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Abstract

A new algorithm, the binormalized data-reusing least mean-squares (LMS)
algorithm is presented. The new algorithm has been found to converge faster
than other LMS-like algorithms, such as the Normalized LMS algorithm and
several data-reusing LMS algorithms, in cases where the input signal is strongly
correlated. The computational complexity of this new algorithm is only
slightly higher than a recently proposed normalized new data-reusing LMS
algorithm. Superior performance in convergence speed is, however, followed
by a higher misadjustment if the step-size is close to the value which allows
the fastest convergence. An optimal step-size sequence for this algorithm is
proposed after considering a number of simplifying assumptions. Moreover,
this work brings insight in how to deal with these conflicting requirements of
fast convergence and minimum steady-state mean-square error (MSE)



1 Introduction

The least mean-squares (LMS) algorithm is very popular and has been widely used
due to its simplicity. Nevertheless, its convergence speed is highly dependent on
the eigenvalue spread of the input-signal autocorrelation matrix (ratio between the
largest and the smallest eigenvalue also known as condition number) [1, 2]. Alter-
native schemes which try to improve convergence speed at the cost of minimum
additional computational complexity have been proposed and extensively discussed
in the past [1, 3, 4].

The data-reusing LMS (DR-LMS) algorithm, which uses current desired and in-
put signals repeatedly within each iteration is one among such schemes. It can be
easily shown that in the limit of infinite data reuses per iteration the DR-LMS and
the normalized LMS (NLMS) algorithms yield the same solution [5]. Performance
can be further improved with the recently proposed normalized and unnormalized
new data-reusing LMS (NNDR-LMS and UNDR-LMS) algorithms [5]. These algo-
rithms reuse the data pair, namely desired and input signals, from previous iterations
as well.

In reference [5], a graphical description of the NNDR-LMS and UNDR-LMS
algorithms was presented and it was shown that this new class of data-reusing al-
gorithms had prospective better performance than the NLMS algorithm. The ge-
ometric description also showed why improvement is achieved when the number of
reuses is increased. The new binormalized data-reusing LMS (BNDR-LMS) algo-

rithm described here employs normalization on two orthogonal directions obtained



from consecutive data pairs within each iteration. In all simulations carried out with
colored input signals, the new algorithm presented faster convergence than all other
algorithms mentioned above (case of two data pairs).

Convergence speed is related to the level of mean-squared error (MSE) in steady-
state which is controlled by a step-size parameter y. For g = 1, we have the fastest
convergence and also the highest steady-state MSE when compared to the values
of the step-size closer to zero. In [8], it was shown that the BNDR-LMS algorithm
converges if the step-size is in the range from zero to two. For practical reasons, the
value of 1 is kept between zero and one since it was observed that the steady-state
MSE was higher and the convergence slower when the step-size was set to a value
between one and two. Only after [9] an analysis for the MSE behavior of the BNDR-
LMS algorithm was available. In this paper, the expression for the MSE developed
in [9] is used to derive an optimal step-size sequence which allows fast convergence
and minimum misadjustment.

This paper is organized as follows: Section 2 presents LMS-like algorithms and
a graphical illustration of their coefficient updating. Section 3 introduces the new
BNDR-LMS algorithm as well as some remarks about its convergence behavior. In
section 4, the optimal step-size sequence is derived and several approximations for
this optimal sequence are also proposed. Section 5 contains simulation results and

Section 6 presents conclusions.



2 LMS, DR-LMS, NLMS and NDR-LMS Algo-

rithms

For the LMS algorithm, the coefficient vector w is updated in the opposite direction

of the gradient vector obtained from instantaneous squared output error, i.e.,
wias(k+1) = wins(k) — pVy[e? (k)] (1)
where
e(k) = d(k) — =" (k)wras (k) (2)

is the output error, d(k) is the desired signal, (k) is the input-signal vector con-
taining the N + 1 most recent input-signal samples, and p is the step size. The

coefficient-updating equation is

For the DR-LMS with L data reuses, the coefficients are updated as

wisi (k) = wi(k) + pes(k)z (k) (4)
for i =0,...,L; where
ei(k) = d(k) — =" (k)w;(k), (5)
wo(k) = wpr s (k), (6)
and
wpr—rus(k+1) = wpi (k). (7)
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Note that if L = 0 these equations correspond to the LMS algorithm and that p
is the step-size.

