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Chapter 1
Introduction
1.1 MotivationAdaptive �lters �nd many applications in communications systems, e.g., acousticecho cancellation [1], channel equalization [2], and interference suppression [3]. Anadaptive �lter takes measurements from the environment and modi�es itself basedon these measurements; in other words, adaptive �lters are self-designing [4]. Whenselecting an adaptive �ltering algorithm, it is usually desirable that the algorithmconverges to the optimum solution fast and in a computationally cost-e�cient man-ner. The choice of the algorithm is, therefore, based on the computational com-plexity and the convergence speed. The convergence speed is often a con�ictingrequirement with the computational complexity of the algorithm. Therefore, the al-gorithms that successfully combine high convergence speed and low computationalcomplexity are of special interest.The Recursive Least-Squares (RLS) algorithm and the Least Mean Square (LMS)algorithm are the two most commonly used adaptive �ltering algorithms. The LMSalgorithm has the desirable property of low computational complexity but su�ersfrom slow convergence speed for correlated input signals. In some applications with1



a high number of unknown weights, such as Volterra system identi�cation, slowconvergence speed is not appreciated. The RLS algorithm on the other hand is oneof the fastest converging adaptive �ltering algorithms. The convergence speed ofthe RLS algorithm usually serves as a benchmark for adaptive �ltering algorithms.However, there are also numerical stability issues associated with it, mainly whenimplemented in a �nite precision environment [5]. Another issue with this algorithmis a high computational cost. The numerical stability problem can be addressed viaQR-decomposition (QRD) based algorithms. By considering the fast QRD basedalgorithms we can �nd algorithms with fast convergence, numerical stability, and lowcomputational complexity of O(N) [6], [7], [8]. Based on their properties, fast QRD-RLS algorithms can be considered most suitable for a wide range of applications.The main idea in the FQRD-RLS algorithms is to exploit the underlying time-shiftstructure of the input data vector in order to replace matrix update equations withvector update equations [9]. The vector update equations are derived from forwardand backward predictions. This thesis considers algorithms based on updating ofthe backward prediction errors, which are known to be numerically robust [10]. Themain limitation of the FQRD-RLS algorithms is the unavailability of an explicitweight vector term. Furthermore, it does not directly provide the variables allowingfor a straightforward computation of the weight vector, as is the case with theconventional QRD-RLS algorithm, where a back-substitution procedure can be usedto compute the coe�cients. Therefore, their applications are limited to output errorbased (e.g., noise or echo cancellation).The objective of this thesis is to obtain the weights embedded in the internal vari-ables of the FQRD-RLS algorithm, in order to extend the range of applications ofthe single-channel and multichannel FQRD-RLS algorithm. The proposed methodmust rely on the knowledge of only vector updates present in the FQRD-RLS algo-rithms, as opposed to the matrix-embedded structure of the conventional QRD-RLSdescribed in [11]. The knowledge of weights enables new applications for FQRD-RLS algorithm such as, system identi�cation for linear and Volterra based systems,spectral analysis of the channel equalizer weights, and antenna beamforming for2



MIMO systems. We also seek e�cient techniques that enable output �ltering with-out obtaining the weights explicitly. This technique can be utilized in burst-typetraining scenarios and pre-equalization using indirect learning architecture [12].
1.2 Organization of the ThesisA general overview of adaptive �ltering is presented in Chapter 2. A few applicationsof adaptive �ltering are mentioned. The Least Mean Square algorithm and theRecursive Least Square based algorithms, basic RLS, QRD-RLS and IQRD-RLSare then introduced. Chapter 3 elaborates the fast QRD-RLS algorithm. Firstforward and backward prediction are introduced, and later these concepts are usedto derive the fast QRD-RLS algorithms based on forward and backward predictionerror updates. The derivatives of the FQRD-RLS algorithm based on backwardprediction errors are also derived. The main contributions of the thesis are presentedin Chapters 4 and 5.The single channel weight extraction algorithm is derived in Chapter 4. The mainidea, summarized by two lemmas, is presented to provide an algorithm that allows,at any time instant during adaptation, to sequentially extract the columns of theCholesky factor embedded in the FQRD-RLS algorithm. From the Cholesky factorthe true weights of the underlying LS problem can be obtained by reusing theknown FQRD-RLS variables. In this chapter we also present the equivalent-output�ltering algorithms that allow us to reproduce the output signal without obtainingthe weights explicitly. As a consequence, the FQRD-RLS algorithm can be used inconjunction with equalizer and pre-equalizer applications. A detailed derivation ofthe algorithm is presented along with the experimental results.Chapter 5 elaborates the multichannel concepts and provides the derivation of themultichannel Fast QRD-RLS algorithm based on backward and forward predictionerror updates. Next, the weight extraction algorithm for the multichannel FQRD-RLS algorithm is provided with the experimental results. The idea of equivalent-3



output �ltering for the single-channel case is also extended for the multichannelFQRD-RLS algorithm. Conclusions are drawn in Chapter 6.
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Chapter 2
Adaptive Filtering and Algorithms
There are many applications in communication systems, digital control and signalprocessing that require the knowledge of a time-varying unknown system. Theobjective is either to identify the unknown system or to identify a function of it,e.g., the inverse function. A �lter is designed based on the knowledge of statisticalcharacteristics of the input signal. If the statistics of the input signal are changingor missing, an optimum �lter cannot be designed. In such scenario pre-designedstatic �lters are not useful, instead we require a special class of self-designing �ltersknown as adaptive �lters. The adaptive �lters are not pre-designed but they ratheruse the input signal and a desired signal to design themselves.Adaptive �ltering is a method of recursively �nding the estimate of the signal andthen updating the �lter parameters according to a �xed criteria, based on theestimate. Adaptive �lters are therefore time varying, data dependent, and self-designing. Due to the self-designing property, adaptive �lters are appropriate forthe above mentioned problem that appears in applications such as system identi-�cation, channel equalization, pre-equalization, noise cancellation, adaptive beam-forming, etc.In technical literature, we can �nd a large number of adaptive �ltering algorithms.They di�er in many distinct ways including the cost function, convergence proper-5



ties, algorithmic complexity, etc. Here we consider only the recursive least-squaresalgorithm and the square root least-squares based algorithms including the QRD-RLS, the inverse QRD-RLS and the fast QRD-RLS (FQRD-RLS) algorithms. TheRLS algorithms are known for their good performance in terms of fast convergence,but also for high computational complexity.The purpose of this chapter is to introduce the basic concepts of adaptive �lters andthe adaptive �ltering algorithms to be used in this thesis. In Section 2.1 an adap-tive �lter setup is presented and the basic notation is introduced. In Section 2.2applications of adaptive �ltering are discussed, which include system identi�cation,post-equalizer, pre-equalizer, and noise canceler. The RLS adaptive �ltering al-gorithms are addressed in Section 2.4 followed by a table of their computationalcomplexity.
2.1 Adaptive Filter SetupThe basic setup of an adaptive �lter is depicted in Figure 2.1, where x(k), y(k), d(k),and e(k) are the input, the output, the desired, and the error signals, respectively.The adaptive �lter considered in this document has Finite Impulse Response (FIR).The N -element weight vector available at the time instant k (from time instant k−1,i.e., assuming one unit delay), is denoted by w(k − 1), where

w(k − 1) =
[

w0(k − 1) w1(k − 1) . . . wN−1(k − 1)
]T (2.1)and wi(k− 1) denotes the ith element of the weight vector. The �lter output y(k) isa linear combination of the current and the previous N − 1 values of the input x(k),given by

y(k) = wT(k − 1)x(k) (2.2)where
x(k) =

[

x(k) x(k − 1) . . . x(k − N + 1)
]T (2.3)6
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Figure 2.1: Schematic diagram of an adaptive �lteris the input data vector, index k de�nes the current sample value, while k−i indicatesthe ith previous value. The de�nition of the a priori error signal is given by
e(k) = d(k) − y(k) (2.4)An adaptive �ltering algorithm attempts to recursively minimize a cost functionoften related to the error signal. The objective is to �nd a weight vector thatcorresponds to the minimum of the cost function. The weight vector that minimizesthe cost function is called the optimum weight vector.The performance of an adaptive �lter is determined by its properties. The mostimportant properties are [4]:1. Rate of convergence. The number of iterations required to converge to thesteady-state solution depends on the rate of convergence. Fast convergencemeans the algorithm reaches the steady-state solution in a small number ofiterations. 7



