
Multichannel fast QRD-RLS adaptive

filtering: block-channel and sequential-channel

algorithms based on updating backward

prediction errors

A. L. L. Ramos a, J. A. Apolinário Jr. a,∗, and S. Werner b

aInstituto Militar de Engenharia

Department of Electrical Engineering

Praça General Tibúrcio, 80 – Urca

22290-270 Rio de Janeiro, RJ – Brazil

bHelsinki University of Technology

Signal Processing Laboratory

P.O. Box 3000

FIN-02015, TKK – Finland

Abstract

Fast QR decomposition recursive least-squares (FQRD-RLS) algorithms are well
known for their fast convergence and reduced computational complexity. A consid-
erable research effort has been devoted to the investigation of single-channel versions
of the FQRD-RLS algorithms, while the multichannel counterparts have not received
the same attention. The goal of this paper is to broaden the study of the efficient
and low complexity family of multi-channel RLS adaptive filters, and to offer new
algorithm options. We present a generalized approach for block-type multichannel
FQRD-RLS (MC-FQRD-RLS) algorithms that include both cases of equal and mul-
tiple order. We also introduce new versions for block-channel and sequential-channel
processing, details of their derivations, and a comparison in terms of computational
complexity. The proposed algorithms are based on the updating of backward a priori

and a posteriori error vectors, which are known to be numerically robust.

Key words: Adaptive systems, Fast algorithms, QR decomposition, Multichannel
algorithms, Order recursive algorithms.

∗ Corresponding author.
Email addresses: alopesramos@yahoo.com.br (A. L. L. Ramos),

apolin@ieee.org (J. A. Apolinário Jr.), stefan.werner@tkk.fi (S. Werner).

Preprint submitted to Signal Processing (final) 24 January 2007

1 Introduction

Multichannel signal processing can be found in a large variety of applica-
tions such as color image processing, multi-spectral remote sensing imagery,
biomedicine, channel equalization, stereophonic echo cancellation, multidi-
mensional signal processing, Volterra-type nonlinear system identification, and
speech enhancement [1,2].

When considering multichannel fast converging adaptive implementations, it
is many times possible to apply standard single-channel algorithms directly to
the multichannel problem, e.g., the numerically stable QR decomposition re-
cursive least-squares (QRD-RLS) algorithm. Although such a solution would
present fast convergence, it may be computationally prohibitive due a possible
large number of coefficients. In order to reduce computational complexity, it
is necessary to derive stable algorithms, specially tailored for the multichan-
nel setup. Multichannel adaptive filtering algorithms can be derived using two
distinct approaches: 1) block-type approach where the channels are processed
simultaneously, and; 2) sequential approach that processes each channel indi-
vidually [3].

In this paper, we are concerned with so-called multichannel fast QR decom-
position RLS (MC-FQRD-RLS) algorithms. The MC-FQRD-RLS algorithms
exhibit RLS convergence and numerical robustness at a lower complexity than
the QRD-RLS algorithm which can be used in a single-channel adaptive filter,
a multi-channel adaptive filter, or an adaptive linear combiner. The main idea
of MC-FQRD-RLS algorithms is to exploit the underlying time-shift structure
of the input-signal vector of each channel in order to replace matrix update
equations with vector update equations. By doing so, the computational com-
plexity can be reduced from O(P 2) of the standard QRD-RLS implementa-
tion to O(M cP), where P is the total number of filter coefficients, M is the
number of channels, and c is an integer constant that depends on the algo-
rithm approach taken. To be more explicit, the computational complexities
associated with the block-channel and the sequential-channel approaches are
O(M2P) and O(MP), respectively. That is, taking a sequential-channel ap-
proach will render the lowest computational complexity. The main advantage
of the block-channel approach is that these algorithms favor parallel processing
implementations.

A classification of single-channel FQRD-RLS algorithms is shown in Table 1 (it
will be later extended to the multichannel case). The algorithm classification
is made according to which error vector is updated (a priori or a posteriori)
and the type of prediction used (forward or backward). A unified framework
for fixed-order block-channel MC-FQRD-RLS algorithms was addressed in [4],
where two new block-channel versions were introduced. The basic a posteriori

2

and a priori versions based on updating the backward prediction errors were
proposed in [5] and [6], respectively. In [5], a transversal block-channel version
and a sequential-channel approach for the same algorithm were presented. In
[6], both block-channel and sequential-channel a priori versions were treated
in detail and three new algorithms were introduced for the cases of equal and
unequal channel orders: an order recursive version for the block-channel case,
a transversal version, and an order recursive version for the sequential-channel
case.

This work introduces new MC-FQRD-RLS algorithms based on the updating
of a posteriori backward prediction errors, which have a lower computational
complexity than their a priori counterparts. In particular, we present a general
approach for deriving block-channel based multichannel multiple-order fast
QRD-RLS algorithms. Adopting the same structure of the input signal vector
from [6], two new block-channel algorithms (a priori and a posteriori versions)
are introduced. The former algorithm has, to the authors’ knowledge, not been
published in literature. The a posteriori version bears similarities with the
algorithm in [3], however, derived from an input signal matrix with a different
structure. The results obtained are then particularized for the equal channel
order case which enables us to derive a new order-recursive version based on
the updating of the a posteriori backward error vector. Finally, we introduce
the a posteriori counterparts of the a priori transversal and order-recursive
multiple order sequential-channel versions of [6]. A classification of the MC-
FQRD-RLS algorithm is then provided which include all known algorithms.

The paper is organized as follows. The basic equations of the multichannel
QRD-RLS algorithms are presented in Section 2. Section 3 provides the de-
tails of the alternative input vector used in [6] that facilitates the derivation
of algorithms for the case of channels with multiple orders. Section 4 presents
the general framework for block-channel algorithms, and two extended block-
channel algorithms are introduced in Section 5. The new block-channel order-
recursive version for the equal channel order case is derived in Section 6.
Section 7 presents the new transversal and order-recursive sequential-channel
counterparts of the algorithms presented in [6]. Simulation results and compu-
tational complexity issues are discussed in Section 8. Conclusions are presented
in Section 9.

Table 1
Classification of single-channel FQRD-RLS algorithms.

Error Prediction

type forward backward

a posteriori FQRD POS F [7] FQRD POS B [8,9]

a priori FQRD PRI F [10] FQRD PRI B [11,12]

3

2 Fundamentals

The multichannel algorithms of the fast QRD-RLS family use the weighted
least-squares (WLS) objective function defined as [13]

ξ(k) =
k∑

i=0

λk−i[d(i) − xT
P (i)wP (k)]2 = eT (k)e(k) (1)

where e(k) is the weighted error vector of the form

e(k) =

d(k)

λ1/2d(k − 1)
...

λk/2d(0)

−

xT
P (k)

λ1/2xT
P (k − 1)
...

λk/2xT
P (0)

wP (k)

=d(k) − XP (k)wP (k) (2)

where

xT
P (k) =

[
xT

k xT
k−1 · · · xT

k−N+1

]
(3)

and xT
k = [x1(k) x2(k) · · · xM(k)] is the input signal vector at instant

k. Note that N is defined as the number of filter coefficients per channel, M
is the number of input channels, and wP (k) is the P × 1 coefficient vector at
time instant k, P = MN being the total number of elements for the case of
channels with equal orders.

Let the lower triangular matrix UP (k) denote the Cholesky factor of
XT

P (k)XP (k) obtained by applying the Givens rotation matrix QP (k) onto
XP (k). The rotated error eq(k) can be expressed as follows.

eq(k) = QP (k)e(k) =

eq1(k)

eq2(k)

 =

dq1(k)

dq2(k)

 −

0

UP (k)

 wP (k) (4)

Due to the unitary property of QP (k), minimizing ‖eq(k)‖2 is identical to
minimizing the cost function of (1). Therefore, Equation (1) is minimized by
choosing wP (k) in (4) such that dq2(k) − UP (k)wP (k) equals zero, i.e.,

wP (k) = U−1
P (k)dq2(k) (5)

To allow a compact formulation of the multiple-order case (different channel

4

orders), an alternative structure of the input signal vector will be defined in
the next section.

3 Alternative definition of the input vector

For the case of unequal channel orders, let N1, N2, · · · , NM be the number
of taps in the tapped delay–lines of each of the M channels and, hereafter,
P =

∑M
r=1 Nr the overall number of taps. Without loss of generality, we assume

N1 ≥ N2 ≥ · · · ≥ NM .