The NLMS algorithm normalizes the step-size such that the relation expressed
by &l (k)wnius(k + 1) = d(k) is always satisfied, i.e.,

e(k)
x?(k)x(k) + €

z (k) (8)

wyrms(k+1) = wypus(k) +

where € is a very small number used to avoid division by zero. Normalization for
this algorithm implies a line search in the opposite direction of the gradient towards
the minimum of the instantaneous squared output error.

For the NNDR-~LMS algorithm with L data reuses, the coefficient vector is up-

dated by the following relations:

winr(K) = wilk) + s (k=) )
for i = 0,...,L; where
ei(k) = d(k) — " (F)w,(b) (10)
wy (k) = wrwpr-rars (k). (1)
and
wxnpr-parsh+ 1) = wp (b). (12

For the sake of comparison, our interest is in one single reuse such that L = 1.
Figure 1 illustrates geometrically the updating of the coefficient vector in a two-
dimensional problem for all algorithms discussed above, starting from an arbitrary



Let S(k) denote the hyperplane which contains all vectors w such that ' (k)w =
d(k). In a noise-free perfect-modeling situation, S(k) contains the optimal coeffi-
cient vector, w,. Furthermore, it can be easily shown that (k) and, consequently,
V.[e?(k)] are orthogonal to the hyperplane S(k).

The solution given by the DR-LMS algorithm, w(k + 1), iteratively approaches
S(k) by following the direction given by x(k) (see 3 in Figure 1). This solution
would reach S(k) in the limit, as the number of data reuses, L, goes to infinity [5].
The NLMS algorithm performs a line search to yield the solution w(k + 1) € S(k)
in a single step (see 4 in Figure 1). The algorithms presented in [5] use more than
one hyperplane, i.e., data pair (z,d), in order to produce a solution w(k + 1) (see
5 and 6 in Figure 1) that is closer to w, than the solution obtained with only
the current data pair (x(k),d(k)). For a noise-free perfect-modeling situation, w,
is at the intersection of N + 1 hyperplanes constructed with linearly independent
input-signal vectors. In this case, the orthogonal-projections algorithm [6] yields
the solution w, in N + 1 iterations. This algorithm may be viewed as a normalized
data-reusing orthogonal algorithm which utilizes N + 1 data pairs (x, d).

In the next section, the new binormalized data-reusing LMS algorithm will be
described. This algorithm combines data reusing, orthogonal projections of two con-
secutive gradient directions, and normalization in order to achieve faster convergence
when compared to other LMS-like algorithms. At each iteration, the BNDR-LMS
yields the solution w(k + 1) which is at the intersection of hyperplanes S(k) and
S(k —1) and at a minimum distance from w(k) (see 7 in Figure 1). The algorithm

can also be viewed as a simplified version of the orthogonal projections algorithm



which utilizes just two previous consecutive directions.

3 The BNDR-LMS Algorithm

In order to state the problem, we recall that the solution which belongs to S(k) and

S(k — 1) at a minimum distance from w(k) is the one that solves

Goin [lw(k+1) —w(k)| (13)
subjected to
e’ (k)yw(k + 1) = d(k) (14)
and
el (k — Dw(k +1) =d(k — 1) (15)