2. Misadjustment. A quantitative measure for how close the obtained solution isto the optimum solution.3. Robustness. An adaptive �lter is said to be robust when small disturbances ininput distribution result in small estimation errors.4. Computational complexity. The number of operations and the memory re-quired to complete an iteration. The operations may include multiplications,additions, divisions, square roots.6. Filter stability. Adaptive FIR �lters are inherently stable. An IIR basedadaptive �lter algorithm becomes unstable when the poles of the �lter areoutside the unit circle. An unstable adaptive �lter causes the adaptationalgorithm to diverge.7. Numerical stability. An algorithm is numerically stable if it converges in �nite-precision environments.In this thesis, these performance criteria are considered for each algorithm.
2.2 ApplicationsThis section presents four applications of adaptive �ltering that will be referred tothroughout this thesis. The particular applications are selected in order to elaborateon the shortcomings of the FQRD-RLS algorithm. From the applications consid-ered here, only the noise cancellation application is suitable for the FQRD-RLSalgorithms, whereas system identi�cation and pre-equalization are applications forwhich the FQRD-RLS algorithms cannot be used in its present form. Also a post-equalization scenario is discussed for which the conventional FQRD-RLS algorithmis not applicable. 8



2.2.1 System Identi�cationSystem identi�cation is one of key setups of adaptive �ltering in signal processing,communications and control systems, as in [1,13�15]. A system identi�cation setupis depicted in Figure 2.2. The purpose of system identi�cation is to estimate thecoe�cients of an unknown system or plant. The unknown system, here modelledas an FIR �lter, and the adaptive �lter have the same input signal. The desiredor reference signal corresponds to the output of the unknown system contaminatedwith measurement noise n(k).After the adaptation algorithm has converged, the coe�cients of the unknown sys-tem (in case of perfect modelling) are given by the adaptive �lter weight vector. Analgorithm incapable of providing the weight vector in an explicit form cannot beused for such applications. For example, the FQRD-RLS algorithm considered inChapter 3 does not provide the weight vector. Therefore, if system identi�cation isdesired using a stable RLS algorithm, we must restore to algorithms with compu-tational complexity of O(N2), like the inverse QRD-RLS algorithm (see Section 2.4for algorithm details).2.2.2 Post-EqualizerThe purpose of the post-equalizer setup is to �nd the coe�cients of the inverse sys-tem to the unknown system. The setup comprises an adaptive �lter connected incascade with the unknown system, hence the name �post-equalizer� or simply equal-izer. Furthermore, the input to the unknown system also acts as the desired signal.Channel equalization is an application of the post-equalizer in which a communi-cation channel acts as the unknown system. The channel makes the transmittedsignal unrecognizable for the receiver due to intersymbol interference (ISI). Post-equalizer is used to model the inverse channel. The inverse channel is then appliedto the received signal so as to undo the distortion due to the ISI [16], [17], [2]. Apost-equalizer setup for channel equalization is shown in Figure 2.3, where x(k) is9
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the transmitted signal, d(k) is a training signal corresponding to a delayed versionof the transmitted signal x(k), y(k) is the output of the adaptive �lter, and e(k) isthe error between d(k) and y(k). The adaptive �lter adjusts the weights w(k − 1)so that y(k) gives an estimate of x(k − L). The delay expressed by z−L is used toprovide the correct synchronization of the training sequence.After the convergence, the adaptive �lter weight vector approximates the inverse ofthe channel. At this stage the adaptation process can be stopped to save computa-tional costs, provided that the channel is not time-varying. The output is obtainedby using the adaptive �lter coe�cients from the inverse �lter. As discussed before,this is only possible if the adaptive algorithm can provide the coe�cients in explicitform. For example, the Fast QRD-RLS based algorithms do not provide the facilityto do so due to unavailability of its coe�cients at each iteration.10
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Figure 2.3: The post-equalizer for channel equalization2.2.3 Pre-EqualizerThe aim of the pre-equalizer is to equalize the unknown linear system using a specialsetup known as the indirect learning architecture [12]. Consider a pre-equalizersetup as in Figure 2.4. It is desired that the output of the unknown system y(k)matches the input to the pre-equalizer x(k). The input to the adaptive �lter is y(k),its output u(k) attempts to match the output of the pre-equalizer d(k). For theadaptive �lter, d(k) is the desired signal, and u(k) is the estimate of the desiredsignal. A cost function related to error signal e(k) = d(k)−u(k) is to be minimized.A consequence of this minimization is that y(k) becomes an estimate of x(k).The most critical step at each iteration is to copy the adaptive �lter weight vector tothe pre-equalizer. Without this crucial step, the indirect learning architecture [12]cannot work. The adaptive �ltering algorithm should have the provision for copyingthe weight vector at every iteration. Again the RLS, the QRD-RLS, and the inverseQRD-RLS algorithms are suitable for this application.2.2.4 Noise CancellerNoise or interference cancellation has many applications, e.g, in biomedical appli-cations where an adaptive �lter is used to remove 60-Hz interference in electrocar-diography [18], in cancellation of engine noise in the cockpit of a jet �ghter [19],11
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Figure 2.4: The pre-equalizer using indirect learning architectureetc. A noise cancellation setup is given in Figure 2.5. In the scenario, there is aninterference source. The interference signal is given by i(k). The interference sourcecorrupts a wanted signal x(k) after being modi�ed by a system H1(z). The objectiveis to remove the interference from the wanted signal. The interference signal afterpassing through another system H2(z), or , or d(k) = i(k) ∗ h2(k) yet correlated to
i(k) ∗h1(k), is taken as the desired signal. The corrupted signal is given as an inputto the adaptive �lter. Eventually, the error signal gives the estimate of the signal ofinterest.In this application, the FQRD-RLS algorithm can be used, as the weight vectorcomputation step is not necessary. The Fast QRD-RLS algorithm would be preferredover the QRD-RLS or the inverse QRD-RLS because of its lower computationalcomplexity.
2.3 The LMS AlgorithmThe LMS algorithm is popular due to its low computational complexity and provenrobustness [20]. The LMS algorithm minimizes the objective function that is based12
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on the MSE, i.e., the instantaneous estimate of the MSE

Jw = e2(k) (2.5)The coe�cient vector is updated by taking a step in the direction of the negativegradient of the objective function
∂Jw

∂w(k)
= −2e(k)x(k) (2.6)Therefore the update equation for the LMS algorithm becomes

w(k) = w(k − 1) + µe(k)x(k) (2.7)where µ is the step size governing the stability, convergence speed and misadjust-ment. The value of the step size should be chosen in the range [4]
0 < µ < 2/tr{R} (2.8)13