Fig. 1 shows an example of a multichannel scenario with M = 3 channels of
unequal orders where N1 = 4, N2 = 3, N3 = 2, i.e., P = 4 + 3 + 2 = 9. The
following approach to construct the input vector, xP (k), was considered in
[6] 1 : the first N1 − N2 samples from the first channel are chosen to be the
leading elements of xP (k), followed by N2 −N3 pairs of samples from the first
and second channels, followed by N3 −N4 triples of samples of the first three
channels and so on till the NM − NM+1 M–tuples of samples of all channels.
It is assumed that NM+1 = 0.

The procedure detailed above gives rise to two distinct ways of obtaining the
expanded input vector, xP+M(k + 1). The first approach is to shift in all
the new samples from the different channels at the same time and process all
channels simultaneously. The second approach is to shift in a sample from each
channel at a time and progress in a recursive manner from the first to the last
channel. The first approach leads to block-type multichannel algorithms which
are studied in Sections 4–6. The second approach results in various sequential-
type multichannel algorithms like the one derived in Section 7. Before deriving
new block-channel and sequential-channel algorithms, we give the necessary
details related to the input data vector for each case. Next, we consider the
block-channel input vector followed by the one used for the sequential-channel
approach.

3.1 Input vector for block-type multichannel algorithms

For the case of block-channel multichannel algorithms, the expanded input
vector, xP+M(k + 1), is given by

xT
P+M(k + 1) = [x1(k + 1) x2(k + 1) · · · xM (k + 1) xT

P (k)
]
P (6)

1 It is worth mentioning that another approach dealing with unequal-number-of-

taps can be found in [14].

5

where P = P MP M−1 · · ·P 1 is a product of M permutation matrices that
moves the most recent sample of the ith channel (for i = 1, 2, · · · , M) to
position pi in vector xP+M(k + 1), where

pi =
i−1∑

r=1

r(Nr − Nr+1) + i, i = 1, 2, · · · , M. (7)

After the above process is terminated, we have xT
P+M(k + 1) = [xT

P (k +
1) x1(k − N1 + 1) · · · xM(k − NM + 1)], such that the first P elements
of xT

P+M(k + 1) provide the input vector for the next iteration. In order to
illustrate the role of the permutation matrix P, let us return to the example
depicted in Fig. 1. In this example, the expanded input vector xP+M(k +1) is
obtained by inserting the new samples in positions p1 = 1, p2 = 3, and p3 = 6,
respectively, i.e.,

P T

x1(k + 1)

x2(k + 1)

x3(k + 1)

xP (k)

= P T

x1(k + 1)

x2(k + 1)

x3(k + 1)

x1(k)

x1(k − 1)

x2(k)

x1(k − 2)

x2(k − 1)

x3(k)

x1(k − 3)

x2(k − 2)

x3(k − 1)

=

x1(k + 1)

x1(k)

x2(k + 1)

x1(k − 1)

x2(k)

x3(k + 1)

x1(k − 2)

x2(k − 1)

x3(k)

x1(k − 3)

x2(k − 2)

x3(k − 1)

=

xP (k + 1)

x1(k − 3)

x2(k − 2)

x3(k − 1)

. (8)

3.2 Input vector for sequential-type multichannel algorithms

For the sequential-channel case, the extended input vector, xP+M(k + 1), is
constructed from xP (k) in M successive steps as

6

Z
−1

x x

x

x

x

x

x

x

x

x

(k)

(k)

(k)

(k)

(k−1)

(k)

(k−2)

(k−1)

(k)

(k−3)

(k−2)

(k−1)

x

x

1

2

3

1

1

1

1

3

2

3

2

2

1

3 4

2

(k)Px

 N − N samples from

N − N triplets of
samples from the
first, second, and

2

third channels.

Z
−1

Z
−1

Z

Z
−1

Z
−1

−1

N 3 pairs of samples
 from the first and
 second channels.

 − N

 the first channel.

Fig. 1. Obtaining the input vector.

xT
P+1(k + 1)=

[
x1(k + 1) xT

P (k)
]

(9)

xT
P+i(k + 1)=

[
xi(k + 1) xP+i−1T (k+1)

]
P i (10)

where P i is a permutation matrix which takes the most recent sample xi(k+1)
of the ith channel to position pi (see Eq. (7)) and left shifts the first pi − 1
elements of xT

P+i−1(k+1). After processing all M channels, the first P elements
of the updated extended input vector constitute the input vector of the next
iteration, i.e., xT

P+M(k+1) = [xT
P (k+1) x1(k−N1 +1) · · · xM(k−NM +

1)].

4 Block-type Multichannel Fast QRD-RLS Algorithms

This section presents a general framework for block-type multichannel algo-
rithms using the extended input signal vector xP+M(k +1) defined in Subsec-
tion 3.1. Algorithms that can be derived using the formulation provided here
are presented in the following sections.

7

The expanded input data matrix X̄P+M(k + 1) can be defined as 2

X̄P+M(k + 1) =

xT
P+M(k + 1)

λ1/2xT
P+M(k)
...

λ(k+1)/2xT
P+M(0)

0(M−1)×(P+M)

=

Df (k + 1)
XP (k)

0T

0(M−1)×(P+M)

P (11)

In order to triangularize (11) and obtain UP+M(k + 1), three sets of Givens
rotation matrices Q(k), Qf(k+1), and Q′

f(k+1) are needed [5,6,15]. The role
of each matrix in the triangularization process is illustrated in the following
equation.

Q′
f(k + 1)Qf (k + 1)Q(k)X̄P+M(k + 1) =

=Q′
f(k + 1)Qf(k + 1)

Efq1(k + 1) 0

Dfq2(k + 1) UP (k)

λ(k+1)/2xT
0 0T

0(M−1)×(P+M)

P

= Q′
f(k + 1)

0 0

Dfq2(k + 1) UP (k)

Ef(k + 1) 0

P (12)

In (12), Q(k) contains QP (k) as a submatrix which triangulates XP (k), gen-
erating UP (k). Matrix Qf (k + 1) is responsible for the zeroing of matrix
Efq1(k + 1). Note that, when working with fixed-order (or fixed-dimension,
as opposed to the ever increasing dimension of QP (k), for instance), this is
equivalent to annihilating eT

fq1(k +1), the first row of Efq1(k +1), against the

diagonal of λ1/2Ef (k), generating Ef (k + 1). This is shown in (14).

From (12) and using the fixed-order matrices Qθ(k) embedded in QP (k) and
Qf(k +1) embedded in Qf (k +1), one can, after some algebraic work, obtain

2 Note that X̄P+M (k+1) was formed by adding M−1 rows of zeros to XP+M (k+1)
such that UP+M (k +1) has the correct dimension in (16), i.e., (P +M)× (P +M).

8

Q (k+1)
θ f
’

III III

P

Fig. 2. Obtaining the lower triangular UP+M (k + 1).

the following equations.

eT
fq1(k + 1)

Dfq2(k + 1)

 = Qθ(k)

xT
k+1

λ1/2Dfq2(k)

 (13)

0T

Ef(k + 1)

 = Qf(k + 1)

eT
fq1(k + 1)

λ1/2Ef(k)

 (14)

In (13), xT
k+1 = [x1(k + 1) x2(k + 1) · · ·xM(k + 1)] is the forward reference

signal and eT
fq1(k + 1) is the rotated forward error; in (14), Ef (k + 1) is the

M × M forward prediction error covariance (lower-triangular) matrix.

Removing the ever-increasing null section in (12) and using the fixed-order
matrix Q′

θf(k + 1) embedded in Q′
f (k + 1), we obtain

ŪP+M(k + 1) = Q′
θf(k + 1)

Dfq2(k + 1) UP (k)

Ef(k + 1) 0

 P . (15)

Note that the permutation matrix P in (15) prevents a direct annihilation

of the first M columns — corresponding to matrix Dfq2(k + 1) = [d
(1)
fq2(k +

1) d
(2)
fq2(k + 1) · · · d

(M)
fq2 (k + 1)] — against the anti-diagonal of Ef(k + 1)

using the set of Givens rotations Q′
θf(k + 1) = Q′

θf
(M)

(k + 1) · · ·Q′
θf

(2)
(k +

1)Q′
θf

(1)
(k + 1). Also from (15) it can be seen that this permutation factor,

P = P MP M−1 · · ·P 1, will right-shift the first M columns to position pi, for
i = M to 1, in this order. Thus, only the first P + i − pi elements of each
d

(i)
fq2(k + 1) will be rotated against the anti-diagonal of Ef(k + 1) using the

set of Givens rotations in Q′
θf (k + 1). It is straightforward to see that when

the position pi = i, the corresponding permutation factor P i degenerates to
an identity matrix. If this is true for all M channels, this formulation leads to
the equal-order algorithms of [5,6,4,15].

