
XXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ̃OES - SBrT 2007, 03-06 DE SETEMBRO DE 2007, RECIFE, PE

Inverse QRD BEACON Algorithm
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Resumo— Este artigo deriva a vers̃ao usando decomposiç̃ao
QR inversa (IQRD) do algoritmo Bounding Ellipsoidal Adaptive
CONstrained least-squares(BEACON). O algoritmo BEACON
pertenceà famı́lia de algoritmos conhecida comoset-membership
filtering (SMF) que apresenta atualizaç̃ao esparsa no tempo e
boa capacidade de rastreamento. A caracterı́stica proeminente de
atualização esparsa em SMF vem de uma restriç̃ao predefinida
quanto aos limites do erro de saı́da especificada no projeto
do filtro. Como uma conseqü̂encia, um conjunto de estimativas
válidas de vetores de coeficientes se conformarão à restrição ao
invés de uma estimativa pontual. A escolha da restriç̃ao ao erro
aparece naturalmente em v́arias aplicaç̃oes de processamento
de sinais, por exemplo, quando a ordem do modelo não é
conhecida ou a dist̂ancia entre pontos de uma constelação é
conhecida a priori num equalizador do tipo decision-feedback.
O novo algoritmo , o IQRD-BEACON, implementa a mesma
função objetivo que o BRACON e, portanto, apresentaŕa, em
precisão infinita, resultados idênticos em termos de curvas de
aprendizagem e freqü̂encia de atualizaç̃ao. A vantagem do IQRD-
BEACON vem com o uso de rotaç̃oes numericamente estáveis nas
equaç̃oes de atualizaç̃ao, evitando pois o uso de recurs̃oes mal-
condicionadas associadas ao emprego do lema de inversão de
matrizes no BEACON convencional. Nossas reivindicações com
respeito ao desempenho do IQRD-BEACON s̃ao verificadas por
meio de simulaç̃oes em computador.

Palavras-Chave— Filtragem adaptativa, Filtragem Set-
Membership filtering, Algoritmos com decomposiç̃ao QR.

Abstract— This paper derives the inverse QR-decomposition
(IQRD) version of the Bounding Ellipsoidal Adaptive CONstrai-
ned least-squares (BEACON) algorithm. The BEACON algorithm
belongs to the family of set-membership filtering (SMF) algo-
rithms that feature sparse updating in time and good tracking
capability. The prominent characteristic of sparse updating in
SMF arises from a predefined bounded error-constraint specified
in the filter design. As a consequence, a set of valid coefficient
vector estimates will conform to the constraint rather than a
single point-estimate. The choice of the error constraint appears
naturally in various signal processing applications, e.g., when
model-order is unknown or distance between constellation points
is a priori known in a decision-feedback equalizer. The new
algorithm, the IQRD-BEACON, implements the same objective
function as BEACON and will, therefore, in infinite-precision
environment present identical results in terms of learningcurves
and update frequency. The advantage of the IQRD-BEACON
comes with the use of numerically stable rotations in the update
equations, thus avoiding the use of the ill-conditioned recursions
associated with the matrix-inversion lemma employed in the
conventional BEACON. Our claims regarding the performanceof
the IQRD-BEACON are verified through computer simulations.

Keywords— Adaptive filtering, Set membership filtering, QRD-
RLS algorithm.
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I. I NTRODUCTION

Set-membership filtering (SMF) algorithms may be consi-
dered attractive options for a wide range of adaptive filtering
applications. This is due to their reduced average computatio-
nal complexity when compared to their conventional LMS and
RLS counterparts. In addition, they feature fast convergence
and good tracking capability. In SMF algorithms, coefficient-
vector updating is not performed unless the output error of the
filter is larger than a certain threshold. This sparse updating
in time (or data-selectivity) enables efficient usage of shared
resources when multiple adaptation processes are handled
simultaneously, or reduced power consumption is desired.