Table 2.1: The LMS Algorithm.for each k{
e(k) = d(k) − xT(k)w(k − 1)
w(k) = w(k − 1) + µe(k)x(k)}where tr{.} is the trace operator and

R = E{x(k)xT(k)} (2.9)is the input-signal autocorrelation matrix. The upper bound is loose for practicalscenarios, therefore much smaller values are recommended [21]. Another variationof the LMS algorithm is the NLMS algorithm, which uses a time varying step size
µ/‖x(k)‖2. A drawback of the LMS and NLMS algorithms is the slow convergencespeed for colored input signal. This thesis focuses on the algorithms with fastconverging speed, so that LMS algorithm is not considered further in the thesis.The LMS algorithm is given in Table 2.1.
2.4 The family of RLS Adaptive Filtering AlgorithmsAs mentioned before, only the weighted least-squares based adaptive �ltering al-gorithms are considered in this thesis. The idea of this family of adaptive �ltersstarts from the weighted least-squares problem. The direct solution to the weightedleast squares problem leads to the RLS algorithm [4], [21]. The RLS algorithm usesmatrix inversion lemma to compute the matrix inverse which may cause numericalstability problems mainly in a �nite-precision environment. The QRD-RLS algo-rithm avoids the matrix inversion lemma by considering the QR decomposition ofthe autocorrelation matrix. This results in a numerically stable algorithm. TheQRD-RLS algorithm does not show any signi�cant advantage over the RLS algo-14



rithm in terms of computational complexity. However there is a disadvantage withthe QRD-RLS algorithm: the computation of weight vector requires an extra com-putational e�ort. The inverse QRD-RLS algorithm resolves this limitation. In thefollowing subsections the RLS, the QRD-RLS, and the inverse QRD-RLS algorithmare elaborated; for each algorithm a short derivation is given followed by the advan-tages and limitations. The summary of each algorithm in form of pseudocode is alsopresented in the tables.
2.4.1 Recursive Least Squares AlgorithmConsider the adaptive �lter setup of Figure 2.1. The WLS solution attempts to �ndthe vector w that minimizes, at each time instant k, the objective function given as

Jw =
k∑

i=0

λie2(k − i) =
k∑

i=0

λi[d(k − i) − xT(k − i)w]2 (2.10)where λ is the forgetting factor, and e(k−i) = d(k−i)−xT(k−i)w is an a posteriorierror signal. The objective function in Equation (2.10) can also be written in vectorform as
Jw = ‖e(k)‖2 (2.11)where e(k) is the error vector containing the weighted past error values λi/2e(k − i)

e(k) =
[

e(k) λ1/2e(k − 1) . . . λk/2e(0)
]T

= d(k) − X(k)w (2.12)where w is the optimum weight vector to be solved for, and the input data matrix
X(k) ∈ R

(k+1)×N is
X(k) =

[

x(k) λ1/2x(k − 1) . . . λk/2x(0)
]T (2.13)15



and the desired signal vector d(k) ∈ R
(k+1)×1 is

d(k) =
[

d(k) λ1/2d(k − 1) . . . λk/2d(0)
]T (2.14)Minimizing the objective function in Equation (2.10) with respect to the weightvector w results in

w(k) = arg minwJw = R−1(k)p(k) (2.15)where the sample input-signal autocorrelation matrix R(k) ∈ R
N×N is given by

R(k) = XT(k)X(k) (2.16)and the sample cross-correlation vector p(k) ∈ R
N×1 is given by

p(k) = XT(k)d(k) (2.17)In the RLS algorithm, matrix R(k) and vector p(k) are recursively updated as
R(k) = λR(k − 1) + x(k)xT(k) (2.18)
p(k) = λp(k − 1) + x(k)d(k) (2.19)Using Equation (2.19) in Equation (2.15) we �nd the following recursive update for

16



Table 2.2: The RLS Algorithm.
R−1(k) = δ−1I, δ small positive constant.for each k{

k(k) = R−1(k − 1)x(k)

κ(k) = k(k)
λ+xT(k)k(k)

R−1(k) = 1
λ
[R−1(k − 1) − k(k)kT(k)

λ+xT(k)k(k)
]

e(k) = d(k) − wT(k − 1)x(k)
w(k) = w(k − 1) + e(k)κ(k)}

the weight vector
w(k) = R−1(k)[λp(k − 1) + d(k)x(k)]

= R−1(k)[λR(k − 1)w(k − 1)
︸ ︷︷ ︸

p(k−1)

+d(k)x(k)]

= R−1(k)[λR(k − 1)w(k − 1) + d(k)x(k)

+ x(k)xT(k)w(k − 1) − x(k)xT(k)w(k − 1)
︸ ︷︷ ︸

0

]

= R−1(k)[λR(k − 1)w(k − 1) + x(k)xT(k)w(k − 1)

+ d(k)x(k) − x(k)xT(k)w(k − 1)]

= R−1(k)[R(k)w(k − 1) + x(k)[d(k) − xT(k)w(k − 1)]]

= R−1(k)[R(k)w(k − 1) + x(k)e(k)]

= w(k − 1) + e(k)R−1(k)x(k)

(2.20)
The inverse of R(k), R−1(k), can be computed using the so-called matrix inversionlemma [21] in order to reduce the computational complexity of the matrix inversion.The RLS algorithm is summarized in Table 2.2.The RLS algorithm can be directly applied in all four applications mentioned inSection 2.2 because of the availability of the weight vector at each iteration. The17



suitability of the RLS algorithm for practical applications can only be judged bylooking at the performance properties of the RLS algorithms that are given as fol-lows:1. Rate of convergence: The RLS algorithm has excellent convergence properties.The convergence rate is in the order of the number of coe�cients and is inde-pendent of the eigenvalue spread of the input-signal autocorrelation matrix.2. Misadjustment: The RLS algorithm has small misadjustment factor.3. Computational complexity: It requires O(N2) computations.4. Numerical stability: The RLS algorithm shows numerical instability [5].Computational complexity and numerical instability are two major drawbacks ofthe RLS algorithm. Therefore, despite the excellent convergence rate and smallmisadjustment, the RLS algorithm is not recommended for �nite-precision practicalapplications.2.4.2 QRD-RLS AlgorithmsAs mentioned earlier, the RLS algorithm su�ers from numerical problems whichare related to the direct computation of the inverse of the autocorrelation matrixvia the matrix inversion lemma. In QRD-RLS algorithms, an indirect approachis considered in which the Cholesky factorization of the autocorrelation matrix isexploited, leading to a numerically stable algorithm [4]. In the following subsections,we discuss two important QRD-RLS based algorithms1. the conventional QRD-RLS algorithm; and2. the inverse QRD-RLS algorithmBefore going into the detailed description of the algorithms in the next subsections,a background survey is provided as follows.18



Preliminaries
The Cholesky decomposition of R(k) is given by

R(k) = UT(k)U(k) (2.21)where U(k) ∈ R
N×N is either an upper or lower triangular Cholesky decompositionmatrix. The matrix U(k) is related to X(k) through an orthogonal rotation matrix

Q̃θ(k) ∈ R
(k+1)×(k+1) as [22]

[

0(k+1−N)×N

U(k)

]

= Q̃θ(k)X(k) (2.22)The QRD-RLS based algorithms use the same error vector for the minimization asgiven in Equation (2.12). The only di�erence is that the error vector is multipliedwith the rotation matrix Q̃θ(k) giving the rotated error vector eq(k).
eq(k) = Q̃θ(k)e(k) =

[

eq1(k)

eq2(k)

]

=

[

dq1(k)

dq2(k)

]

−

[

0(k+1−N)×N

U(k)

]

w(k) (2.23)where
[

dq1(k) dq2(k)
]T

= dT(k)Q̃T
θ (k) (2.24)As a result of Q̃θ(k) being orthogonal, the objective function in the QRD-RLSalgorithm is the same as in the RLS algorithm, as can be seen below.