9

The overall process is illustrated in Fig. 2 for a three-channel case with the
first two channels having equal length, i.e., p1 = 1 and p2 = 2; consequently,
P 1 = P 2 = I. Part one of this figure shows the initial state as in (15) but with
reduced dimension, and the operations involving matrices Q′

θf(k + 1) and P

are illustrated in parts two and three, respectively. As we can see, the resulting
matrix ŪP+M(k +1) in (15) does not have the desired lower triangular shape.
Hence, another permutation factor to up-shift the (P + M − i + 1)th row to
the (P + M − pi + 1)th position is needed leading to

UP+M(k + 1) = PQ′
θf(k + 1)

Dfq2(k + 1) UP (k)

Ef(k + 1) 0

 P (16)

where the permutation matrix P = P 1P 2 · · ·P M , P i is responsible for up-
shifting the P + M − i + 1 row to the P + M − pi + 1 position.

From (16), it is possible to obtain

[UP+M(k + 1)]−1 =P T

×

0 E−1
f (k + 1)

U−1
P (k) −U−1

P (k)Dfq2(k + 1)E−1
f (k + 1)

 Q′T

θf(k + 1)P
T

(17)

which will be used in the next section to derive the a priori and the a posteriori
versions of the algorithm.

Also from (16), we can write

0

∗

E0
f(k + 1)

= Q′
θf(k + 1)

Dfq2(k + 1)

Ef(k + 1)

 (18)

where E0
f(k + 1) is the zero-order error covariance matrix 3 . The asterisk ∗ is

used to denote possible non-zero elements according to the process explained
above.

3 The term was coined due to the fact that, in the single channel case, the corre-

sponding scalar ‖e
(0)
f (k + 1)‖ =

∑k+1
i=0 λ(k+1−i)x2(i) is the norm of the zero-order

forward prediction error which is an estimate (albeit biased) of the input variance.
Also note that, for zero-order prediction, the forward prediction error vector equals

its backward counterpart, and ‖e
(0)
f (k)‖ = ‖e

(0)
b (k)‖.

10

5 A PRIORI and A POSTERIORI Versions

The a priori and the a posteriori versions of the block-channel algorithm in
Section 4 are based on updating expanded vectors aP+M(k+1) or fP+M(k+1)
given by

aP+M(k + 1)= λ−1/2U−T
P+M(k)xP+M(k + 1), and (19)

fP+M(k + 1)= U−T
P+M(k + 1)xP+M(k + 1). (20)

Vectors aP (k + 1) and fP (k + 1) are contained within the matrix Qθ(k + 1)
and are also known as the a priori and the a posteriori backward error vectors,
respectively [6,5].

From Equations (6), (17), and (19), we can write

aP+M(k + 1) = Pλ−1/2Q′
θf(k)

aP (k)

r(k + 1)

 (21)

where

r(k + 1)= λ−1/2E−T
f (k)

[
xk+1 − W T

f (k)xP (k)
]

= λ−1/2E−T
f (k)e′

f(k + 1) (22)

with e′
f (k + 1) being the a priori forward error vector and

W f(k) = U−1
P (k − 1)Dfq2(k) (23)

is a matrix containing the coefficient vectors of the forward prediction problem.

Likewise, combining Equations (6), (17), and (20), we have

fP+M(k + 1) = PQ′
θf(k + 1)

fP (k)

p(k + 1)

 (24)

where

p(k + 1)= E−T
f (k + 1)

[
xk+1 − W T

f (k + 1)xP (k)
]

= E−T
f (k + 1)ef(k + 1) (25)

with ef (k + 1) being the a posteriori forward error vector.

11

The matrix inversion operation in (22) can be avoided using the recursive
solution presented in [6] (see also Table 3). To solve for p(k + 1) in Equation
(25), we can use the the following equation (see Appendix A for the proof).

Qf(k + 1)

γ(k)

0

 =

∗

p(k + 1)

 (26)

The rotation angles in matrix Qθ(k) are obtained using

Qθ(k + 1)

1

0

 =

γ(k + 1)

fP (k + 1)

 (27)

for the a posteriori case, and

1/γ(k + 1)

0

 = Qθ(k + 1)

1

−aP (k + 1)

 (28)

for the a priori case.

Finally, the joint process estimation is performed as

eq1(k + 1)

dq2(k + 1)

 = Qθ(k + 1)

d(k + 1)

λ1/2dq2(k)

 (29)

and the a priori error is given by [5,6]

ε(k + 1) = eq1(k + 1)/γ(k + 1). (30)

The a posteriori and a priori algorithms are summarized in Tables 2 and 3,
respectively.

Remark 1 In [4], two a priori and two a posteriori block-channel MC-FQRD-
RLS algorithms were presented for the special case of M channels with equal
orders, i.e., Ni = N and P = MN . For this particular case, the last M el-
ements of vectors aP+M(k + 1) and fP+M(k + 1) are known prior to their
updating through Equations (19) and (20), respectively. However, this prior
knowledge is no longer available for the general case of multiple order chan-
nels. If the algorithms of Tables 2 and 3 are constrained to have equal channel
orders, matrices P and P would be identities. Then, the a priori and a pos-
teriori algorithms presented in this section would reduce to those of [4].

12

Table 2
The MCFQRD POS B Equations [4,5,16].

For each k, do

{ 1. Obtaining Dfq2(k + 1) and efq1(k + 1)
 eT

fq1(k + 1)

Dfq2(k + 1)

 = Qθ(k)

 xT

k+1

λ1/2Dfq2(k)

 (13)

2. Obtaining Ef (k + 1) and Qf (k + 1)
 0T

Ef (k + 1)

 = Qf (k + 1)

 eT

fq1(k + 1)

λ1/2Ef (k)

 (14)

3. Obtaining p(k + 1)
 ∗

p(k + 1)

 = Qf (k + 1)

 γ(k)

0

 implements (25)

4. Obtaining Q′
θf (k + 1)

0

∗

E0
f (k + 1)

 = Q′

θf (k + 1)

 Dfq2(k + 1)

Ef (k + 1)

 (18)

5. Obtaining fP (k + 1)

fP+M(k + 1) = PQ′
θf (k + 1)

 fP (k)

p(k + 1)

 (24)

6. Obtaining Qθ(k + 1) and γ(k + 1)

Qθ(k + 1)

 1

0

 =

 γ(k + 1)

fP (k + 1)

 (27)

7. Joint Estimation
 eq1(k + 1)

dq2(k + 1)

 = Qθ(k + 1)

 d(k + 1)

λ1/2dq2(k)

 (29)

8. Obtaining the a priori error

ε(k + 1) = eq1(k + 1)/γ(k + 1) (30)

}

6 Order Recursive Block-type
Multichannel Fast QRD-RLS Algorithm

In this section, we derive an order recursive version of the a posteriori algo-
rithm of Table 2 for the special case when all M channels have equal orders,

13

Table 3
The MCFQRD PRI B Equations [4,6,16].

For each k, do

{ 1. Obtaining Dfq2(k + 1) and efq1(k + 1)
 eT

fq1(k + 1)

Dfq2(k + 1)

 = Qθ(k)

 xT

k+1

λ1/2Dfq2(k)

 (13)

2. Obtaining Ef (k + 1) and Qf (k + 1)
 0T

Ef (k + 1)

 = Qf (k + 1)

 eT

fq1(k + 1)

λ1/2Ef (k)

 (14)

3. Obtaining r(k + 1)
 ∗

0

 = Qf (k + 1)

 1/γ(k)

−r(k + 1)

 implements (22)

4. Obtaining aP (k + 1)

aP+M(k + 1) = PQ′
θf (k + 1)

 aP (k)

r(k + 1)

 (21)

5. Obtaining Q′
θf (k + 1)

0

∗

E0
f (k + 1)

 = Q′

θf (k + 1)

 Dfq2(k + 1)

Ef (k + 1)

 (18)

6. Obtaining Qθ(k + 1) and γ(k + 1)
 1/γ(k + 1)

0

 = Qθ(k + 1)

 1

−aP (k + 1)

 (28)

7. Joint Estimation
 eq1(k + 1)

dq2(k + 1)

 = Qθ(k + 1)

 d(k + 1)

λ1/2dq2(k)

 (29)

8. Obtaining the a priori error

ε(k + 1) = eq1(k + 1)/γ(k + 1) (30)

}

i.e., Ni = N . The a priori counterpart of the algorithm presented here can be
found in [6].