The SMF concept has been successfully employed in a
number of algorithms that minimize the MSE (Mean Squared
Error) by changing the respective objective function such that
a bound is specified on the magnitude of error, e.g., Set-
membership Normalized Least Mean Square (SM-NLMS) [1]
and the Set-membership Affine Projection Algorithm (SM-
APA) [2]. The same idea can also be extended to another ob-
jective function including theWeighted Least Squares used by
the RLS (Recursive Least Squares) family of algorithms [3].

In [4], a recursive algorithm named BEACON was derived
according to an optimal bounding ellipsoid (OBE) criterion.
The BEACON algorithm was shown to feature a highly
selective update mechanism (approximately 5% of the time)
and an ability to track fast time-varying conditions.

Although other OBE algorithms were implemented using
Givens rotations [3], [5], [4], this paper implements a QR
decomposition version of the BEACON [4] algorithm based
on the inverse Cholesky factor.

This paper is organized as follows: in Section II, basic
concepts concerning the SMF algorithms are reviewed as
well as the basic derivation of the BEACON algorithm. The
inverse (and the basic equations for a direct) QRD-WLS
version of the BEACON algorithm is derived in Section III.
Simulation results are detailed in Section IV and conclusions
are summarized in Section V.

II. SET MEMBERSHIP FILTERING AND THEBEACON

Mean-square error (MSE) based adaptive filtering algo-
rithms such as the Least-Mean-Square (LMS) algorithm or the
Affine Projection Algorithm (APA) [6] search, at time instant
k, a coefficient vectorw that minimizesE[e2(k)], where the
output estimation error is given by

e(k) = d(k) − wT x(k) (1)

with d(k) being the reference signal andx(k) the input-signal
vector.

In set-membership filtering (SMF), an upper bound of the
output estimation error is specified such that all coefficient
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vectors satisfying the error constraint are considered feasible.
The resulting adaptation algorithms are data-selective with a
considerably reduced average computational complexity.

As an example, the Set-Membership Normalized LMS (SM-
NLMS) algorithm proposed in [1], updates the coefficient
vector w(k − 1) to w(k) only if the a priori output error
exceeds a certain thresholdγ. Let S denote the space model,
i.e., (x, d) ∈ S, andΘ the set of all possible vectorsw that
result in an error with a norm not exceedingγ. The feasibility
set Θ is defined as the set of all filter vectorsw satisfying the
error constraint for all possible input-desired data pairsand is
given by

Θ =
⋂

(x,d)∈S

{
w ∈ <N : |d− wT x| ≤ γ

}
(2)

The set of allw satisfying the error bound, obtained after
training with thek-th input-desired data pair{x(k), d(k)},
denoted byH(k), is called theconstraint set and can be
expressed as

H(k) =
{
w ∈ <N :

∣
∣d(k) − wT x(k)

∣
∣ ≤ γ

}
(3)

Theexact membership set ψ(k) = ∩k
i=0H(i) is the superset

of the feasibility set and is defined as the minimal set estimate
for Θ at timek. Also note that the feasibility setΘ lies in the
constraint setH(k).

The objective is to estimate the membership setψ(k) at
each instantk in order to find the weightsw satisfying the
bound. The membership setψ(k) forms anN -dimensional
convex polytope, which is not easily computed. The problem
is greatly simplified if a tightly outer bounded ellipsoidεk is
estimated instead. The ellipsoidεk is defined as

εk = {w ∈ <N : (w − ŵk)T Rk(w − ŵk) ≤ σk} (4)

whereσk > 0 and Rk is a deterministic weighted autocor-
relation matrix of the input signal. Using this, it is possible
to define an ellipsoidε0 as the set of all vectorw such that
{w ∈ <N : (w − ŵ0)

T R0(w − ŵ0) ≤ σ0} whereŵ0 is the
first estimate ofw0 andR0 is the first estimate ofR.

Note that, if we initializeR0 = I, the ellipsoidε0 will
actually become a circle. Moreover, fork = 1, the ellipsoid
ε1 is shown as in Fig. 1 whereε1 ⊃ {ε0 ∩H(1)}.