The functional to be minimized is, therefore,
flwk+1)] = [wk+1) —wkE)] [wk+1) - wk)]
[zl (k)w(k + 1) — d(k)]
+ X[ (k — Dw(k +1) — d(k — 1)] (16)

which, for linearly independent input-signal vectors (k) and x(k — 1), has the

unique solution

w(k+1) =w(k)+ (A /2)x(k) + (—X2/2)x(k — 1) (17)
where
2= (18)



and

“Xp/2 = ngg@ (19)
with:
numl = [d(k) — ' (k)w(k)]z? (k — 1)x(k —1)
—[d(k — 1) — 2" (k — Vw (k)" (k)z(k — 1)
num?2 = [d(k—1)—z' (k- Dw(k)]z? (k)z(k)
—[d(k) — =" (F)w(k)]z" (k — )z (k)
den = x'(k)x(k)x”(k —1)x(k —1)
—[=" (k)z(k — 1) (20)

It can be verified by simulations that the excess of mean-square error (MSE) for
the BNDR-LMS algorithm is close to the variance of the measurement noise when
there is no modeling error in a system-identification example. In order to control
this excess of MSE, a step-size p will be introduced. It is worth mentioning that
the maximum convergence rate is usually obtained with y = 1. The BNDR-LMS

algorithm is summarized in Table 1.

3.1 Geometrical Derivation

This algorithm can be alternatively derived from a purely geometrical reasoning.
The first step is to reach a preliminary solution, w(k), which belongs to S(k) and
is at a minimum distance from w(k). This is achieved by the NLMS algorithm
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starting from w(k), i.e.,

e(k)

wl(k) = w(k) + W

z (k) (21)

In the second step, w; (k) is updated in a direction orthogonal to the previous one,
therefore belonging to S(k), until the intersection with S(k — 1) is reached. This is
achieved by the NLMS algorithm starting from w; (k) and following the direction

xi (k) which is the projection of @(k — 1) onto S(k).

—w e1(k) i
ik 1) = (8) + 2t () (22)
where
T A GIL A Gl B
ot = [ 205 0t 1) (23)
and
er(k) = d(k — 1) — 2" (k — Dy (k) (24)

The use of &1 (k) obtained from @(k — 1) assures that the minimum-distance path
is chosen.

It is easy to show that if the BNDR-LMS algorithm was modified to utilize
k mod (N + 2) orthogonal directions, instead of two orthogonal directions, the
resulting algorithm would be the orthogonal-projections algorithm described in [6]
requiring reinitialization after every N + 1 iterations.

Note that the requirement of linear independence of consecutive input-signal
vectors x(k) and x(k — 1), necessary to ensure existence and uniqueness of the
solution, is also manifested here. If (k) and x(k — 1) are linearly dependent, then
we cannot find xi (k) € S(k) and the algorithm yields w(k + 1) = w; (k).

9



3.2 Mean-square Error Analyzis

Let us assume that an unknown FIR filter is to be identified by an adaptive filter of
the same order, employing the BNDR-LMS algorithm. Input signal and measure-
ment noise are assumed to be independent and identically distributed zero-mean
white-noise with variances o2 and o2.

Assuming that the minimum mean-square error was caused by additive noise
only, an expression for the MSE convergence behavior of the BNDR-LMS algorithm
was obtained in [9] in terms of the excess in the MSE, defined as the difference
between the MSE and the minimum MSE after convergence, i.e., A{(k) = £(k) —

Emin = Ele*(k)] — o2.

n

Ag(k+1) = [1 + ”](V“i;f)] AE(k)

Np(l — p)*(p — 2)
(N +1)?

1+ Np =27

(N+D)(N+2—vy)"

AL(k 1)

(25)

where v, is the kurtosis of the input signal.