For the order recursive version, the quantities Dfq2(k), dq2(k), and fP (k) are
split up into N blocks. For matrix Dfq2(k), we have

14

Dfq2(k) =

D
(1)
fq2(k)
...

D
(N)
fq2 (k)

(31)

where D
(i)
fq2(k) has dimensions M × M .

Taking into consideration the block-channel structure of D
(i)
fq2(k) and that

Ni = N (equal orders), Equation (18) can be rewritten as

0M(N−i−1)×M

0M(i−1)×M

E
(i−1)
f (k + 1)

 = Q′

θf
(N−i+1)

(k + 1)

0M(N−i)×M

D
(N−i+1)
fq2 (k)

0M(i−1)×M

E
(i)
f (k + 1)

(32)

for i = N, N − 1, · · · , 1.

With the order-recursive formulation in Equation (32), matrix Q′
θf(k + 1) in

Equation (18) will be equal to

Q′
θf(k + 1)= Q′

θf
(N)

(k + 1)Q′
θf

(N−1)
(k + 1) · · · Q′

θf
(1)

(k + 1). (33)

Equation (32) can also be performed in a forward manner, i.e., for i = 1, 2, · · · , N .
This property is the key to derive the lattice version of the algorithm. Recalling
that Q′

θf(k) is used to update fP (k), we can rewrite Equation (24) as

0M(N−i)

f (N−i+1)(k + 1)

0M(i−1)

pi−1(k + 1)

= Q′
θf

(N−i+1)
(k + 1)

0M(N−i)

f (N−i+2)(k)

0M(i−1)

pi(k + 1)

(34)

for i = 1, 2, · · · , N .

Using the last two equations, steps 4 and 5 of the algorithm in Table 2 can
now be carried out in a forward manner. The rotation angles Q

(i)
θ (k + 1) are

obtained through

Q
(i)
θ (k + 1)

γi−1(k + 1)

0

 =

γi(k + 1)

f (N−i+2)(k + 1)

 (35)

15

and the joint estimation is performed according to

e
(i)
q1 (k + 1)

d
(N−i+1)
q2 (k + 1)

 = Q

(N−i+1)
θ (k + 1)

e
(i)
q1 (k + 1)

λ1/2d
(N−i+1)
q2 (k)

 . (36)

In order to adjust the equations of steps 1 to 3 of the algorithm in Table 2 to
this formulation, it suffices to observe that they can be split up into M × M
blocks that will be processed in an order-recursive way. Table 4 presents details
of the lattice (or order recursive) version of the Block-type Multichannel Fast
QRD-RLS algorithm based on a posteriori backward prediction errors [15].

16

Table 4
The Lattice Block-channel MCFQRD POS B Algorithm [15].

Initializations:

fP (0) = 0; Dfq2(0) = 0; γ0(0) = 1; dq2(0) = 0; Ei
f (0) = µI,

µ = small number, all cosines = 1, and all sines = 0;

For each k, do

{ ẽ
(0)
fq1

T
(k + 1) = xT

k+1

A. Obtaining E
(0)
f

(k + 1) and Q
(0)
f (k + 1)[

0T

E
(0)
f

(k + 1)

]
= Q

(0)
f (k + 1)

[
ẽ
(0)
fq1

T
(k + 1)

λ1/2E
(0)
f

(k)

]

B. Obtaining p0(k + 1)[
∗

p0(k + 1)

]
= Q

(0)
f (k + 1)

[
γ0(k)

0

]

f(N+1)(k + 1) = p0(k + 1); γ0(k + 1) = 1;

eq1(k + 1) = d(k + 1)

for i = 1 : N

{ 1. Obtaining D
(N−i+1)
fq2

(k + 1) and e
(i)
fq1

(k + 1)[
ẽ
(i)
fq1

T
(k + 1)

D
(N−i+1)
fq2

(k + 1)

]
= Q

(i)
θ

(k)

[
ẽ
(i−1)
fq1

T
(k + 1)

λ1/2D
(N−i+1)
fq2

(k)

]

2. Obtaining E
(i)
f

(k + 1)[
0T

E
(i)
f

(k + 1)

]
= Q

(i)
f (k + 1)

[
ẽ
(i)
fq1

T
(k + 1)

λ1/2E
(i)
f

(k)

]

3. Obtaining pi(k + 1)[
∗

pi(k + 1)

]
= Q

(i)
f (k + 1)

[
γi(k)

0

]

4. Obtaining Q′
θf

(N−i+1)(k + 1)

0M(N−i−1)×M

0M(i−1)×M

E
(i−1)
f

(k + 1)

 = Q′

θf
(N−i+1)(k + 1)

0M(N−i)×M

D
(N−i+1)
fq2

(k)

0M(i−1)×M

E
(i)
f

(k + 1)

5. Obtaining f(N−i+1)(k + 1)

0M(N−i)

f(N−i+1)(k + 1)

0M(i−1)

pi−1(k + 1)

= Q′
θf

(N−i+1)(k + 1)

0M(N−i)

f(N−i+2)(k)

0M(i−1)

pi(k + 1)

6. Obtaining Q
(i)
θ

(k + 1) and γi(k + 1)

Q
(i)
θ

(k + 1)

[
γi−1(k + 1)

0

]
=

[
γi(k + 1)

f(N−i+2)(k + 1)

]

7. Joint Estimation[
e
(i)
q1 (k + 1)

d
(N−i+1)
q2 (k + 1)

]
= Q

(i)
θ

(k + 1)

[
e
(i−1)
q1 (k + 1)

λ1/2d
(N−i+1)
q2 (k)

]

}

8. Obtaining the a priori error

ε(k + 1) = eq1(k + 1)/γ(k + 1)

}

17

7 Sequential-type Multichannel Fast QRD-RLS Algorithms

So far we have been concerned with the derivation of block-type MC-FQRD-
RLS algorithms. This section considers algorithms that process the channels
sequentially. In the following, we derive the a posteriori counterpart of the
transversal and order recursive algorithms presented in [6].

The input data matrices used in sequential-channel algorithms are defined as

XP+i(k) =

xT
P+i(k)

λ1/2xT
P+i(k − 1)

...

λk/2xT
P+i(0)

, i = 1, 2, · · · , M. (37)

where vector xP+i(k) is the extended input vector defined in Equation (10).

If matrix UP+i(k) is used to denote the Cholesky factor of XT
P+i(k)XP+i(k),

we can, in a similar manner as for the block-channel algorithms, define the a
posteriori backward error vector, fP+i(k + 1), as

fP+i(k + 1) = U−T
P+i(k + 1)xP+i(k + 1), for i = 1, 2, · · · , M. (38)

From (38) and the definition of the input vector xP+i in Subsection 3.2, we
can write

fP+M(k + 1)=

f (M)(k + 1)

fP (k + 1)

 (39)

where f (M)(k +1) is a vector containing the first M elements of fP+M(k +1).

The updating of fP+i(k + 1) is accomplished in M forward steps at each in-
stant k:

fP (k) → fP+1(k + 1) → · · · → fP+M(k + 1)

18

7.1 Triangularization of the information matrix

Equation (37) suggests that the updating of the information matrix is per-
formed in M forward steps for each iteration.

7.1.1 First step (i = 1)

XP+1(k) can be defined as

XP+1(k) =

 d

(1)
f (k)

XP (k − 1)

0T

 (40)

where d
(1)
f1 (k) = [x1(k) λ1/2x1(k − 1) · · · λk/2x1(0)].