The basic idea of OBE algorithms, as seen in [4] is to outer
bound the membership set at each instant by a mathematically
tractable ellipsoid:

εk ⊃ {εk−1 ∩H(k)} ⊃ ψ(k). (5)

The process is carried out given an initial ellipsoidε0 =
{
w ∈ <N : (w − ŵ0)

T S−1(0)(w − ŵ0) ≤ σ0

}
with some

properly initialized estimateŝw0 and S(0) = R−1
0 ; the

algorithm then starts a recursive procedure for computing the
sequence of ellipsoids.

Assuming that we have, at timek − 1, all data pairs
(x(0), d(0)) to (x(k − 1), d(k − 1)), the updated coeffici-
ent vector of the BEACON algorithm is obtained from the
minimization of a cost functionV k−1(w) = (w − w(k −
1))T S−1(k − 1)(w − w(k − 1)) − σk−1 subject to|d(k) −
wT x(k)|2 ≤ γ2 which implies thatw(k) ∈ H(k). The
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Fig. 1. First iteration of the OBE procedure.

recursions for the BEACON algorithm are quite similar in
form with the equations of the conventional RLS algorithm
and are presented in Table I, see [4] for the details of the
derivation.

TABEL I

THE BEACON ALGORITHM.

BEACON
Initialize γ, S(−1) = 1

σ̂2
x

I, andw(−1)

for k = 0, 1, . . .
{ e(k) = d(k) − wT (k − 1)x(k)

if |e(k)| ≤ γ
then % Do nothing:

λk = 0 ⇒
{

S(k) = S(k − 1)
w(k) = w(k − 1)

else% Update the BEACON Alg.:

λk = 1
xT (k)S(k−1)x(k)

(
|e(k)|

γ
− 1

)

κ(k) =
λkS(k−1)x(k)

1+λkxT (k)S(k−1)x(k)

S(k) = S(k − 1) − κ(k)xT (k)S(k − 1)
w(k) = w(k − 1) + e(k)κ(k)

}

III. T HE INVERSEQRD-WLS BEACON

Comparing the BEACON algorithm in Table I with the
conventional RLS algorithm, it can be seen that its coefficient
vector can be expressed asw(k) = S(k)p(k), S(k) =
R−1(k) or

w(k) =










k∑

i=0

λix(i)xT (i)

︸ ︷︷ ︸

R(k)










−1

[
k∑

i=0

λid(i)x(i)

]

︸ ︷︷ ︸

p(k)

(6)

whereR(k) = R(k − 1) + λkx(k)xT (k) andp(k) = p(k −
1) + λkd(k)x(k).
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This means that the BEACON algorithm minimizes the
following objective functionξ(k)

ξ(k) =

k∑

i=0

λiε
2(i) = eT (k)e(k) = ‖e(k)‖2 (7)

where
e(k) = d(k) − X(k)w(k) (8)

with d(k) being the weighted desired or reference signal
vector andX(k) the input data matrix, defined as follows.

d(k) =








√
λkd(k)√

λk−1d(k − 1)
...√

λ0d(0)








(9)

X(k) =








√
λkxT (k)

√

λk−1x
T (k − 1)
...√

λ0x
T (0)








(10)

The premultiplication of (8) by the orthogonal matrix (re-
presenting an overall triangularization process via elementary
Givens rotations matrices)Q(k) triangularizesX(k) without
affecting the cost function.

Q(k)e(k) =

[
eq1(k)
eq2(k)

]

=

[
dq1(k)
dq2(k)

]

−
[

O

U(k)

]

w(k)

(11)
where U(k) is the Cholesky factor ofXT (k)X(k), i.e.,
product UT (k)U(k) corresponds toXT (k)X(k), and the
subscripts1 and2 indicate the firstk−N and the lastN + 1
components of the vector, respectively.