4 Optimal Step-Size Sequence

In this section the optimal step-size sequence for the given problem is derived. We
will follow an approach similar to that used in [4] assuming that up to time k the
optimal sequences 1,(0) to po(k — 1) and A& (0) to A&, (k) are available. For the
sake of simplicity, the kurtosis of the input signal is assumed equal to one in (25),

i.e.,
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pk) (u(k) - 2)
N+l A& (k)

Nu(k)(1 = p(k)*(u(k) = 2)
(N+1)2
(1+ N (u(k) = 2)")nlk)* ,

(N +1)2 on

A¢(k+1) = |1+

A& (k—1)

(26)

By differentiating A¢(k + 1) with respect to (k) and setting the result equal to

zero, we obtain

Ago(k) + Ago(k — ]')

2[A&(k —1) + o7]
AR
\ 260(1{; - 1)

k) = 1— 41—
N() \

(27)

It is worth mentioning that (27) is in accordance with the situation when convergence
is reached; in that case & (k) = &(k—1) = 02 and p, (k) = 0, as expected. Moreover,
from the above relation, if 62 = 0 and admitting that A& (k) ~ A& (kK — 1), po.(k)
is close to one.

For the normalized LMS (NLMS) algorithm, a recursive formula for p.(k) in
terms of uo(k — 1) and the order N was obtained in [4]. For the BNDR-LMS
algorithm, a routine based on (26) and (27) is presented in Table 2!. This routine
has an important initialization parameter with a strong influence on the behavior

of 11,(k). This parameter is the ratio ¢ where the numerator is the variance of the

On

reference signal (c.f. Figure 3).

!Note that, for simplicity, the circle (o) was dropped from the optimal values.
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5 Simulation Results

In order to test the BNDR-LMS algorithm, simulations were carried out for a sys-
tem identification problem. The system order N was equal to 10, the input signal
was correlated noise such that the input-signal autocorrelation matrix had a condi-
tioning number around 55 and input-signal to observation-noise ratio SN R equal
to 150dB. The learning curves (MSE in dB) for the NLMS, the NNDR-LMS (one
reuse), and the BNDR-LMS are depicted in Figure 2, corresponding to an average
of 200 realizations.

In this example we can clearly verify the superior performance of the BNDR-LMS
algorithm in terms of speed of convergence when compared to the NLMS and the
NNDR-LMS (with one single reuse) algorithms. Simulations for the conventional
LMS algorithm and for the DR-LMS algorithm were also carried out for the same
setup, but their performances were, as expected, inferior compared to that of the
NLMS algorithm and the results were omitted from Figure 2.

In order to test performance of the algorithms in terms of mean-square error after
convergence, we measured the excess of MSE (MSE - MSE,;,) in dB. The MSE,;,,
is the variance of the observation noise, set equal to 107° in this experiment. The
results are summarized in Table 3 where we can also observe the excess of MSE in dB
for a nonstationary environment. In this case, observation noise was set to zero and
the system (plant) coefficients varied according to w,(k) = w,(k — 1) + v, where v
is a vector whose elements were random numbers with zero mean and variance equal

to 107%. As we can see from Table 3 the BNDR-LMS algorithm performed closely
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to the NLMS and the NNDR-LMS algorithms in both stationary and nonstationary
environments.

In terms of computational complexity, Table 4 shows comparisons among these
three algorithms. Note that p = N + 1 is the number of coefficients.

We present in Figure 3 the curves of p(k) for values of desired signal to observa-
tion noise ratio, SNR = 10l0g§—§, from 0 to 40 dB. Note that for o2 = 0 (noiseless
case), the SNR goes to infinity and the step-size would remain constant, equal to
one.

We will next demonstrate the superior performance obtained with the proposed
adaptive step-size scheme which in real time can be computed a prior: and stored
in memory or computed. For this last option, an approximation of the curve is of
great interest. We will use here two classes of sequences also proposed in [4]. They
were chosen due to their simplicity and, as will be seen later, lead to good results.
The first class is the optimal sequence for the NLMS algorithm. It is given by

m(k—1)

(k) = p(k — 1)% (28)
N+1

For the NLMS algorithm, the correct initialization for this sequence is given by
u(0) =1-— Z—i} However, in our case we can choose an initial value for the step-size
such that the two sequences are close, as will be seen.