Let Q
(1)
P (k) be the orthogonal matrix associated with the Cholesky factor

UP (k − 1) of matrix XT
P (k − 1)XP (k − 1). Then, from (40), we can write

 Q

(1)
P (k) 0

0 I1×1

 d

(1)
f (k)

XP (k − 1)

0T

 =

e
(1)
fq1(k) 0

d
(1)
fq2(k) UP (k − 1)

λk/2x1(0) 0T

 (41)

To complete the triangularization process of XP+1(k) leading to UP+1(k), we
premultiply (41) by two other Givens rotation matrices as follows

 0

UP+1(k)

 = Q′

f
(1)

(k)Qf
(1)(k)

e
(1)
fq1(k) 0

d
(1)
fq2(k) UP (k − 1)

λk/2x1(0) 0T

= Q′
f
(1)

(k)

0 0

d
(1)
fq2(k) UP (k − 1)

e
(1)
fP (k) 0T

 (42)

In the previous equation, Qf
(1)(k) is the orthogonal matrix zeroing e

(1)
fq1(k)

generating e
(1)
fP (k). Matrix Q′

f
(1)

(k) completes the triangularization process by

19

zeroing d
(1)
fq2(k) from (42) in a top down procedure against e

(1)
fP (k). Removing

the resulting null section in the upper part of (42) gives

UP+1(k) = Q′
θf

(1)
(k)

d
(1)
fq2(k) UP (k − 1)

e
(1)
fP (k) 0T

 . (43)

From (43), we get the following relation that is useful for the updating of
fP (k):

[UP+1(k + 1)]−1 =

0T 1

e
(1)
fP

(k+1)

U−1
P (k) − 1

e
(1)
fP

(k+1)
U−1

P (k)d
(1)
fq2(k + 1)

[
Q′

θf
(1)

(k + 1)
]T

(44)

Also from (43), we see that Q′
θf

(1)
(k) is the Givens rotation matrix responsible

for zeroing d
(1)
fq2(k) against e

(1)
fP (k), i.e., we have

0

e
(1)
f0 (k + 1)

 = Q′

θf
(1)

(k + 1)

d
(1)
fq2(k + 1)

e
(1)
fP (k + 1)

 . (45)

A recursive expression for fP+1(k + 1) is obtained by using (44) and (9) in
(20):

fP+1(k + 1) = Q′
θf

(1)
(k + 1)

fP (k)

p(1)(k + 1)

 (46)

where

p(1)(k + 1) =
eP

(1)(k + 1)

|e
(1)
fP (k + 1)|

(47)

with eP
(1)(k + 1) denoting the a posteriori error of the forward prediction of

the first channel, and |e
(1)
fP

(k + 1)| is given by

|e
(1)
fP

(k + 1)| =

√(
λ1/2|e

(1)
fP

(k)|
)2

+ |(e
(i)
fq1P

(k + 1)|2. (48)

20

The updating of d
(1)
fq2(k) is performed according to

ẽ
(1)
fq1(k + 1)

d
(1)
fq2(k + 1)

 = Q

(0)
θP

(k)

x1(k + 1)

λ1/2d
(1)
fq2(k)

 . (49)

Matrix Q
(1)
θP+1

(k + 1), needed in the next steps, is obtained from

Q
(1)
θP+1

(k + 1)

1

0

 =

γ
(i)
P+1(k + 1)

fP+1(k + 1)

 . (50)

7.1.2 Following steps (i > 1)

The input information matrix XP+i(k) is related to XP+i−1(k) according to

XP+i(k) =

xi(k)

λ1/2xi(k − 1)
...

λk/2xi(0)

XP+i−1(k)

P i. (51)

As in the first step, matrix XP+i(k) must be triangularized to obtain UP+i(k)
(Cholesky factor of XT

P+i(k)XP+i(k)). This process is detailed in the follow-
ing. Let QθP+i−1

(k) denote the orthogonal matrix associated with the QR
decomposition of XP+i−1(k). From (51), we can write

Q
(i)
f (k)

QP+i−1(k) 0

0T 1

XP+i(k)

0T

 =

Q
(i)
f (k)

e
(i)
fq1P+i−1

(k) 0

d
(i)
fq2(k) UP+i−1(k)

λk/2xi(0) 0T

P i =

0 0

d
(i)
fq2(k) UP+i−1(k)

e
(i)
fP+i−1

(k) 0T

P i.

(52)

Equation (52) is obtained by annihilating e
(i)
fq1P+i−1

(k) into the first element

of the last row of the matrix using an appropriate orthogonal matrix, Q
(i)
f (k),

and thereafter removing the resulting null section.

21

Q (k)
 (i)’

 f

I II III

Pi

Fig. 3. Obtaining the lower triangular factor UP+i(k).

As before, the existence of the permutation matrix P i in (52) prevents us from

directly annihilating d
(i)
fq2(k) into e

(i)
fP+i−1

(k) to complete the triangularization
of matrix XP+i(k) (i.e., generating UP+i(k)). Fig. 3 illustrates the applica-
tion of the Givens rotations under these circumstances. This process can be
summarized as follows. The permutation factor, P i, right shifts d

(i)
fq2(k) to the

ith position as shown in the first part of the figure. Then, a set of P + i − pi

Given rotation matrices, Q′
θf

(i)
, are used to nullify the first P + i−pi elements

of d
(i)
fq2(k) against e

(i)
fP+i−1

(k) in a top down procedure. To obtain the desired
triangular structure, we need another permutation factor that moves the last
row of the matrix to the P − pi + 1 position, after downshifting the previous
P − pi rows. This permutation factor coincides with P i.

The lower triangular matrix UP+i(k), obtained as described above, is guaran-

teed to be positive definite if its diagonal elements and e
(i)
fP+i−1

(k) are positive.

Recalling that e
(i)
fP+i−1

(k) is the absolute value of the forward error, UP+i(k)
will be positive definite if it is initialized properly.

The procedure above can be written in a more compact form as

UP+i(k)= P iQ
′
θf

(i)
(k)

d
(i)
fq2(k) UP+i−1(k)

e
(i)
fP+i−1

(k) 0T

 P i. (53)

From (53), the following relation can be derived

[UP+i(k + 1)]−1 =P T
i

×

0T 1

e
(i)
fP+i−1

(k+1)

U−1
P+i−1(k + 1) −

U
−1

P+i−1(k+1)d
(i)

fq2(k+1)

e
(i)
fP+i−1

(k+1)

 × Q′T

θf

(i)
(k + 1)P T

i (54)

From (54), (10), and (38), we get the following recursive expression for fP+i(k+
1):

22

fP+i(k + 1) =P iQ
′
θf

(i)
(k + 1)

fP+i−1(k + 1)

p
(i)
P+i−1(k + 1)

(55)

where

p
(i)
P+i−1(k + 1)=

e
(i)
P+i−1(k + 1)

|e
(i)
fP+i−1

(k + 1)|
. (56)

The scalar quantity e
(i)
P+i−1(k + 1) is the a posteriori forward prediction error

for the ith channel, and |e
(i)
fP+i−1

(k + 1)| is given by

|e
(i)
fP+i−1

(k + 1)| =

√(
λ1/2|e

(i)
fP+i−1

(k)|
)2

+ |e
(i)
fq1P+i−1

(k + 1)|2 (57)

By carefully examining (55) and recalling the definitions of Q′
θf

(i)
(k + 1) and

P i, we can can conclude that the last pi − 1 elements of fP+i(k + 1) and
fP+i−1(k + 1) are identical. To see this, one just needs to remember that the

set of Givens rotations in Q′
θf

(i)
(k+1) are such that the next rotation matrix

always acts in a smaller portion of vector fP+i(k + 1) than the previous;
then P i shifts down the unchanged elements which will remain unchanged
(after the next channel is processed) and so on. This fact helps reducing the
computational burden on the updating process of this vector.

The updating of d
(i)
fq2(k) is performed according to

ẽ
(i)
fq1(k + 1)

d
(i)
fq2(k + 1)

 = Q

(i−1)
θP+i−1

(k + 1)

xi(k + 1)

λ1/2d
(i)
fq2(k)

 (58)

and the Givens rotations matrices QθP+i
(k + 1) needed in the next forward

step are obtained as follows.

