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1 IntroductionThe least mean-squares (LMS) algorithm is very popular and has been widely useddue to its simplicity. Nevertheless, its convergence speed is highly dependent onthe eigenvalue spread of the input-signal autocorrelation matrix (ratio between thelargest and the smallest eigenvalue also known as condition number) [1, 2]. Alter-native schemes which try to improve convergence speed at the cost of minimumadditional computational complexity have been proposed and extensively discussedin the past [1, 3, 4].The data-reusing LMS (DR-LMS) algorithm, which uses current desired and in-put signals repeatedly within each iteration is one among such schemes. It can beeasily shown that in the limit of in�nite data reuses per iteration the DR-LMS andthe normalized LMS (NLMS) algorithms yield the same solution [5]. Performancecan be further improved with the recently proposed normalized and unnormalizednew data-reusing LMS (NNDR-LMS and UNDR-LMS) algorithms [5]. These algo-rithms reuse the data pair, namely desired and input signals, from previous iterationsas well.In reference [5], a graphical description of the NNDR-LMS and UNDR-LMSalgorithms was presented and it was shown that this new class of data-reusing al-gorithms had prospective better performance than the NLMS algorithm. The ge-ometric description also showed why improvement is achieved when the number ofreuses is increased. The new binormalized data-reusing LMS (BNDR-LMS) algo-rithm described here employs normalization on two orthogonal directions obtained2



from consecutive data pairs within each iteration. In all simulations carried out withcolored input signals, the new algorithm presented faster convergence than all otheralgorithms mentioned above (case of two data pairs).Convergence speed is related to the level of mean-squared error (MSE) in steady-state which is controlled by a step-size parameter �. For � = 1, we have the fastestconvergence and also the highest steady-state MSE when compared to the valuesof the step-size closer to zero. In [8], it was shown that the BNDR-LMS algorithmconverges if the step-size is in the range from zero to two. For practical reasons, thevalue of � is kept between zero and one since it was observed that the steady-stateMSE was higher and the convergence slower when the step-size was set to a valuebetween one and two. Only after [9] an analysis for the MSE behavior of the BNDR-LMS algorithm was available. In this paper, the expression for the MSE developedin [9] is used to derive an optimal step-size sequence which allows fast convergenceand minimum misadjustment.This paper is organized as follows: Section 2 presents LMS-like algorithms anda graphical illustration of their coe�cient updating. Section 3 introduces the newBNDR-LMS algorithm as well as some remarks about its convergence behavior. Insection 4, the optimal step-size sequence is derived and several approximations forthis optimal sequence are also proposed. Section 5 contains simulation results andSection 6 presents conclusions.
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2 LMS, DR-LMS, NLMS and NDR-LMS Algo-rithmsFor the LMS algorithm, the coe�cient vector w is updated in the opposite directionof the gradient vector obtained from instantaneous squared output error, i.e.,wLMS(k + 1) = wLMS(k)� �rw[e2(k)] (1)where e(k) = d(k)� xT (k)wLMS(k) (2)is the output error, d(k) is the desired signal, x(k) is the input-signal vector con-taining the N + 1 most recent input-signal samples, and � is the step size. Thecoe�cient-updating equation iswLMS(k + 1) = wLMS(k) + �e(k)x(k) (3)For the DR-LMS with L data reuses, the coe�cients are updated aswi+1(k) = wi(k) + �ei(k)x(k) (4)for i = 0; : : : ; L; where ei(k) = d(k)� xT (k)wi(k), (5)w0(k) = wDR�LMS(k), (6)and wDR�LMS(k + 1) = wL+1(k). (7)4