‖eq(k)‖2 =
[

eTq1(k) eTq2(k)
]
[

eq1(k)

eq2(k)

]

= eT(k)Q̃T
θ (k)Q̃θ(k)e(k)

= eT(k)e(k)

= ‖e(k)‖2

(2.25)
19



The optimum weight vector for the QRD-RLS adaptive �ltering algorithm is givenby
w(k) = U−1(k)dq2(k) (2.26)which corresponds to the solution providing eq2(k) = 0N×1 in Equation (2.23). Asthe QRD-RLS minimizes the same objective function as the RLS, Equation (2.26)is equivalent to Equation (2.15).The RLS algorithm computes the weight vector iteratively. In order to do so, anupdate equation for important variables such as R−1(k) are required, see Table 2.2.Similarly, for QRD-RLS based algorithms update equations for U−1(k) and dq2(k)are needed. Associated with these updates, a rotation matrix has to be computed ateach iteration. Two types of QRD-RLS based algorithms are discussed in the nexttwo subsections: the conventional QRD-RLS, and the inverse QRD-RLS.QRD-RLS and Givens Rotation Matrices: Description and Implementa-tionThe rotation matrix Q̃θ(k) can be written as a sequence of Givens rotation matrices.Due to the increasing order of the rotation matrix the representation in Givensrotation form becomes complicated. A much simpler de�nition can be obtainedif the rotation matrix is of �xed order. To get the �xed-order rotation matrix

Qθ(k) ∈ R
(N+1)×(N+1) we rewrite the Equation (2.22) as

[

0(k+1−N)×N

U(k)

]

= Q̃θ(k)

[

1 01×N

0N×1 Q̃T
θ (k − 1)

] [

1 01×N

0N×1 Q̃θ(k − 1)

]

︸ ︷︷ ︸

I(k+1)×(k+1)

X(k)

= Q̃θ(k)

[

1 01×k

0k×1 Q̃T
θ (k − 1)

]

︸ ︷︷ ︸

Q(k)

[

1 01×k

0k×1 Q̃θ(k − 1)

]










xT(k)

λ1/2xT(k − 1)...
λk/2xT(0)








(2.27)20



which, using Equation (2.22) and the fact that the last k rows of X(k) correspondsto λ1/2X(k − 1), results in
[

0(k+1−N)×N

U(k)

]

= Q(k)







xT(k)

0(k−N)×N

λ1/2U(k − 1)







(2.28)The �xed-order update equation is obtained once we remove the rows and columnscontributing to the ever increasing number of zeros. Finally, we obtain
[

01×N

U(k)

]

= Qθ(k)

[

xT(k)

λ1/2U(k − 1)

] (2.29)The �xed order rotation matrix is responsible for the annihilation of the row vector
xT(k) and, as a result, updating the matrix U(k); Figure 2.6 depicts this phe-nomenon.The �xed order rotation matrix Qθ(k) can be written in the form of a sequence of
N Givens rotation matrices as follows

Qθ(k) = QθN−1
(k)QθN−2

(k) . . .Qθ0(k) (2.30)where the (i + 1)th Givens rotation matrix Qθi
(k) is given by

Qθi
(k) =









cos θi(k) 01×(N−i−1) − sin θi(k) 01×i

0(N−i−1)×1 I(N−i−1) 0(N−i−1)×1 0(N−i−1)×i

sin θi(k) 01×(N−i−1) cos θi(k) 01×i

0i×1 0i×(N−i−1) 0i×1 Ii









(2.31)Note that applying a single Givens rotation matrix to a vector modi�es only two ofits elements. Consider a dummy vector v(k) ∈ R
(N+1)×1 given by

v(k) =
[

v0(k) v1(k) . . . vN

]T (2.32)21



where vi(k) is the (i + 1)th element of the vector. Multiplying with the (i + 1)throtation matrix will only a�ect the v0(k) and vN−i(k) according to the relationsgiven as follows.
v0(k) = v0(k) cos θi(k) − vN−i(k) sin θi(k)

vN−i(k) = v0(k) sin θi(k) + vN−i(k) cos θi(k)
(2.33)which means that applying N Givens rotation vectors results in 4N multiplicationsand 2N additions. Also, we do not store all the N Givens rotation matrices; only thevalues of sine and cosine for each matrix is saved, making a total of 2N values. Usingthe Givens rotation matrix is therefore computationally cost e�ective as comparedto direct multiplication with the rotation matrix Qθ(k).2.4.3 QRD-RLS AlgorithmThe QRD-RLS algorithm consists of two steps,1. Matrix U(k) and vector dq2(k) are updated recursively;2. Vector w(k) is calculated using a backward or forward substitution procedure,from the relation U(k)w(k) = dq2(k).It should be kept in mind that the computation of the weight vector is not anintegral part of the QRD-RLS algorithm itself, and in certain applications such asnoise cancellation it is not needed.The update equation for U(k) was derived in Section 2.4.2 and is given by Equation(2.29).

[

01×N

U(k)

]

= Qθ(k)

[

xT(k)

λ1/2U(k − 1)

] (2.34)The matrices involved in the update are shown in Figure 2.6. The �gure shows theprocess of obtaining the update of Cholesky factor using the rotation matrix. It22
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can be seen from the �gure that the structure (partitions) of the rotation matrix
Qθ(k) consists of γ(k), g(k), f(k), and E(k). These variables can be identi�ed bymanipulating Equation (2.29). Equation (2.35) de�nes the variables involved in thestructure of the rotation matrix.

g(k) = −λ−1/2γ(k)U−T(k − 1)x(k) = −γ(k)a(k)

f(k) = U−T(k)x(k)

E(k) = λ1/2U−T(k)UT(k − 1)

(2.35)Given Qθ(k), the updated vector dq2(k) is obtained as follows,
[

eq1(k)

dq2(k)

]

= Qθ(k)

[

d(k)

λ1/2dq2(k − 1)

] (2.36)The �nal step is to get the a priori or the a posteriori error value. The a posteriorierror value ε(k) can be obtained by considering the following de�nition of eq1(k).
ε(k) = eTq (k)Q(k)

[

1

0k×1

]

= eq1(k)γ(k) + eTq2(k)f(k)

(2.37)It is known that the weight vector w(k − 1) is chosen so that eq2(k) goes to zero,therefore
ε(k) = eq1(k)γ(k) (2.38)and the a priori error value is given by
e(k) = eq1(k)/γ(k) (2.39)The QRD-RLS algorithm is given in Table 2.3.The properties of the QRD-RLS algorithm are given as follows:1. Rate of convergence. The QRD-RLS algorithm has excellent convergence prop-24



Table 2.3: The QRD-RLS Algorithm.for each k{ Obtain Qθ(k) and updating U(k):
[

0T
U(k)

]

= Qθ(k)

[
xT(k)

λ1/2U(k − 1)

]Obtain γ(k)

γ(k) =
∏N

i=0 cos θi(k)Obtain eq1(k) and updating dq2(k):
[
eq1(k)
dq2(k)

]

= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]Obtaining e(k):
ε(k) = eq1(k)γ(k) a posteriori error
e(k) = eq1(k)/γ(k) a priori errorerties. The convergence path is identical to that of the RLS algorithm providedthat both algorithms are initialized identically.2. Misadjustment. Same as the RLS algorithm.3. Computational complexity. It requires O(N2) computations.4. Numerical stability. The QRD-RLS algorithm is numerically stable in �niteprecision environment [23].Due to its stable behavior in �nite-precision environment the QRD-RLS algorithmsis considered to be better than the RLS algorithm. The only drawback is the extracomputations required if a weight vector needs to be computed.2.4.4 Inverse QRD-RLS AlgorithmIn the inverse QRD-RLS (IQRD-RLS) algorithm, matrix U−T(k) is updated in-stead of U(k), and the weight vector w(k) is explicitly computed as a part of thealgorithm [24]. The motivation for computing matrix U−T(k) becomes clear if we25



combine the de�nition of the autocorrelation matrix R(k) in Equation (2.21) withthe weight update in Equation (2.20)
w(k) = w(k − 1) + e(k)U−1(k)U−T(k)x(k) (2.40)For the derivation of the IQRD-RLS algorithm, consider the inverse of both sidesof the update equation for matrix U(k) in (2.29). The inversion is possible if we�rst augment the matrix on the right hand side with the (N + 1) × 1 unit vector

[

1 0 . . . 0
]T to make the matrix a square matrix. As a result we get,

[

01×N γ(k)

U(k) f(k)

]

= Qθ(k)

[

xT 1

λ1/2U(k − 1) 0

] (2.41)By inverting and transposing both sides of the equation, assuming that the inverseexists, we get
[

−fT(k)U−T(k)
γ(k)

1
γ(k)

U−T(k) 0N×1

]

= Qθ(k)

[

01×N 1

λ−1/2U−T(k − 1) −λ1/2U−T (k − 1)x(k)

] (2.42)which can be written in the following compact form
[

zT(k) 1
γ(k)

U−T(k) 0N×1

]

= Qθ(k)

[

01×N 1

λ−1/2U−T(k − 1) −a(k)

] (2.43)where vector z(k) denotes −U−1(k)f(k)
γ(k)

. Equation (2.43) can be expressed as twoequations,
[

1
γ(k)

0N×1

]

= Qθ(k)

[

1

−a(k)

] (2.44)and [

z(k)

U−T(k)

]

= Qθ(k)

[

01×N

λ−1/2U−T(k − 1)

] (2.45)If we know the value of vector a(k) in (2.44) we can compute the rotation matrix,which can then be used in Equation (2.45) to compute z(k). By comparing equations26



Table 2.4: The IQRD-RLS Algorithm.for each k{ Obtaining a(k)
a(k) = λ−1/2U−T(k − 1)x(k)Obtaining Qθ(k) and γ(k)
[
1/γ(k)

0

]

= Qθ(k)

[
1

−a(k)

]Obtaining z(k) and updating U−T(k)
[

zT(k)
U−T(k)

]

= Qθ(k)

[
0T

λ−1/2U−T(k − 1)

]Obtain e(k):
e(k) = d(k) − xT(k)w(k − 1)Updating the coe�cient vector:
w(k) = w(k − 1) − e(k)γ(k)z(k)}

(2.35), (2.40) and (2.45) we can write
w(k) = w(k − 1) − e(k)γ(k)z(k) (2.46)Vector z(k) is used to update the weight vector. The recursions of the IQRD-RLSalgorithm is summarized in Table 2.4.Figure 2.7 shows the structure of the matrices involved in the update Equation(2.45) when the matrix U(k) is lower triangular. It can be noticed from the �gurethat U−T(k) is an upper triangular matrix, and the rotation matrix has the samestructure as in the QRD-RLS algorithm. The advantage of using IQRD-RLS algo-rithm is that the computationally expensive backward-substitution step is avoidedin the computation of the weight vector. The exact computational complexity ofthe IQRD-RLS is less than that of the QRD-RLS. However, both algorithms havecomplexity of O(N2).The properties of the IQRD-RLS algorithm are given as follows:27
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Table 2.5: Computational complexity of the RLS, QRD-RLS and IQRD-RLS algo-rithms.
Algorithm ADD MULT DIV SQRTRLS 2N2 + 2N 3N2 + 3N N 0QRD-RLS 2(N2 + N) 4(N2 + N) 1 NIQRD-RLS 5N2 + 6N 3N2 + 4N + 1 N NBackward Substitution (N2 + 3N)/2 (N2 + N)/2 N 01. Rate of convergence. The IQRD-RLS algorithm has excellent convergenceproperties, the convergence path is identical to the RLS algorithm providedthat both algorithms are initialized in the same way.2. Robustness. The IQRD-RLS algorithm is robust in in�nite and �nite precisionenvironment.3. Computational complexity. It requires O(N2) computations.4. Numerical stability. The IQRD-RLS algorithm is numerically stable. [23]The IQRD-RLS algorithm is considered better than the RLS and the QRD-RLSalgorithms because it is stable and does not require extra computations for theweight vector. Even though, the QRD-RLS and the IQRD-RLS algorithms have acomplexity of O(N2), the latter turns out to be less expensive in terms of numberof divisions. The number of operations required for each algorithm are given inTable 2.5.
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Chapter 3
Fast QRD-RLS Algorithms
The QRD-RLS based algorithms exhibit numerical robustness, fast convergence,and computational complexity of O(N2). High computational complexity is dueto the evaluation of the Cholesky factor at each iteration, which makes the algo-rithm impractical for implementations involving high-order systems. However, anumber of low-complexity derivatives of QRD-RLS algorithm have been success-fully discovered, such as the least-squares lattice algorithm [25], the �xed-order fastadaptive ROTOR's algorithm [7], and the backward and forward prediction basedalgorithms [8�10]. These algorithms have complexity of O(N) and a convergencespeed identical to that of the QRD-RLS algorithm provided that the initializationis equivalent. In this thesis we focus on forward and backward prediction basedalgorithms that are commonly known as fast QRD-RLS (FQRD-RLS) a priori anda posteriori algorithms [8,26].The main idea in FQRD-RLS algorithms is to identify vectors that can exploit theunderlying time-shift structure of the input data vector [9]. The vectors identi�edare generally related to the Cholesky factor matrix and the input data matrix. Asa result, the Cholesky factor update equation involves vectors instead of matricesand, therefore, reduces the computational complexity by one order of magnitude.These vector-based update equations for FQRD-RLS algorithms are derived from30



the forward and backward prediction algorithms. The introduction of the FQRD-RLS algorithm is therefore incomplete without discussing the forward and backwardprediction problems.An introduction to important variables involved in the FQRD-RLS algorithm isgiven in Section 3.1. The forward and backward prediction algorithms are intro-duced in Section 3.2. The FQRD-RLS algorithms based on forward and backwardprediction are then derived in Section 3.4 and 3.3, respectively. It is known fromthe literature that the backward prediction based algorithms are of minimal com-plexity and backward stable [27], [10]. Consequently, more focus is given on thesealgorithms, and the forward prediction algorithms are only introduced for the sakeof completeness. Finally, the complexity analysis is presented in which the num-ber of multiplications, additions, divisions and square-roots, for each algorithm, arepresented in form of a Table.
3.1 FQRD-RLS algorithm: Introduction to keyvariablesThe idea in the FQRD-RLS algorithms is to replace matrix update equations withvector update equations in order to reduce computational complexity. It is observedthat the matrix-based update equations in the QRD-RLS and IQRD-RLS algorithmsinvolve Cholesky factor U(k) (see Eq. (2.29) and (2.45)). This means that the vectorupdate equation, to be used in the FQRD-RLS algorithms, must also be relatedto the Cholesky factor. The two vectors identi�ed for the vector-based updateequations a(k) and f(k), partitions of the rotation matrix Qθ(k), are de�ned as

a(k) = λ−1/2U−T(k − 1)x(k) (3.1)and
f(k) = U−T(k)x(k) (3.2)31



Note that both the vectors not only involve the matrix U−T(k) but also the datavector x(k), which means updating the vectors results in updating both variables.Furthermore, either of vectors a(k) or f(k) can be used to compute the rotationmatrix Qθ(k), either from
[