Q
(i)
θP+i

(k + 1)

1

0

 =

γ
(i)
P+i(k + 1)

fP+i(k + 1)

 (59)

After the M-th channel is processed, the joint process estimation is performed
according to

eq1(k + 1)

dq2(k + 1)

 = Q

(0)
θ (k + 1)

eq1(k)

dq2(k)

 . (60)

23

Finally, emerging as a direct consequence of what was discussed so far, vari-
ables |e

(i)
fj

(k+1)| and p
(i)
j (k+1), in order to attain an order recursive structure

for the proposed algorithm, can be expressed as follows.

|e
(i)
fj

(k + 1)| =

√(
λ1/2|e

(i)
fj

(k)|
)2

+
(
e
(i)
fq1j

(k + 1)
)2

,

i = 1, 2, · · · , M

j = pi, · · · , P
(61)

and

p
(i)
j (k + 1) =

γ
(i−1)
j (k)e

(i)
fq1j

(k + 1)

|e
(i)
fj

(k + 1)|
,

j = pi, · · · , P

i = 1, 2, · · · , M
(62)

The transversal and order recursive algorithms are summarized in Appendix
B, Tables 7 and 8, where complex implementations were considered.

8 Simulation results and computational complexity

In this section, the performances of the proposed algorithm are tested in a
Volterra system identification setup. Thereafter, a discusssion of the compu-
tational complexity is provided together with a classification of all known
algorithms based on the updating of backward prediction errors.

8.1 The computer experiment

The performances of the MC-FQRD-RLS algorithms are evaluated in a nonlin-
ear system identification setup. This environment was chosen due to the very
high correlation among the element of the input signal vector of the adaptive
filter. The plant is a truncated second-order Volterra system [2] which can be
described as

d(k) =

L−1∑

n1=0

wn1x(k − n1) +

L−1∑

n1=0

L−1∑

n2=0

wn1,n2x(k − n1)x(k − n2) + ρ(k) (63)

Equation (63) can be easily reformulated as a multichannel problem with

24

M = L + 1 channels, where the most recent sample of the ith channel is

xi(k) =

x(k), i = 1

x(k)x(k − i + 2), i = 2, · · · , L + 1

and the i-th channel order is

Ni =

L, i = 1, 2

L − i + 2, i = 3, · · · , L + 1.

In our experiment, we used L = 4, and the power of the observation noise ρ(k)
was set such that the signal-to-noise ratio (SNR) was 60 dB. The input signal
x(k) applied to the Volterra structure is a white Gaussian noise sequence col-
ored by an AR filter with a single pole at 0.9. The conditioning number (eigen-
value spread) associated with the input vector presented to the multichannel
adaptive filter is above 3000 (highly correlated). The value of the forgetting
factor was λ = 0.98. Fig. 4 shows the learning curves (MSE estimated as an
average of 5000 independent runs) of the multiple order MC-FQRD-RLS al-
gorithms. The learning curve of the Normalized LMS (NLMS) algorithm [13],
with step-size µ = 0.5, was included for comparison. Although not appear-
ing in the figure, the convergence of the NLMS algorithms is reached around
k = 4500 (around k = 2500 in case µ = 1, with a higher misadjustment). All
QRD-RLS algorithms (including the multichannel cases), provided they have
equivalent initialization, present identical learning curves when compared to
the RLS algorithm; this is so because they minimize exactly the same cost
function.

Also an average of 100 independent runs of 2 × 104 samples each was carried
out. Along with the multiple order MCFQRD-RLS algorithms described in
this paper, the RLS [13] and the Inverse QRD-RLS [17,18] algorithms were
also used in this same experiment and, as expected, all algorithms presented
identical learning curves as in Fig. 4. Nevertheless, the RLS algorithm diverged
after approximately 1300 samples. Conversely, the proposed algorithms showed
no sign of divergence.

8.2 Computational complexity issues

In order to present the computational complexity of the multichannel algo-
rithms discussed in this work, let us first classify them in a comprehensive way.
Table 5 shows the classification of the multichannel algorithms based on back-
ward prediction errors: a posteriori or a priori, block-channel or sequential-
channel, equal or multiple order, and order recursive (lattice) or transversal.

25

100 200 300 400 500 600
−70

−60

−50

−40

−30

−20

−10

0

10

20

k

M
S

E
dB

MC Fast QRD−RLS algorithm

NLMS algorithm

Fig. 4. Learning curves.

Table 5
Classification of the MCFQRD-RLS algorithms.

Error Approach Structure References Algorithm

Type and Order

Equal Lattice [15] 1†

BLOCK-CHANNEL Order Transversal [5,4,15] 2†

Multiple Lattice — 3

MCFQR Order Transversal [16,3] 4†

POS B Equal Lattice Implicit in 7 [19] 5†

SEQUENTIAL-CHANNEL Order Transversal Sugested in [5] 6†

Multiple Lattice [19] 7†

Order Transversal [20,3] 8†

Equal Lattice [6] 9

BLOCK-CHANNEL Order Transversal [6,4,15] 10†

Multiple Lattice — 11

MCFQR Order Transversal [16] 12†

PRI B Equal Lattice Implicit in 15 [6] 13

SEQUENTIAL-CHANNEL Order Transversal Implicit in 16 [6] 14

Multiple Lattice [6] 15

Order Transversal [6] 16

† algorithms described in this work.

Following the classification on Table 5, Table 6 presents the computational
complexity in terms of number of multiplications, divisions, and square-roots
per sample for each algorithm. Note that for the case of single channel al-
gorithms, the computational complexities of Fast QRD-RLS algorithms are
lower by one order, O(P), than those of the conventional QRD-RLS and the
Inverse QRD-RLS algorithms, O(P 2).

From Table 6 we can observe the following: the sequential-channel lattice

26

Table 6
Computational complexity of Multichannel Fast QRD-RLS algorithms,
according to Table 5.

ALGORITHM MULTIPLICATIONS DIVISIONS SQUARED ROOTS

Algs. 2, 4 [5,4,16], 4NM2 + 11NM+ 2NM + 2M + N− 2NM + M + N−

summarized 5M2 + 6M + 7N− 2M
∑M

i=1
(pi − i) 2M

∑M

i=1
(pi − i)

in Table 2 (4M2 + 6M)
∑M

i=1
(pi − i)

Algs. 10, 12 [6,4,16], 4NM2 + 11NM+ 2NM + 3M + 2N− 2NM + M + N−

summarized 5M2 + 6M + 9N− 2M
∑M

i=1
(pi − i) + 2 2M

∑M

i=1
(pi − i)

in Table 3 (4M2 + 6M)
∑M

i=1
(pi − i)

Alg. 1 [15], sum- 4M3N + 17M2N+ 2M2N + 3MN + 2M M2N + 2MN + M

marized in Tab 4 12MN + 5M2 + 5M

Alg. 9 [6] 4M3N + 17M2N+ 2M2N + 5MN + 3M M2N + 2MN + M

14MN + 5M2 + 6M

Algs. 6, 8 [20], sum- 14NM + 13M+ 3NM + 4M− 2NM + 3M−

marized in Tab 7 5N − 9
∑M

i=1
pi 3

∑M

i=1
pi 2

∑M

i=1
pi

Algs. 14, 16 [6] 15NM + 14M+ 4NM + 5M− 2NM + 3M−

5N − 10
∑M

i=1
pi 4

∑M

i=1
pi 2

∑M

i=1
pi

Algs. 5, 7 [19], sum- 14NM + 13M+ 4NM + 5M− 2NM + 3M−

marized in Tab 8 5N − 9
∑M

i=1
pi 4

∑M

i=1
pi 2

∑M

i=1
pi

Algs. 13, 15 [6] 15NM + 14M+ 5NM + 6M− 2NM + 3M−

5N − 10
∑M

i=1
pi 5

∑M

i=1
pi 2

∑M

i=1
pi

algorithms proposed in [19] (Algorithm 5 and Algorithm 7) have a lower com-
putational complexity (multiplications and divisions) than those based on a
priori backward prediction errors updating proposed in [6] (direct and recur-
sive forms, Algorithm 13 and Algorithm 15). It can also be seen that their
order recursiveness has a cost in terms of the computational complexity when
compared to its transversal (or direct form) counterpart in [20]. The most
attractive algorithms, from a computational complexity point of view, are Al-
gorithm 6 (equal order) and Algorithm 8 (multiple order) [20]. Considering
Algorithm 8 [20] for channels of equal orders, i.e., N1 = N2 = · · · = NM = K
and P = KM , it can be observed from Table 6 that this algorithm is of O(M2)
computational complexity, lower by one order of magnitude when compared
to the O(M3) block-type multichannel algorithms of [6], [4] and [15].

Finally, it can be added that all new algorithms, in the simulations carried out
in this work, have shown no signs of divergence. This was somehow expected
for algorithms employing numerically stable Givens rotations to perform QR
decomposition when updating backward prediction errors.