The second class of sequences (referred to hereafter as the 1/k approximation)

is quite simple and was also used in [4]. This sequence is given by
1 if0<k<eN+1)
p(k) = (29)

13



The parameter ¢ will be related to the SN R of the optimal sequence. A minimum
step-size was introduced here (it can be used in all sequences as well) in order to
provide tracking capability to the algorithm.

For the first simulation, we used a white noise input signal in a system iden-
tification setup with N = 10, 02 = 1072 and SNR = 20dB. Figure 4 shows the
optimal step-size sequence obtained with the algorithm described in Table 2 and
other curves from the two classes of approximations used.

From Figure 4, we can guess which curve to use. If we use the least norm of
the difference between the optimal and the approximation sequences as a criterion
to decide which curve to implement, the chosen parameters for this example will be
1(0) = 0.93 and ¢ = 3.

With these parameters we have run a simulation with a fixed step-size, an optimal
step-size and the two approximations. The learning curves (average of 1000 runs)
are depicted in Figure 5 where we can see that the same fast convergence and
the same small steady-state MSE are shared by the three time-varying step-size
sequences used. The fixed step-size was set to one and, as expected, has the highest
misadjustment.

A second experiment was carried out in order to evaluate the performance of this
optimal sequence in case where the input signal is correlated. The same setup was
used but with an input signal having a condition number around 180. Figure 6 shows
us that, also in cases of correlated input signal, the proposed step-size sequence has
a good performance.

A final remark is the possibility to use an estimator for £(k) instead of calculating
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A&(k) using (26) as described in the algorithm of Table 2. We have also made an

experiment using the following estimator:
E(k +1) = A&(k) + (1 — N)e? (k) (30)

This experiment has shown us that a reasonable value for A is around 0.96. The
advantage of this alternative approach is the possibility of fast tracking of sudden
and strong changes in the environment. In this case, the instantaneous error becomes
high and the estimated £(k+ 1) is increased such that the value of p approaches the
unity again and a fast re-adaptation starts.

When using this approach, it is worth remembering that, since equation (27)
is of the type 1 — /1 — z, the step-size p(k) can be written as Trv—= Which is a

numerically less sensitive expression. Equation (31) shows (27) rewritten with this

numerically better expression.

§(k)+€(k—1)—2
Zf (k—1) (31)
1 + \/1 +f k ]. 20’2
2&(k— 1

6 Conclusions

This paper introduced the BNDR-LMS algorithm which has faster convergence than
a number of other LMS-like algorithms when the input signal is highly correlated.
A geometric interpretation of the algorithm was also provided showing that the
coefficients are updated in two normalized steps following orthogonal directions.
The relationship between the BNDR-LMS algorithm and the orthogonal-projections

algorithm was clarified. Simulations carried out in a system identification application
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showed that the BNDR-LMS algorithm compared favorably with other LMS-like
algorithms in terms of speed of convergence. Moreover, the more correlated is the
input signal, the better the new algorithm performs. This improvement is clearly
verified in cases of high signal to noise ratio.

This work also addressed the optimization of the step-size of the BNDR-LMS
algorithm when the input signal is uncorrelated. An optimal sequence was proposed
and a simple algorithm to find this sequence was introduced. Alternative approxi-
mation sequences were also presented and their initialization parameters compared.
Simulations carried out in a system identification problem showed the good perfor-
mance of the optimal step-size sequence as well as the possibility of using alternatives
sequences obtained with less effort and with similar efficiency. It was possible to
observe that the same step-size sequence, optimal for the white noise input, can also

be used in applications where a highly correlated input signal is present.

References

[1] P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation.

Kluwer Academic Press, Boston, MA, USA, 1997.

2] S. Haykin, Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, NJ, USA,

3rd edition, 1996.

3] S. Roy and J.J. Shynk, “Analysis of the data-reusing LMS algorithm,” 32nd

Midwest Symposium Circuits and Systems, pp. 1127-1130, Urbana-Champaign,

16



IL, USA, 1990.