1/γ(k)

0N×1

]

= Qθ(k)

[

1

−a(k)

] (3.3)or [

1

0N×1

]

= QT
θ (k)

[

γ(k)

f(k)

] (3.4)Finally, it is important to mention that updating vector a(k) leads to FQRD-RLSa priori (FQR_PRI) algorithms [8], and updating vector f(k) leads to FQRD-RLSa posteriori (FQR_POS) algorithms [8].
3.2 Prediction ProblemIn prediction problems we want to estimate a future sample from the past values.Similarly, we can also estimate a past value from the future values. The former iscalled the forward prediction and the latter is known as the backward prediction.This concept is depicted in Figure 3.1. The �gure shows the extended data vector
xN+1(k). The values in the subvector x(k−1) are used to predict the future sample
x(k) and similarly the values in the subvector x(k) are used to predict the pastsample x(k − N − 1).The estimated sample di�ers from the actual sample by an estimation error value.In prediction problems, we associate a cost function with the estimation error andtry to minimize it. Here the cost function is the weighted least-squares error, whichmeans minimization of the norm of the estimation error vector (see Section 2.4.1).Next, we introduce the backward and forward prediction algorithms.32
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xN+1(k)

x(k − 1)
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x(k − N) x(k − N + 1) x(k − 1) x(k) time index k

Forward Prediction

Backward Prediction
. . .

Figure 3.1: The concepts of forward and backward prediction
3.2.1 Backward Prediction
In backward prediction we have a �nite set of values taken from a data sequenceand we want to estimate the preceding sample value using the values in the set. Wegenerally consider a set of N data values and the estimate is obtained using theirweighted sum. A weighted least-squares solution based on the QRD-RLS algorithmfor the backward prediction is presented here. Considering Eq. (2.12), the weightedbackward prediction error vector is written as

eb(k) = db(k) − X(k)wb(k) (3.5)where
db(k) =

[

x(k − N) λ1/2x(k − N − 1) . . . λ(k−N−1)/2x(0) 01×(N)

]T (3.6)33



and wb(k) is the backward prediction coe�cient vector. The above equation iswritten in compact form as
eb(k) =

[

X(k) db(k)
]
[

−wb(k)

1

]

= X(N+1)(k)

[

−wb(k)

1

] (3.7)
where

X(N+1)(k) =
[

X(k) db(k)
] (3.8)Multiplying Eq. (3.7) with Q̃θ(k) on both sides results in

ebq(k) = Q̃θ(k)eb(k) =

[

0(k+1−N)×N ebq1(k)

U(k) dbq2(k)

][

−wb(k)

1

] (3.9)Similar to Eq. (2.36), the update equation for the vector dbq2(k) is obtained
[

ebq1(k)

dbq2(k)

]

= Qθ(k)

[

db(k)

λ1/2dbq2(k − 1)

] (3.10)This equation is used in the detailed derivation of the FQRD-RLS algorithms. Theleast-squares solution for the prediction coe�cients that minimizes the backwardprediction error is given as
wb(k) = U−1(k)dbq2(k) (3.11)where matrix U(k) is the same as the one used in the derivation of QRD-RLSalgorithm in Section 2.4.2 Eq. (2.22). Finally, we de�ne the a priori backwardprediction error as

eb(k) = x(k − N) − xT(k)wb(k − 1) (3.12)and the a posteriori backward prediction error as
εb(k) = x(k − N) − xT(k)wb(k) (3.13)34



Both the de�nitions will be referred to in the derivation of the FQRD-RLS algo-rithms.
3.2.2 Forward PredictionIn forward prediction, we try to estimate a future sample value from the given samplevalues from the same sequence at the current time instant. Similarly to Eq. (2.12),the weighted forward prediction error vector is written as

ef (k) = df (k) −

[

X(k + 1)

01×N

]

wf (k) (3.14)where
df (k) =

[

x(k) λ1/2x(k − 1) . . . λk/2x(0)
]T (3.15)and wf (k) is the forward prediction coe�cient vector. The above equation can alsobe written in compact form as

ef (k) =

[

df (k)

(

X(k − 1)

01×N

)][

1

−wf (k)

]

= X(N+1)(k)

[

1

−wf (k)

] (3.16)
where

X(N+1)(k) =

[

df (k)

(

X(k − 1)

01×N

)] (3.17)Multiplying Eq. (3.16) with [

Q̃θ(k − 1) 0N×1

01×N 1

] on both sides results in
efq(k) =

[

Q̃θ(k − 1) 0N×1

01×N 1

]

ef (k) =







efq1(k) 0(k−N)×(N)

dfq2(k) U(k − 1)

λk/2x(0) 01×N







[

1

−wf (k)

] (3.18)35



Similar to Eq. (2.36), the update equation for the vector dfq2(k) is obtained
[

efq1(k)

dfq2(k)

]

= Qθ(k − 1)

[

df (k)

λ1/2dfq2(k − 1)

] (3.19)where df (k) = x(k). The above equations are used in the detailed derivation ofthe fast QRD-RLS algorithms. The solution for the coe�cient vector in this case isgiven by
wf (k) = U−1(k − 1)dfq2(k) (3.20)Finally, we de�ne the a priori forward prediction error as

ef (k) = x(k) − xT(k − 1)wf (k − 1) (3.21)and the a posteriori forward prediction error as
εf (k) = x(k) − xT(k − 1)wf (k) (3.22)Both the de�nitions will be referred to in the derivation of the FQRD-RLS algo-rithms. It is important to note here that both the forward and the backward pre-diction algorithms involve exactly the same data matrix X(N+1)(k). This fact willbe used in the derivation of the update equations for the FQRD-RLS algorithms.