Note that if L = 0 these equations correspond to the LMS algorithm and that �is the step-size.The NLMS algorithm normalizes the step-size such that the relation expressedby xT (k)wNLMS(k + 1) = d(k) is always satis�ed, i.e.,wNLMS(k + 1) = wNLMS(k) + e(k)xT (k)x(k) + �x(k) (8)where � is a very small number used to avoid division by zero. Normalization forthis algorithm implies a line search in the opposite direction of the gradient towardsthe minimum of the instantaneous squared output error.For the NNDR-LMS algorithm with L data reuses, the coe�cient vector is up-dated by the following relations:wi+1(k) = wi(k) + ei(k)xT (k � i)x(k � i) + �x(k � i) (9)for i = 0; : : : ; L; where ei(k) = d(k)� xT (k)wi(k), (10)w0(k) = wNNDR�LMS(k), (11)and wNNDR�LMS(k + 1) = wL+1(k). (12)For the sake of comparison, our interest is in one single reuse such that L = 1.Figure 1 illustrates geometrically the updating of the coe�cient vector in a two-dimensional problem for all algorithms discussed above, starting from an arbitraryw(k). 5



Let S(k) denote the hyperplane which contains all vectors w such that xT (k)w =d(k). In a noise-free perfect-modeling situation, S(k) contains the optimal coe�-cient vector, wo. Furthermore, it can be easily shown that x(k) and, consequently,rw[e2(k)] are orthogonal to the hyperplane S(k).The solution given by the DR-LMS algorithm, w(k + 1), iteratively approachesS(k) by following the direction given by x(k) (see 3 in Figure 1). This solutionwould reach S(k) in the limit, as the number of data reuses, L, goes to in�nity [5].The NLMS algorithm performs a line search to yield the solution w(k + 1) 2 S(k)in a single step (see 4 in Figure 1). The algorithms presented in [5] use more thanone hyperplane, i.e., data pair (x; d), in order to produce a solution w(k + 1) (see5 and 6 in Figure 1) that is closer to wo than the solution obtained with onlythe current data pair (x(k); d(k)). For a noise-free perfect-modeling situation, wois at the intersection of N + 1 hyperplanes constructed with linearly independentinput-signal vectors. In this case, the orthogonal-projections algorithm [6] yieldsthe solution wo in N + 1 iterations. This algorithm may be viewed as a normalizeddata-reusing orthogonal algorithm which utilizes N + 1 data pairs (x; d).In the next section, the new binormalized data-reusing LMS algorithm will bedescribed. This algorithm combines data reusing, orthogonal projections of two con-secutive gradient directions, and normalization in order to achieve faster convergencewhen compared to other LMS-like algorithms. At each iteration, the BNDR-LMSyields the solution w(k + 1) which is at the intersection of hyperplanes S(k) andS(k � 1) and at a minimum distance from w(k) (see 7 in Figure 1). The algorithmcan also be viewed as a simpli�ed version of the orthogonal projections algorithm6



which utilizes just two previous consecutive directions.
3 The BNDR-LMS AlgorithmIn order to state the problem, we recall that the solution which belongs to S(k) andS(k � 1) at a minimum distance from w(k) is the one that solvesminw(k+1) kw(k + 1)�w(k)k2 (13)subjected to xT (k)w(k + 1) = d(k) (14)and xT (k � 1)w(k + 1) = d(k � 1) (15)The functional to be minimized is, therefore,f [w(k + 1)] = [w(k + 1)�w(k)]T [w(k + 1)�w(k)]+�1[xT (k)w(k + 1)� d(k)]+�2[xT (k � 1)w(k + 1)� d(k � 1)] (16)which, for linearly independent input-signal vectors x(k) and x(k � 1), has theunique solutionw(k + 1) = w(k) + (��1=2)x(k) + (��2=2)x(k � 1) (17)where ��1=2 = num1den (18)7



and ��2=2 = num2den (19)with: num1 = [d(k)� xT (k)w(k)]xT (k � 1)x(k � 1)�[d(k � 1)� xT (k � 1)w(k)]xT (k)x(k � 1)num2 = [d(k � 1)� xT (k � 1)w(k)]xT (k)x(k)�[d(k)� xT (k)w(k)]xT (k � 1)x(k)den = xT (k)x(k)xT (k � 1)x(k � 1)�[xT (k)x(k � 1)]2 (20)It can be veri�ed by simulations that the excess of mean-square error (MSE) forthe BNDR-LMS algorithm is close to the variance of the measurement noise whenthere is no modeling error in a system-identi�cation example. In order to controlthis excess of MSE, a step-size � will be introduced. It is worth mentioning thatthe maximum convergence rate is usually obtained with � = 1. The BNDR-LMSalgorithm is summarized in Table 1.3.1 Geometrical DerivationThis algorithm can be alternatively derived from a purely geometrical reasoning.The �rst step is to reach a preliminary solution, w1(k), which belongs to S(k) andis at a minimum distance from w(k). This is achieved by the NLMS algorithm8



