ︸

EN

] = [ES EN ]
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MUSIC

Noting that EEH = I, we can write ESE
H
S +ENE

H
N = I

The columns of ES span the D-dimensional signal
subspace while the columns of EN span the
N -dimensional noise subspace

A vector in the signal subspace is a linear combination
of the columns of ES. An example:
∑D

d=1 xded = ESx,x = [x1 · · · xD]T

We can find the distance d from a vector v to the signal
subspace ES by obtaining x that minimizes
d = |v −ESx|; the result is d2 = vHENE

H
Nv
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MUSIC

The squared distance from vector a(θ) to the signal
subspace (spanned by ES) is d2 = aH(θ)ENE

H
Na(θ)

When θ belongs to {θ1 · · · θD}, this distance should be
close to zero

Its inverse will present peaks. In algorithm MUSIC, we
estimate D from the eigenvalues of R̂x; from its
eigenvectors, we form ES and EN , and by varying θ,
we shall find peaks in the directions of θ1 to θD in

PMUSIC(θ) =
1

d2
a(θ)

=
1

aH(θ)ENE
H
Na(θ)



MUSIC

The squared distance from vector a(θ) to the signal
subspace (spanned by ES) is d2 = aH(θ)ENE

H
Na(θ)

When θ belongs to {θ1 · · · θD}, this distance should be
close to zero

Its inverse will present peaks. In algorithm MUSIC, we
estimate D from the eigenvalues of R̂x; from its
eigenvectors, we form ES and EN , and by varying θ,
we shall find peaks in the directions of θ1 to θD in

PMUSIC(θ) =
1

d2
a(θ)

=
1

aH(θ)ENE
H
Na(θ)

If RS is required, we compute
RS =

(
AHA

)−1
AH (Rx − σ2

nI)A
(
AHA

)−1
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5.4 GCC-Based DoA
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GCC
M microphones of an array are in
positions p1 to pM :

ECM 800

x

y

z
Mic 1 positioned at p1

2

3

4

5

6

M = 7

−u

θ

φ

−u: unit vector in the
direction of propagation

θ: grazing angle
(π
2

- elevation angle)

φ: horizontal angle
(azimuth)

u =







sin θ cosφ

sin θ sinφ

cos θ
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GCC
We are interested in the TDoA
between mics m and l

WAVEFRONT

pm

pl
u dml

Note that dml = uT (pm − pl
︸ ︷︷ ︸

∆pml

)

TDoA:
τ̄ml =

dml

vsound
= τmlT = τml

fs

τml (in number of samples)
is to be obtained from
the peak of r̂xmxl

(τ)

rxmxl
(τ) = E[xm(n)xl(n− τ)]
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When it first hits
mic l (τml > 0):
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GCCAn estimate for the correlation can be given as:
r̂xmxl

(τ) =
∑∞

−∞ xm(n)xl(n− τ) = xm(τ) ∗ xl(−τ)

The cross-power spectrum density (CPSD):
R̂xmxl

(ejω) = F{xm(τ) ∗ xl(−τ)} = Xm(e
jω)Xl(e

−jω)

We may assume the model
xm(n) = s(n) ∗ hm(n) + nm(n) and similarly for xl(n)

Hence, considering very small additive error and real
sequences, we find
R̂xmxl

(ejω) ≈ |S(ejω)|2Hm(e
jω)H∗

l (e
jω) and

r̂xmxl
(τ) ≈ 1

2π

∫ π

−π
Hm(e

jω)H∗
l (e

jω)R̂s(e
jω)ejωτdω

Which motivates the GCC:

rGxmxl
(τ) =

1

2π

∫ π

−π

ψ(ω)R̂xmxl
(ejω)ejωτdω

Microphone-Array Signal Processing, c©Apolinárioi & Campos – p. 110/115
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GCCTypes of ψ(ω)

Classical cross-correlation:
ψ(ω) = 1

Maximum Likelihood (ML):

ψ(ω) = |Xm(ejω)|||Xl(e
jω)|

R̂nn(e
jω)R̂xm (ejω)+R̂nl

(ejω)R̂xl
(ejω)

R̂xm
(ejω) = |Xm(e

jω)|2

R̂xl
(ejω) = |Xl(e

jω)|2

R̂nm
(ejω) = |Nm(e

jω)|2 (estimated during silence interval)

R̂nl
(ejω) = |Nl(e

jω)|2 (estimated during silence interval)
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GCCPHAT (Phase Transform):
ψ(ω) = 1

|R̂xmxl
(ejω)

|

Replacing this function in the expression of rGxmxl
(τ):

rPHAT
xmxl

(τ) = 1
2π

∫ π

−π

R̂xmxl
(ejω)

|R̂xmxl
(ejω)|

ejωτdω in which,

after making R̂xmxl
(ejω) = |S(ejω)|2Hm(e

jω)H∗
l (e

jω),
we have rPHAT

xmxl
(τ) = 1

2π

∫ π

−π
ej(∢Hm−∢Hl+ωπ)dω

For the PHAT, in case of having
hm(n) = αmδ(n) and hl(n) = αlδ(n−∆τ),
the cross-correlation would be
rPHAT
xmxl

(τ) = δ(τ +∆τ) ⇒ peak in τml = −∆τ

(a perfect indication of a temporal delay!)
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ξ =
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+ · · · +
(

τ̄(M−1)M −∆p̄T
(M−1)Mu

)2

with τ̄ml = τml/fs and ∆p̄ml = (pm − pl)/vsound

We then find u that minimizes ξ by making ∇uξ = 0:

Au = b
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LS solutionAssuming we have all possible
(M(M − 1)/2) delays τml, we want angles φ and θ

We define a cost function:

ξ =
(
τ̄12 −∆p̄T

12u
)2

+ · · · +
(

τ̄(M−1)M −∆p̄T
(M−1)Mu

)2

with τ̄ml = τml/fs and ∆p̄ml = (pm − pl)/vsound

We then find u that minimizes ξ by making ∇uξ = 0:

Au = b

where A = ∆p̄12∆p̄T
12 + · · · +∆p̄(M−1)M∆p̄T

(M−1)M

and b = τ̄12∆p̄12 + · · · + τ̄(M−1)M∆p̄(M−1)M

And this unit vector is given as u =





ux
uy
uz



 = A−1b
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Azimuth and elevation

Knowing u and also the fact that it corresponds to




sin θ cosφ

sin θ sinφ

cos θ



, · · ·

· · · we compute the azimuth:

φ = arctan
uy
ux

And the elevation:

elevation = 90◦ − θ = 90◦ − arccosuz
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Last slide ,

Thank you!
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