3.3 Fast QRD-RLS backward prediction algorithmsIn this section the FQRD-RLS backward prediction algorithm is derived. Considerthe extended input data matrix X(N+1)(k). The lower triangular Cholesky factormatrix U(N+1)(k) ∈ R
(N+1)×(N+1) for the extended data matrix X(N+1)(k) is ob-tained as follows [

0(k−N)×(N+1)

U(N+1)(k)

]

= Q̃(N+1)(k)X(N+1)(k) (3.23)36



where the matrix Q̃(N+1)(k) ∈ R
(N+1)×(N+1) is the extended rotation matrix. Usingthe de�nition of X(N+1)(k) from Eq. (3.8) we get

[

0(k−N)×(N+1)

U(N+1)(k)

]

= Q̃(N+1)(k)
[

X(k) db(k)
] (3.24)Similarly, Eq. (3.17) leads to

[

0(k−N)×(N+1)

U(N+1)(k)

]

= Q̃(N+1)(k)

[

df (k)

(

X(k − 1)

01×N

)] (3.25)Next we write the rotation matrix Q̃(N+1)(k) as a sequential product of rotationmatrices as follows
Q̃(N+1)(k) = Q′

b(k)Q̃θ(k)

Q̃(N+1)(k) = Q̃f (k)Q′
f (k)

[

Q̃θ(k − 1) 0N×1

01×N 1

] (3.26)where the subscripts b and f denote backward and forward prediction, respectively.Applying the de�nitions of the rotation matrix to the Eqs. (3.24) and (3.25) resultsin
[

0(k−N)×(N+1)

U(N+1)(k)

]

= Q′
b(k)Q̃θ(k)

[

X(k) db(k)
]

= Q′
b(k)

[

0(k−N+1)×N ebq1(k)

U(k) dbq2(k)

] (3.27)
and

[

0(k−N)×(N+1)

U(N+1)(k)

]

= Q̃f (k)Q′
f (k)

[

Q̃θ(k − 1) 0N×1

01×N 1

][

df (k)

(

X(k − 1)

01×N

)]

= Q̃f (k)Q′
f (k)







efq1(k) 0(k−N)×N

dfq2(k) U(k − 1)

λk/2x(0) 01×N







(3.28)
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The lower triangularization in Eq. (3.27) is complete when the rotation matrix
Q′

b(k) is applied. The rotation matrix operates only on the error vector ebq1(k) inthe equation, resulting in
[

0(k−N)×(N+1)

U(N+1)(k)

]

=







0(k−N)×N 0(k−N)×1

01×N ‖eb(k)‖

U(k) dbq2(k)







(3.29)In Eq. (3.27), the rotation matrix Q′
f (k) operates on the error vector efq1(k) and

λ1/2x(0) and rotates the vector so that the magnitude of the vector is obtained inthe last element of the vector and rest of the elements are zero.
[

0(k−N)×(N+1)

U(N+1)(k)

]

= Q̃f (k)







0(k−N)×1 0(k−N)×N

dfq2(k) U(k − 1)

‖ef (k)‖ 01×N







(3.30)>From Eq. (3.30) and (3.29) we can write






0(k−N)×N 0(k−N)×1

01×N ‖eb(k)‖

U(k) dbq2(k)







= Q̃f (k)







0(k−N)×1 0(k−N)×N

dfq2(k) U(k − 1)

‖ef (k)‖ 01×N







(3.31)The increasing order of the equation is avoided by removing the redundant zerosand the corresponding rows and columns from the rotation matrix, resulting in
[

01×N ‖eb(k)‖

U(k) dbq2(k)

]

= Qθf (k)

[

dfq2(k) U(k − 1)

‖ef (k)‖ 0N×1

] (3.32)It is assumed that the inverse of the matrices involved in the above equation alwaysexists. Taking the inverse transpose of both sides of Eq. (3.32) results in




−dTbq2
(k)U−T(k)

‖eb(k)‖
1

‖eb(k)‖

U−T(k) 0N×1



 = Qθf (k)




0 U−T(k − 1)

1
‖ef (k)‖

−dTfq2
(k)U−T(k−1)

‖ef (k)‖



 (3.33)
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>From here on there are two approaches to follow. Depending on whether we derivean update equation for the vector f(k) or a(k), de�ned in (3.2) and (3.1), we setdi�erent versions of the FQRD-RLS algorithm. Updating a(k) results in the so-called a priori algorithm, while updating f(k) results in the so-called a posteriorialgorithm. Due to its stability [26], the backward algorithm is treated in detail. Theforward algorithm is brie�y addressed in the following section only for the sake ofcompleteness, and will not be used further in the thesis.
3.3.1 Fast QRD-RLS a posteriori backward prediction algo-rithmThe FQR_POS_B algorithm updates vector f(k). The update equation is obtainedby multiplying Eq. (3.33) with the extended input data vector xN+1(k):





−dTbq2
(k)U−T(k)x(k)

‖eb(k)‖
+ x(k−N)

‖eb(k)‖

U−T(k)x(k)



 = Qθf (k)




U−T(k − 1)x(k − 1)

x(k)
‖ef (k)‖

−
dTfq2

(k)U−T(k−1)x(k−1)

‖ef (k)‖



 (3.34)Using the de�nition of f(k) and the a posteriori forward and backward errors fromEqs. (3.2), (3.13) and (3.22) we get
[

εb(k)
‖eb(k)‖

f(k)

]

= Qθf (k)

[

f(k − 1)
εf (k)

‖ef (k)‖

] (3.35)where the vector f(k − 1) is assumed to be known from the previous iteration, andthe a posteriori forward prediction error value εf (k) can be computed from efq1(k)as follows
εf (k) = efq1(k)γ(k) (3.36)and efq1(k) is computed from Eq. (3.19).There are two ways for solving Eq. (3.35)39



1. εf (k) is not known, the last element of vector f(k) is known to be x(k)

‖e
(0)
f (k)‖

.The algorithm based on this way is called FQR_POS_B Version 1.2. Compute εf (k) from Eq. (3.36). No knowledge of the variables on the leftis required. The algorithm based on this approach is called FQR_POS_BVersion 2.In version 1, ‖e(0)
f (k)‖ is given by the relation

[

0N×1

‖e
(0)
f (k)‖

]

= Qθf (k)

[

dfq2(k)

‖ef (k)‖

] (3.37)However, a simpli�ed expression for ‖e
(0)
f (k)‖ exists and can be obtained by �rstnoting that the above equation gives the �rst column vector on both sides of Eq.(3.32). Furthermore, it is known that the rotation matrix Qθf (k) results in lowertriangularization of the right hand side. Therefore only the last element of the �rstcolumn vector on the left hand side is non-zero. This is only possible if and only if

‖e
(0)
f (k)‖ =

√

‖dfq2(k)‖2 + ‖ef (k)‖2 (3.38)The updated f(k) is then used for updating rotation matrix Qθ(k) according to Eq.(3.4). >From the rotation matrix computed using the above equation, the vector
f(k) is updated. Final Equation (2.36) is used to obtain eq1(k) from which the aposteriori error is computed as

ε(k) = eq1(k)γ(k) (3.39)The complete FQR_POS_B algorithm is given in Table 3.1.3.3.2 Fast QRD-RLS a priori backward prediction algorithmThe FQR_PRI_B algorithm is obtained in a similar way to that of the FQR_POS_Balgorithm. The only di�erence is that the time index of Eq. (3.33) is decremented by40



Table 3.1: FQR_POS_B Algorithm based on backward prediction errors.for each k{ Obtaining dfq2(k):
[
efq1(k)
dfq2(k)

]

= Qθ(k − 1)

[
x(k)

λ1/2dfq2(k − 1)

]Obtaining ‖ef (k)‖:
‖ef (k)‖ =

√

e2
fq1(k) + λ‖ef (k − 1)‖2Obtaining Q̃θf (k):

[
0

e
(0)
f (k)

]

= Q̃θf (k)

[
dfq2(k)
‖ef (k)‖

]Obtaining f(k)
[

εb(k)

λ1/2‖eb(k)‖

f(k)

]

= Q̃θf (k)

[

f(k − 1)
εf (k)

λ1/2‖ef (k)‖

]Obtaining Qθ(k):
[
1
0

]

= Qθ(k)

[
γ(k)
f(k)

]Joint Process Estimation:
[
eq1(k)
dq2(k)

]

= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]

ε(k) = eq1(k)γ(k)}
one and that the resulting equation is multiplied with the scaled input data vector
xN+1(k)/λ1/2. As a result of these two operations, we get