starting from w(k), i.e.,w1(k) = w(k) + e(k)xT (k)x(k)x(k) (21)In the second step, w1(k) is updated in a direction orthogonal to the previous one,therefore belonging to S(k), until the intersection with S(k � 1) is reached. This isachieved by the NLMS algorithm starting from w1(k) and following the directionx?1 (k) which is the projection of x(k � 1) onto S(k).w(k + 1) = w1(k) + e1(k)x?1 T (k)x?1 (k)x?1 (k) (22)where x?1 (k) = "I� x(k)xT (k)xT (k)x(k)#x(k � 1) (23)and e1(k) = d(k � 1)� xT (k � 1)w1(k) (24)The use of x?1 (k) obtained from x(k � 1) assures that the minimum-distance pathis chosen.It is easy to show that if the BNDR-LMS algorithm was modi�ed to utilizek mod (N + 2) orthogonal directions, instead of two orthogonal directions, theresulting algorithm would be the orthogonal-projections algorithm described in [6]requiring reinitialization after every N + 1 iterations.Note that the requirement of linear independence of consecutive input-signalvectors x(k) and x(k � 1), necessary to ensure existence and uniqueness of thesolution, is also manifested here. If x(k) and x(k � 1) are linearly dependent, thenwe cannot �nd x?1 (k) 2 S(k) and the algorithm yields w(k + 1) = w1(k).9



3.2 Mean-square Error AnalyzisLet us assume that an unknown FIR �lter is to be identi�ed by an adaptive �lter ofthe same order, employing the BNDR-LMS algorithm. Input signal and measure-ment noise are assumed to be independent and identically distributed zero-meanwhite-noise with variances �2x and �2n.Assuming that the minimum mean-square error was caused by additive noiseonly, an expression for the MSE convergence behavior of the BNDR-LMS algorithmwas obtained in [9] in terms of the excess in the MSE, de�ned as the di�erencebetween the MSE and the minimum MSE after convergence, i.e., ��(k) = �(k) ��min = E[e2(k)]� �2n.��(k + 1) = "1 + �(�� 2)N + 1 #��(k)+N�(1� �)2(�� 2)(N + 1)2 ��(k � 1)+ [1 +N(�� 2)2]�2(N + 1)(N + 2� �x)�2n (25)where �x is the kurtosis of the input signal.
4 Optimal Step-Size SequenceIn this section the optimal step-size sequence for the given problem is derived. Wewill follow an approach similar to that used in [4] assuming that up to time k theoptimal sequences ��(0) to ��(k � 1) and ���(0) to ���(k) are available. For thesake of simplicity, the kurtosis of the input signal is assumed equal to one in (25),i.e., 10