27

9 Conclusions

The study of multichannel fast QRD-RLS (MC-FQRD-RLS) algorithms may
be difficult not only because of the complex equations employed, but also
due to vast notations used by different authors. In an attempt to clarify the
differences among the many versions available, we introduced a classification
of these algorithms. A total of nine algorithms are introduced or described
in this paper from which seven are based on a posteriori error vector up-
dating, three block-channel and four sequential-channel approaches, and two
are block-channel algorithms based on the updating of a priori error vector.
The classification also revealed the possibility of two unpublished algorithms
belonging to this family.

In particular, a general formulation for block-channel multiple-order multi-
channel fast QRD-RLS algorithms was introduced. The new formulation pro-
vides block-type multichannel algorithms that are capable of processing all
channels simultaneously facilitating parallel implementations. Both a posteri-
ori and a priori versions were derived. Then an order recursive MC-FQRD-
RLS algorithm based on a posteriori error updating was presented. This new
algorithm exhibits the lowest complexity among known order recursive MC-
FQRD-RLS algorithms, while keeping all desirable numerical properties of its
family. We also addressed the lattice version of the MC-FQRD-RLS algorithm
based on the a posteriori backward error updating. Its order recursiveness
and stability are interesting features and this algorithm can be used in a wide
range of applications, many of them in the field of telecommunications. The
new lattice algorithm presents the same converge properties as the one of [6],
and also saves computational load which makes it attractive as the numbers
of channels and coefficients per channel increase.

Finally, a multiple-order multichannel a posteriori sequential-channel algo-
rithm was introduced which has lower computational complexity when com-
pared to its a priori counterpart.

Appendix A: Proof of Equation (26)

Proof 1 From (14), it is clear that Ef (k + 1) is the Cholesky factor of
[ẽfq1 λ1/2ET

f (k)]T [21]. Consequently, we can write

28

ET
f (k + 1)Ef (k + 1)=

ẽT
fq1(k + 1)

λ1/2Ef(k)

T

×

ẽT
fq1(k + 1)

λ1/2Ef(k)

= ẽfq1(k + 1)ẽT
fq1(k + 1) + λET

f (k)Ef(k) (64)

The above equation is the product form of (14). Premultiply and post multi-
ply (64) by E−T

f (k + 1)γ2(k) and E−1
f (k + 1), respectively. Then, after some

algebraic manipulations, we have

γ2(k)I = p(k + 1)pT (k + 1) + Ψ (65)

where Ψ = λγ2(k)E−T
f (k + 1)ET

f (k)Ef (k)E−1
f (k + 1).

Finally, after premultiplying and post multiplying (65) by pT (k+1) and p(k+
1), respectively, we obtain

γ2(k) =pT (k + 1)p(k + 1) +
pT (k + 1)Ψp(k + 1)

pT (k + 1)p(k + 1)

=pT (k + 1)p(k + 1) + ∗2

(66)

The expression in (66) can be regarded as a Cholesky product. Hence, it can
be factored as

γ(k)

0

 = Q

∗

p(k + 1)

 (67)

where Q is an orthogonal matrix.

If we recall our starting point in (14), we can see that Q is related to Qf(k+1).

Moreover, from the knowledge of the internal structure of Qf(k + 1), we can

conclude that Q = Q
T

f (k + 1) satisfies (67) leading to (26). This concludes
the proof. Vector p(k + 1) can be easily obtained from (26) because γ(k) and
Qf(k + 1) are known quantities. 2
Appendix B: The proposed algorithms

Tables 7 and 8 show the complex-valued versions of the Multiple Order Sequential-
type MCFQRD POS B Algorithm [20] and the Lattice Multiple Order Sequen-
tial MCFQRD POS B Algorithm [19], respectively.

29

Table 7
The Multiple Order Sequential-type MCFQRD POS B Algorithm [20].

Initializations:

d
(i)
fq2

= zeros(P,1); f(M)(0) = 0; dq2 = 0; γ
(0)
P (0) = 1;

e
(i)
fP

(0) = µ; i = 1, 2, · · · , M, all cosines = 1, and all sines = 0.

for k = 1, 2, · · ·

{ γ
(1)
0 = 1; e

(0)
q1 (k + 1) = d(k + 1);

for i = 1 : M,

{ e
(i)
fq10

(k + 1) = xi(k + 1);

for j = 1 : P, % Obtaining e
(i)
fq1

(k + 1) and d
(i)
fq2

(k + 1):

{e
(i)
fq1j

(k + 1) = cos

[
θ
(i−1)
j (k)

]
e
(i)
fq1j−1

(k + 1) + λ1/2 sin

[
θ
(i−1)
j (k)

]
d

(i)
fq2P−j+1

(k);

d
(i)
fq2P−j+1

(k + 1) = λ1/2 cos

[
θ
(i−1)
j (k)

]
d

(i)
fq2P−j+1

(k) − sin∗

[
θ
(i−1)
j (k)

]
e
(i)
fq1j−1

(k + 1);

}

‖e
(i)
fP

(k + 1)‖ =

√(
λ1/2‖e

(i)
fP

(k)‖

)2

+ ‖e
(i)
fq1P

(k + 1)‖2;

for j = P : −1 : pi, % Obtaining Q′
θf

(i)(k + 1):

{e
(i)
fj−1

(k + 1) =

√
‖e

(i)
fj

(k + 1)‖2 + ‖d
(i)
fq2P−j+1

(k + 1)‖2;

cos θ′
f
(i)

j
(k + 1) = ‖e

(i)
fj

(k + 1)/e
(i)
fj−1

(k + 1)‖;

sin θ′
f
(i)

j
(k + 1) =

[
cos θ′

f
(i)

j
(k + 1) d

(i)
fq2P−j+1

(k + 1)/e
(i)
fj

(k + 1)

]∗

;

}

p
(i)
P (k + 1) = γ

(i−1)
P (k)

[
e
(i)
fq1P

(k + 1)

]∗

/‖e
(i)
fP

(k + 1)‖;

for j = P : −1 : pi, % Obtaining f(i)(k + 1):

{f
(i)
P−j+1(k + 1) = cos θ′f

(i)

j
(k + 1)f

(i−1)
P−j+2(k + 1) −

[
sin θ′f

(i)

j
(k + 1)

]∗

p
(i)
j (k + 1);

p
(i)
j−1(k + 1) = sin θ′f

(i)

j
(k + 1)f

(i−1)
P−j+2(k + 1) + cos θ′f

(i)

j
(k + 1)p

(i)
j (k + 1);

}

f
(i)
P+1−pi+1(k + 1) = p

(i)
pi−1(k + 1);

for j = pi : P, % Obtaining Q
(i)
θ

(k):

{sin θ
(i)
j (k) = −

[
f

(i)
P−j+2(k + 1)

]∗

/γ
(i)
j−1;

cos θ
(i)
j (k) =

√
1 − ‖ sin θ

(i)
j (k)‖2;

γ
(i)
j (k) = cos θ

(i)
j (k)γ

(i)
j−1(k + 1);

}

} for i

for j = 1 : P, % Joint process estimation:

{e
(j)
q1 (k + 1) = cos θ

(0)
j (k + 1)e

(j−1)
q1 (k + 1) + λ1/2 sin θ

(0)
j (k + 1)d

(P−j+1)
q2 (k);

d
(P−j+1)
q2 (k + 1) = λ1/2 cos θ

(0)
j (k + 1)d

(P−j+1)
q2 (k) −

[
sin θ

(0)
j (k + 1)

]∗

e
(j−1)
q1 (k + 1);

}

ε(k + 1) =

[
e
(P)
q1 (k + 1)

]∗

/γ
(0)
P (k + 1);

} for k

Obs.: θ
(M)
j (k) = θ

(0)
j (k + 1) and f

(M)
P−j+2

(k) = f
(0)
P−j+2

(k + 1).

The asterisk (∗) denotes complex conjugation.

30

Table 8
The Lattice Multiple Order Sequential
MCFQRD POS B Algorithm [19].