D. Slock, “On the convergence behavior of the LMS and the normalized LMS
algorithms,” IEEE Transactions on Signal Processing, vol. 41, pp. 2811-2825,

Sept. 1993.

B.A. Schnaufer, Practical Techniques for Rapid and Reliable Real-Time Adap-

tive Filtering, Ph.D. Thesis, Urbana-Champaign, IL, USA, 1995.

G.C. Goodwin and K.S. Sin, Adaptive Filtering Prediction and Control.

Prentice-Hall, Englewood Cliffs, NJ, USA, 1984.

J. A. Apolinario Jr., M. L. R. de Campos and P. S. R. Diniz, “The Binormalized
Data-Reusing LMS Algorithm,” Proceedings of the XV Simpdsio Brasileiro de

Telecomunicagoes, Recife, Brazil, 1997.

J. A. Apolinario Jr., M. L. R. de Campos and P. S. R. Diniz, “Convergence
analysis of the Binormalized Data-Reusing LMS Algorithm,” Proceedings of

the European Conference on Circuit Theory and Design, Budapest, Hungary,

1997.

M. L. R. de Campos, J. A. Apolinario Jr. and P. S. R. Diniz, “Mean-squared er-
ror analysis of the Binormalized Data-Reusing LMS algorithm using a discrete-
angular-distribution model for the input signal,” accepted to the International

Conference on Acoustics, Speech, and Signal Processing, Seattle, USA, 1998.

17



S(k-1)

S(k)

Figure 1: Updating the coefficient vector:
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Figure 2: Learning curves of the following algorithms: NLMS, NNDR-LMS and
BNDR-LMS.
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OPTIMAL STEP-SIZE SEQUENCES FOR N=10
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Figure 3: Optimal p(k) sequences for the BNDR-LMS algorithm.

OPTIMAL STEP-SIZE SEQUENCE FOR SNR=20dB
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Figure 4: Optimal step-size sequence and two classes of approximation sequences.
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LEARNING CURVES FOR TIME-VARYING STEP-SIZE
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Figure 5: Learning curves for the fixed step-size, the optimal step-size and its two
approximations.
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Figure 6: Comparing the learning curves for the case of colored input signal.
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Table 1: The Binormalized Data-Reusing LMS Algorithm [8].

BNDR-LMS

e = small positive value
for each k
{ z1 = (k)

xo=x(k—1)

d; = d(k)

dy =d(k—1)

a=xlz,

b=zxlx,

c=xlx,

d = xTw(k)

if a? == bc

{ wk+1) =w(k) + p(d — d)z1/(b+€)

}

else

{ e=2iw(k)
den = bc —a
A = (dyc+ ea — dc — dya)/den
B = (db+ da — eb — dya)/den
w(k+1) =w(k) + p(Ax, + Bxs)

}

}

2
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Table 2: Algorithm for computing the optimal step-size sequence.

p(k) of the BNDR-LMS algorithm
AL(0) = Ag(-1) =0

02 = noise variance

N = adaptive filter order

u(0) =1

for each k

_ AE(k)+AE(k—1)
Uplk) = 1=/ = 55 1+0n)

aa = [1 + B0

+1
bh = Nuk)(A—p(k))? (u(k)=2)
(N+1)2 )
1+ N (u(k)—2)*)u(k)?
ce = { (ﬂ((N)Jrl)g Ju(k) o2
AE(k + 1) = aaA&(k) + bbAE(k — 1) + cc

}

Table 3: Excess Mean-Square Error.

Algorithm (MSE - MSE, i) an
Type Stationary ‘ Nonstationary
NLMS -59.09 -39.15

NNDR-LMS -59.40 -39.42
BNDR-LMS -58.60 -39.45

Table 4. Comparison of computational complexity.

| ALG. [ ADD | MULT. | DIV. |
NLMS 3p-1 3p 1

NNDR-LMS || 6p-2 |  6p 2

BNDR-LMS || 7p+3 | 7p+2 | 2
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