The weighted-square error (or cost function) can be minimi-
zed by choosingw(k) such that the termdq2(k)−U(k)w(k)
is zero. The tap-weight coefficients, for the case of a direct
QRD-WLS BEACON algorithm (the QRD-based algorithm
that updatesU(k) from U(k − 1) as seen in the following),
could be computed using the well-known back-substitution
procedure.

Using the fact thatQ(k) is orthogonal and the definition of
X(k), we can write the productQ(k)X(k) as

Q(k)
[

1 0
T

0 QT (k − 1)

] [
1 0

T

0 Q(k − 1)

]

︸ ︷︷ ︸

I

[ √
λ

k
xT (k)

X(k − 1)

]

︸ ︷︷ ︸

X(k)

=

[
O

U(k)

]

(12)
such that the following fixed order expression to update the
(here assumed lower triangular matrix) Cholesky factor is
obtained.

[
0

T

U(k)

]

= Qθ(k)

[ √
λkxT (k)

U(k − 1)

]

(13)

The last expression shows the update of the Cholesky factor
U(k). Matrix Qθ(k) can be partitioned as

Qθ(k) =

[
γ(k) gT (k)
f(k) E(k)

]

(14)

where:

γ(k) =
∏N

i=1 cosθi(k), θi(k) are the rotation angles inQθ(k);
f(k) =

√
λkU−T (k)x(k);

E(k) = U−T (k)UT (k − 1);
g(k) = −γ(k)a(k) = −γ(k)

√
λk U−T (k − 1)x(k)

︸ ︷︷ ︸

ā(k)

.

The Inverse QRD-RLS algorithm [7], instead, updates the
inverse of the Cholesky factor. In order to derive the inverse
QRD-RLS algorithm we start from the basic update equation
of the deterministic weighted autocorrelation matrix and write
it in terms of the Cholesky factor matrix.

U
T (k)U(k) = U

T (k − 1)U(k − 1) + λkx(k)xT (k) (15)

Taking the inverse of both sides and using the matrix in-
version lemma (A + [BCD]−1 = A−1 − A−1B[BA−1D +
C−1]−1DA−1), the update for the inverse Cholesky factor is
obtained.

U
−1

(k)U
−T

(k) = U
−1

(k − 1)U
−T

(k − 1)

−

√
λ

k
U

−1(k − 1)U−T (k − 1)x(k)xT (k)U−1(k − 1)U−T (k − 1)
√

λ
k

xT (k)U−1(k − 1)
√

λ
k

√
λ

k
U−T (k − 1)x(k) + 1

(16)

Using the definition of a(k), defining u(k) =
−γ(k)

√
λkU−1(k − 1)U−T (k − 1)x(k), and γ(k) =

1√
1+a

T (k)a(k)
, the update equation becomes

U
−1(k)U−T (k) = U

−1(k − 1)U−T (k − 1) − u(k)uT (k)
(17)

The updating equation for the new algorithm, the IQRD-
WLS BEACON, is obtained following from the QRD-RLS
expression and Eq (17):

[
uT (k)

U−T (k)

]

= Qθ(k)

[
0

T

U−T (k − 1)

]

(18)

It is observed that with the updating ofU−T (k) we can
compute vectora(k), and that froma(k) we can obtain matrix
Qθ(k).

In order to have all necessary equations, the vector updating
equation is obtained from the BEACON algorithm by realizing
that vectorκ(k) corresponds to1 −

√
λkγ(k)u(k):

w(k) = w(k − 1) − e(k)γ(k)
√

λku(k). (19)

The new algorithm is detailed in Table II.

IV. SIMULATION RESULTS

In this section, we present the results of an experiment
carried out in order to show the performance of the proposed
algorithm in a system identification scenario. We used the
IQRD-WLS BEACON algorithm to identify an unknown plant
wOPT (k) = δ(k)+0.9δ(k−1)−0.8δ(k−2)+0.1δ(k−3)+
0.6δ(k−4)+0.2δ(k−5)−0.4δ(k−6)+0.2δ(k−7)−0.1δ(k−8).
We have usedN = 9 (no undermodeling) and a colored input
signal produced by passing Gaussian white noise through an
IIR filter with system function given by 1

1+1.2z−1+0.81z−2 and
normalizing its variance (such thatσ2

x = 1). The observation
noise was white noise withσ2

n such that theSNR was set

1Noting thatS(k − 1) = R−1(k − 1) = U−1(k − 1)U−T (k − 1), we
replace it in the definition of vectorκ(k), and simplify.