Initializations:

d
(i)
fq2

= zeros(P,1); f(M)(0) = 0; dq2 = 0; γ
(0)
P (0) = 1;

e
(i)
fP

(0) = µ; i = 1, 2, · · · , M, all cosines = 1, and all sines = 0.

for k = 1, 2, · · ·

{ γ
(1)
0 = 1; e

(0)
q1 (k + 1) = d∗(k + 1);

|e
(1)
0 (k + 1)| =

√(
λ1/2|e

(1)
0 (k)|

)2

+ |x1(k + 1)|2;

f
(1)
P+1(k + 1) = [x1(k + 1)]∗ /|e

(1)
0 (k + 1)|;

for i = 1 : M,

{ e
(i)
fq10

(k + 1) = xi(k + 1)

for j = 1 : P,

{ e
(i)
fq1j

(k + 1) = cos

[
θ
(i−1)
j (k)

]
e
(i)
fq1j−1

(k + 1) + λ1/2 sin

[
θ
(i−1)
j (k)

]
d

(i)
fq2P−j+1

(k);

d
(i)
fq2P−j+1

(k) = λ1/2 cos

[
θ
(i−1)
j (k)

]
d

(i)
fq2P−j+1

(k) − sin

[
θ
(i−1)
j (k)

]∗

e
(i)
fq1j−1

(k + 1);

if j ≥ pi − 1,

|e
(i)
fj

(k + 1)| =

√(
λ1/2|e

(i)
fj

(k)|

)2

+ |e
(i)
fq1P

(k + 1)|2;

p
(i)
j (k + 1) =

γ
(i−1)
j

(k)

[
e
(i)

fq1j
(k+1)

]
∗

|e
(i)

fj
(k+1)|

;

if j = pi − 1,

f
(i)
P+1−j+1(k + 1) = p

(i)
j (k + 1);

if j > pi − 1,

cos θ′f
(i)

j
(k + 1) = |e

(i)
fj

(k + 1)|/|e
(i)
fj−1

(k + 1)|;

sin θ′
f
(i)

j
(k + 1) =

[
cos θ′

f
(i)

j
(k + 1)d

(i)
fq2P−j+1

(k + 1)/e
(i)
fj

(k + 1)

]∗

;

f
(i)
P−j+1(k + 1) = cos θ′f

(i)

j
(k + 1)f

(i−1)
P−j+2(k + 1) − sin

[
θ′f

(i)

j
(k + 1)

]∗

p
(i)
j (k + 1);

sin θ
(i)
j (k) = −

[
f

(i)
P−j+2(k + 1)

]∗

/γ
(i)
j−1;

cos θ
(i)
j (k) =

√
1 − | sin θ

(i)
j (k)|2;

γ
(i)
j (k) = cos θ

(i)
j (k)γ

(i)
j−1(k + 1);

} for j

} for i

for j = 1 : P % Joint process estimation:

{ e
(j)
q1 (k + 1) = cos θ

(0)
j (k + 1)e

(j−1)
q1 (k + 1) + λ1/2 sin θ

(0)
j (k + 1)d

(P−j+1)
q2 (k);

d
(P−j+1)
q2 (k + 1) = λ1/2 cos θ

(0)
j (k + 1)d

(P−j+1)
q2 (k) − sin

[
θ
(0)
j (k + 1)

]∗

e
(j−1)
q1 (k + 1);

}

ε(k + 1) =

[
e
(P)
q1 (k + 1)

]∗

/γ
(0)
P

(k + 1); % the a priori error

} for k

Obs.: The asterisc (∗) denotes complex conjugation.

θ
(M)
j (k) = θ

(0)
j (k + 1) and f

(M)
P−j+2

(k) = f
(0)
P−j+2

(k + 1).

31

Acknowledgments

The authors would like to thank CAPES, CNPq, FAPERJ (Brazil), and
Academy of Finland, Smart and Novel Radios (SMARAD) Center of Excel-
lence (Finland), for partial support of this work. António Ramos thanks Mr.
Emitério Ramos for his kind support. We also would like to thank Mr. Mo-
bien Shoaib for spending time on reviewing and commenting the paper while
in phase of preparation.

References

[1] N. Kalouptsidis, S. Theodoridis, Adaptive Systems Identification and Signal
Processing Algorithms, Prentice Hall, Upper Saddle River, USA, 1993.

[2] V. J. Mathews, G. L. Sicuranza, Polynomial Signal Processing, Wiley–
Intercience: John Wiley and Sons, New York, USA, 2000.

[3] M. A. Syed, V. J. Mathews, QR-decomposition based algorithms for adaptive
Volterra filtering, IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications 40 (6) (1993) 372–382.

[4] C. A. Medina S., J. A. Apolinário Jr., M. G. Siqueira, A unified framework for
multichannel fast QRD-LS adaptive filters based on backward prediction errors,
in: Proc. 45th Midwest Symposium on Circuits and Systems (MWSCAS’O2),
Tulsa, USA, Vol. 3, 2002, pp. 668–671.

[5] M. G. Bellanger, P. A. Regalia, The FLS-QR algorithm for adaptive filtering:
the case of multichannel signals, (EURASIP) Signal Processing 22 (2) (1991)
115–126.

[6] A. A. Rontogiannis, S. Theodoridis, Multichannel fast QRD-LS adaptive
filtering: New technique and algorithms, IEEE Transactions on Signal
Processing 46 (11) (1998) 2862–2876.

[7] J. M. Cioffi, The fast adaptive ROTOR’s RLS algorithm, IEEE Transactions
on Acoustics, Speech, and Signal Processing 38 (4) (1990) 631–653.

[8] P. A. Regalia, M. Bellanger, On the duality between fast QR methods and
lattice methods in least squares adaptive filtering, IEEE Transactions on Signal
Processing 39 (4) (1991) 879–891.

[9] J. A. Apolinário Jr., M. G. Siqueira, P. S. R. Diniz, Fast QR algorithms based
on backward prediction errors: a new implementation and its finite precision
performance, Birkhäuser, Circuits, Systems, and Signal Processing 22 (4) (2003)
335–349.

[10] J. A. Apolinário Jr., P. S. R. Diniz, A new fast QR algorithm based on a priori

errors, IEEE Signal Processing Letters 4 (11) (1997) 307–309.

32

[11] M. D. Miranda, M. Gerken, An hybrid QR-lattice least squares algorithm using
a priori errors, in: Proc. 38th Midwest Symposium on Circuits and Systems
(MWSCAS’95), Rio de Janeiro, Brazil, Vol. 2, 1995, pp. 983–986.

[12] A. A. Rontogiannis, S. Theodoridis, New fast inverse QR least squares adaptive
algorithms, in: Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’95), Detroit, USA, Vol. 2, 1995, pp. 1412–1415.

[13] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementations,
Kluwer Academic Publishers, Boston,USA, (2nd Edition) 2002.

[14] M. Harteneck, J. G. McWhirter, I. K. Proudler, R. W. Stewart, Algorithmically
engineered fast multichannel adaptive filter based qr-rls, IEE Proc.-Vis. Image
Signal Process. 146 (1) (1999) 7–13.

[15] A. L. L. Ramos, J. A. Apolinário Jr., A lattice version of the multichannel FQRD
algorithm based on a posteriori backward errors, in: Proc. 11th Internacional
Conference on Telecommunications, Fortaleza, Brazil, ICT’2004, LNCS, Vol. 1,
pp. 488–497.

[16] A. L. L. Ramos, J. A. Apolinário Jr., S. Werner, A general approach to the
derivation of block multichannel fast QRD-RLS algorithms, in: Proc. European
Signal Processing Conference EUSIPCO’2005, Antalya, Turkey, Vol. 1, 2005,
pp. 1–4.

[17] A. L. Ghirnikar, S. T. Alexander, Performance and implementation of the
inverse QR adaptive filter, in: Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing, ICASSP-92, San Francisco, USA,
Vol. 4, 1992, pp. 29–32.

[18] S. T. Alexander, A. L. Ghirnikar, A method for recursive least squares
filtering based upon an inverse QR decomposition, IEEE Transactions on Signal
Processing 41 (1993) 20–30.

[19] A. L. L. Ramos, J. A. Apolinário Jr., M. G. Siqueira, A new order recursive
multiple order multichannel fast QRD algorithm, in: Proc. 38th Midwest
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA,
Vol. 1, 2004, pp. 965–969.

[20] A. L. L. Ramos, J. A. Apolinário Jr., A new multiple order multichannel fast
QRD algorithm and its application to non-linear system identification, in: Proc.
XXI Simpósio Brasileiro de Telecomunicações, SBT 2004, Belém, Brazil, Vol. 1,
pp. 1–4.

[21] G. H. Golub, C. F. V. Loan, Matrix Computations, The Johns Hopkins
University Press, Baltimore, USA, (3rd edition) 1983.

33