��(k + 1) = "1 + �(k)(�(k)� 2)N + 1 #���(k)+N�(k)(1� �(k))2(�(k)� 2)(N + 1)2 ���(k � 1)+(1 +N(�(k)� 2)2)�(k)2(N + 1)2 �2n (26)By di�erentiating ��(k + 1) with respect to �(k) and setting the result equal tozero, we obtain ��(k) = 1�vuut1� ���(k) + ���(k � 1)2[���(k � 1) + �2n]= 1�vuut1� ��(k) + ��(k � 1)� 2�2n2��(k � 1) (27)It is worth mentioning that (27) is in accordance with the situation when convergenceis reached; in that case ��(k) = ��(k�1) = �2n and ��(k) = 0, as expected. Moreover,from the above relation, if �2n = 0 and admitting that ���(k) � ���(k � 1), ��(k)is close to one.For the normalized LMS (NLMS) algorithm, a recursive formula for ��(k) interms of ��(k � 1) and the order N was obtained in [4]. For the BNDR-LMSalgorithm, a routine based on (26) and (27) is presented in Table 21. This routinehas an important initialization parameter with a strong in
uence on the behaviorof ��(k). This parameter is the ratio �2d�2n where the numerator is the variance of thereference signal (c.f. Figure 3).1Note that, for simplicity, the circle (�) was dropped from the optimal values.
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5 Simulation ResultsIn order to test the BNDR-LMS algorithm, simulations were carried out for a sys-tem identi�cation problem. The system order N was equal to 10, the input signalwas correlated noise such that the input-signal autocorrelation matrix had a condi-tioning number around 55 and input-signal to observation-noise ratio SNR equalto 150dB. The learning curves (MSE in dB) for the NLMS, the NNDR-LMS (onereuse), and the BNDR-LMS are depicted in Figure 2, corresponding to an averageof 200 realizations.In this example we can clearly verify the superior performance of the BNDR-LMSalgorithm in terms of speed of convergence when compared to the NLMS and theNNDR-LMS (with one single reuse) algorithms. Simulations for the conventionalLMS algorithm and for the DR-LMS algorithm were also carried out for the samesetup, but their performances were, as expected, inferior compared to that of theNLMS algorithm and the results were omitted from Figure 2.In order to test performance of the algorithms in terms of mean-square error afterconvergence, we measured the excess of MSE (MSE - MSEmin) in dB. The MSEminis the variance of the observation noise, set equal to 10�6 in this experiment. Theresults are summarized in Table 3 where we can also observe the excess of MSE in dBfor a nonstationary environment. In this case, observation noise was set to zero andthe system (plant) coe�cients varied according to wo(k) = wo(k � 1) + v, where vis a vector whose elements were random numbers with zero mean and variance equalto 10�6. As we can see from Table 3 the BNDR-LMS algorithm performed closely12



to the NLMS and the NNDR-LMS algorithms in both stationary and nonstationaryenvironments.In terms of computational complexity, Table 4 shows comparisons among thesethree algorithms. Note that p = N + 1 is the number of coe�cients.We present in Figure 3 the curves of �(k) for values of desired signal to observa-tion noise ratio, SNR = 10log �2d�2n , from 0 to 40 dB. Note that for �2n = 0 (noiselesscase), the SNR goes to in�nity and the step-size would remain constant, equal toone.We will next demonstrate the superior performance obtained with the proposedadaptive step-size scheme which in real time can be computed a priori and storedin memory or computed. For this last option, an approximation of the curve is ofgreat interest. We will use here two classes of sequences also proposed in [4]. Theywere chosen due to their simplicity and, as will be seen later, lead to good results.The �rst class is the optimal sequence for the NLMS algorithm. It is given by�(k) = �(k � 1) 1� �(k�1)N+11� �2(k�1)N+1 (28)For the NLMS algorithm, the correct initialization for this sequence is given by�(0) = 1� �2n�2d . However, in our case we can choose an initial value for the step-sizesuch that the two sequences are close, as will be seen.The second class of sequences (referred to hereafter as the 1=k approximation)is quite simple and was also used in [4]. This sequence is given by�(k) = 8>>><>>>: 1 if 0 � k � c(N + 1)maxf�min; 11�c+ kN+1 g if k > c(N + 1) (29)13



The parameter c will be related to the SNR of the optimal sequence. A minimumstep-size was introduced here (it can be used in all sequences as well) in order toprovide tracking capability to the algorithm.For the �rst simulation, we used a white noise input signal in a system iden-ti�cation setup with N = 10, �2n = 10�2 and SNR = 20dB. Figure 4 shows theoptimal step-size sequence obtained with the algorithm described in Table 2 andother curves from the two classes of approximations used.From Figure 4, we can guess which curve to use. If we use the least norm ofthe di�erence between the optimal and the approximation sequences as a criterionto decide which curve to implement, the chosen parameters for this example will be�(0) = 0:93 and c = 3.With these parameters we have run a simulation with a �xed step-size, an optimalstep-size and the two approximations. The learning curves (average of 1000 runs)are depicted in Figure 5 where we can see that the same fast convergence andthe same small steady-state MSE are shared by the three time-varying step-sizesequences used. The �xed step-size was set to one and, as expected, has the highestmisadjustment.A second experiment was carried out in order to evaluate the performance of thisoptimal sequence in case where the input signal is correlated. The same setup wasused but with an input signal having a condition number around 180. Figure 6 showsus that, also in cases of correlated input signal, the proposed step-size sequence hasa good performance.A �nal remark is the possibility to use an estimator for �(k) instead of calculating14