XXV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇ̃OES - SBrT 2007, 03-06 DE SETEMBRO DE 2007, RECIFE, PE

TABEL II

THE NEW ALGORITHM.

IQRD-WLS BEACON
Initialization:

γ (see [8] for some hints)
U−T (0) = σ̂x

2∗hankel([zeros(N-1,1); 1]);
for k = 1, 2, . . .
{ % Obtaining the a priori error:

e(k) = d(k) − wT (k − 1)x(k)
% Checking the error:
if |e(k)| ≤ γ
then % Do nothing:

λk = 0 ⇒
{

U−T (k) = U−T (k − 1)
w(k) = w(k − 1)

else% Update the BEACON IQRD-WLS:
ā(k) = U−T (k − 1)x(k)

λk =
(

|e(k)|
γ

− 1
)

/āT (k)ā(k)

% Obtaining vector a(k):
a(k) =

√
λkā(k)

% Obtaining Qθ(k) and γ(k):
[

1/γ(k)
0

]

= Qθ(k)

[
1

−a(k)

]

% Obtaining u(k) and updating U−T (k):
[

uT (k)
U−T (k)

]

= Qθ(k)

[
0

T

U−T (k − 1)

]

% Updating the coefficient vector:
w(k) = w(k − 1) − e(k)γ(k)

√
λku(k)

}

to 80dB. In this experiment, we used anoise threshold γ =
√

4σ2
n and the results were averaged over10, 000 independent

runs.
The learning curve of the proposed algorithm, identical

to the BEACON algorithm also implemented, is depicted
in Fig. 2. The conventional RLS algorithm and the IQRD-
RLS algorithm, with a forgetting factorλ = 0.99, were also
implemented for comparison and, as expected, also presented
identical learning curves. It is worth mentioning that identical
curves are obtained only if (a careful) equivalent initialization
is observed. We can note in this figure that the BEACON
algorithm outperforms the RLS algorithms in terms of speed
of convergence; nevertheless, a slightly higher misadjustment
is the price for this better performance. As any other set-
membership algorithm, the BEACON can trade off rate of
updating with misadjustment. Certainly, a smaller value of
γ would cause a lower misadjustment with the cost of an
increase in the number of updates. In this experiment, the
proposed algorithm was updated approximately13.6% of the
iterations.

V. CONCLUSIONS

In this paper, we have proposed a new algorithm corres-
ponding to the Inverse QRD version of thebounding ellipsoi-
dal adaptive constrained least-squares (BEACON) algorithm.
The proposed algorithm, once minimizing the same objective
function and assumed properly initialized, presents an identical
learning curve when compared to the conventional BEACON
algorithm.

All expressions for this new algorithm were derived and
resulted to be coherent with the case of non updating; this is
so because, for this case,λk = 0 and the main variable of the
algorithm keeps unaltered,U−T (k) = U−T (k − 1). This is
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Fig. 2. Learning curves of BEACON and RLS algorithms.

important since it allows the existence of this version; thesame
does not occur when one attempts to derive a fast (O(N ))
version for this algorithm. The main difficulty for obtaining
a fast version of the proposed algorithm raises from the fact
that the input data matrix as seen in (12) no longer presents
a shift structure as in the case of the QRD-RLS algorithms.
Further investigation is required to obtain a Fast QRD-WLS
BEACON algorithm as well as to investigate the stability of the
proposed algorithm compared to the conventional BEACON
algorithm, that is, to check if the innovation check and the time
varying lambda of the new algorithm has (or not) altered the
attractive numerical properties of the original Givens rotation
based Inverse QRD-RLS algorithm.
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