��(k) using (26) as described in the algorithm of Table 2. We have also made anexperiment using the following estimator:�(k + 1) = ��(k) + (1� �)e2(k) (30)This experiment has shown us that a reasonable value for � is around 0:96. Theadvantage of this alternative approach is the possibility of fast tracking of suddenand strong changes in the environment. In this case, the instantaneous error becomeshigh and the estimated �(k+1) is increased such that the value of � approaches theunity again and a fast re-adaptation starts.When using this approach, it is worth remembering that, since equation (27)is of the type 1 � p1� x, the step-size �(k) can be written as x1+p1�x which is anumerically less sensitive expression. Equation (31) shows (27) rewritten with thisnumerically better expression.�(k) = �(k)+�(k�1)�2�2n2�(k�1)1 +r1� �(k)+�(k�1)�2�2n2�(k�1) (31)
6 ConclusionsThis paper introduced the BNDR-LMS algorithm which has faster convergence thana number of other LMS-like algorithms when the input signal is highly correlated.A geometric interpretation of the algorithm was also provided showing that thecoe�cients are updated in two normalized steps following orthogonal directions.The relationship between the BNDR-LMS algorithm and the orthogonal-projectionsalgorithmwas clari�ed. Simulations carried out in a system identi�cation application15



showed that the BNDR-LMS algorithm compared favorably with other LMS-likealgorithms in terms of speed of convergence. Moreover, the more correlated is theinput signal, the better the new algorithm performs. This improvement is clearlyveri�ed in cases of high signal to noise ratio.This work also addressed the optimization of the step-size of the BNDR-LMSalgorithm when the input signal is uncorrelated. An optimal sequence was proposedand a simple algorithm to �nd this sequence was introduced. Alternative approxi-mation sequences were also presented and their initialization parameters compared.Simulations carried out in a system identi�cation problem showed the good perfor-mance of the optimal step-size sequence as well as the possibility of using alternativessequences obtained with less e�ort and with similar e�ciency. It was possible toobserve that the same step-size sequence, optimal for the white noise input, can alsobe used in applications where a highly correlated input signal is present.
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Table 1: The Binormalized Data-Reusing LMS Algorithm [8].BNDR-LMS� = small positive valuefor each kf x1 = x(k)x2 = x(k � 1)d1 = d(k)d2 = d(k � 1)a = xT1 x2b = xT1 x1c = xT2 x2d = xT1w(k)if a2 == bcf w(k + 1) = w(k) + �(d1 � d)x1=(b+ �)gelsef e = xT2w(k)den = bc� a2A = (d1c+ ea� dc� d2a)=denB = (d2b + da� eb� d1a)=denw(k + 1) = w(k) + �(Ax1 +Bx2)gg
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Table 2: Algorithm for computing the optimal step-size sequence.�(k) of the BNDR-LMS algorithm��(0) = ��(�1) = �2d�2n = noise varianceN = adaptive �lter order�(0) = 1for each kf �(k) = 1�r1� ��(k)+��(k�1)2(��(k�1)+�2n)aa = h1 + �(k)(�(k)�2)N+1 ibb = N�(k)(1��(k))2(�(k)�2)(N+1)2cc = (1+N(�(k)�2)2)�(k)2(N+1)2 �2n��(k + 1) = aa��(k) + bb��(k � 1) + ccg
Table 3: Excess Mean-Square Error.Algorithm (MSE - MSEmin)dBType Stationary NonstationaryNLMS -59.09 -39.15NNDR-LMS -59.40 -39.42BNDR-LMS -58.60 -39.45

Table 4: Comparison of computational complexity.ALG. ADD MULT. DIV.NLMS 3p-1 3p 1NNDR-LMS 6p-2 6p 2BNDR-LMS 7p+3 7p+2 2
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