−dTbq2
(k−1)U−T(k−1)x(k)

λ1/2‖eb(k−1)‖
+ x(k−N)

λ1/2‖eb(k−1)‖
U−T(k−1)x(k)

λ1/2





= Qθf (k − 1)





U−T(k−2)x(k−1)

λ1/2

x(k)

λ1/2‖ef (k−1)‖
−

dTfq2
(k−1)U−T(k−2)x(k−1)

λ1/2‖ef (k)‖





(3.40)
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Using the de�nition of a(k), eb(k) and ef (k) from Eq. (3.1), (3.12), and (3.21), theabove expression in compact form is written as
[

eb(k)

λ1/2‖eb(k−1)‖

a(k)

]

= Qθf (k − 1)

[

a(k − 1)
ef (k)

λ1/2‖ef (k−1)‖

] (3.41)The a priori forward prediction error ef (k) is computed using,
ef (k) = efq1(k)/γ(k) (3.42)The rotation matrix Qθ(k) is then updated using Eq. (3.3). Following the samesteps as in the FQR_POS_B algorithm, we �nally get the a posteriori error valueusing Eq. (3.39). The FQR_PRI_B algorithm is given in Table 3.2. Similar to theFQR_POS_B algorithm there are two versions of FQR_PRI_B algorithm. Againthe derivation of the two algorithms is done following the same steps as for theFQR_POS_B algorithm.3.4 Fast QRD-RLS forward prediction algorithmsThe steps for the derivation of the FQRD-RLS algorithms based on forward predic-tion are similar to those of the FQRD-RLS backward algorithms, with the excep-tion that the matrix U(k) is an upper triangular matrix and the rotation matrix

Q(N+1)(k) is de�ned with a di�erent sequence of rotation matrices. Therefore, onlythe important equations that elaborate the di�erence of the backward algorithmfrom the forward algorithm are mentioned.In the forward algorithms we change the de�nition of the rotation matrix Q̃
(N+1)
θ (k)to

Q̃(N+1)(k) = Q̃b(k)Q′
b(k)Q̃θ(k)

Q̃(N+1)(k) = Q′
f (k)

[

Q̃θ(k − 1) 0N×1

01×N 1

] (3.43)42



Table 3.2: FQR_PRI_B based on backward prediction errors.for each k{ Obtaining dfq2(k):
[
efq1(k)
dfq2(k)

]

= Qθ(k − 1)

[
x(k)

λ1/2dfq2(k − 1)

]Obtaining a(k)
[

eb(k)

λ1/2‖eb(k−1)‖

a(k)

]

= Q̃θf (k − 1)

[

a(k − 1)
ef (k)

λ1/2‖ef (k−1)‖

]Obtaining ‖ef (k)‖:
‖ef (k)‖ =

√

e2
fq1(k) + λ‖ef (k − 1)‖2Obtaining Q̃θf (k):

[
0

‖e
(0)
f (k)‖

]

= Q̃θf (k)

[
dfq2(k)
‖ef (k)‖

]Obtaining Qθ(k):
[
1/γ(k)

0

]

= Qθ(k)

[
1

−a(k)

]Joint Process Estimation:
[
eq1(k)
dq2(k)

]

= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]

ε(k) = eq1(k)γ(k)}
Also the Cholesky factor matrix is lower triangular in this case. Therefore, Eqs.(3.24) and (3.25) result in

[

0(k−N)×(N+1)

U(N+1)(k)

]

= Q̃b(k)Q′
b(k)Q̃θ(k)

[

X(k) db(k)
]

= Q̃b(k)Q′
b(k)

[

0(k+1−N)×N ebq1(k)

U(k) dbq2(k)

] (3.44)
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and
[

0(k−N)×(N+1)

U(N+1)(k)

]

= Q′
f (k)

[

Q̃θ(k − 1) 0N×1

01×N 1

][

df (k)

(

X(k − 1)

01×N

)]

= Q′
f (k)







efq1(k) 0(k−N)×N

dfq2(k) U(k − 1)

λk/2x(0) 01×N







(3.45)
Next we apply the rotation matrix Q′

b(k) and Q̃′
f (k) to their respective equations.From the derivation of the backward algorithm it is known that matrix Q′

b(k) op-erates only on the vector ebq1(k). Similarly, the rotation matrix Q′
f (k) operates on

efq1(k) and x(0). Both the matrices rotate the vectors so that only one element inthe vector remains non-zero. Following the derivation of the backward algorithmsimilar to Eq. (3.29) and (3.30), we can write
[

0(k−N)×(N+1)

U(N+1)(k)

]

=







0(k−N)×1 0(k−N)×N

dfq2(k) U(k − 1)

‖ef (k)‖ 01×N







(3.46)and
[

0(k−N−1)×(N+1)

U(N+1)(k)

]

= Q̃b(k)







0(k−N)×N 0(k−N)×1

01×N ‖eb(k)‖

U(k) dbq2(k)







(3.47)By comparing Eq. (3.46) and Eq. (3.47) we get






0(k−N)×1 0(k−N)×N

dfq2(k) U(k − 1)

‖ef (k)‖ 01×N







= Q̃b(k)







0(k−N)×N 0(k−N)×1

01×N ‖eb(k)‖

U(k) dbq2(k)







(3.48)We can get �xed-order matrices by removing the rows and columns contributing to
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Table 3.3: Computational complexity of FQRD-RLS algorithms.
Algorithm ADD MULT DIV SQRTFQR_POS_F 10N + 3 26N + 10 3N + 2 2N + 1FQR_PRI_F 10N + 3 26N + 11 4N + 4 2N + 1FQR_POS_B (VERSION 1) 8N + 1 19N + 4 4N + 1 2N + 1FQR_POS_B (VERSION 2) 8N + 1 20N + 5 3N + 1 2N + 1FQR_PRI_B (VERSION 1) 8N − 1 19N + 2 5N + 1 2N + 1FQR_PRI_B (VERSION 2) 8N + 1 20N + 6 4N + 2 2N + 1the increasing number of zeros:

[

dfq2(k) U(k − 1)

‖ef (k)‖ 01×N

]

= Qθb(k)

[

01×N ‖eb(k)‖

U(k) dbq2(k)

] (3.49)Finally, taking the inverse transpose of both sides with the assumption that theinverse always exists, we write



0 U−T(k − 1)

1
‖ef (k)‖

−dTfq2
(k)U−T(k−1)

‖ef (k)‖



 = Qθb(k)





−dTbq2
(k)U−T(k)

‖eb(k)‖
1

‖eb(k)‖

U−T(k) 0N×1



 (3.50)This equation is the basis for the forward algorithms. The next step will be thederivation of the a priori version based on vector a(k) and the a posteriori versionbased on vector f(k). In order to do so, we would need to multiply Eq. (3.33) withan appropriate input data matrix. As mentioned before, the forward algorithm isnot discussed further.The numbers of additions, multiplications, additions, and square-roots for the FQRD-RLS algorithms regarding one output sample are given in Table 3.3 as a functionof N , the number of �lter coe�cients. From the table it becomes clear that all thealgorithm are of complexity O(N). All algorithms show only small computationaldi�erences from each other, so that no single algorithm can be picked as most ef-�cient in terms of computational complexity from the set. Nevertheless, backwardalgorithms are preferred due to their numerical robustness.45



Chapter 4
Weight Extraction and FixedFiltering Techniques for FQRD-RLSAlgorithms
4.1 IntroductionThe main limitation of the FQRD-RLS recursion is the fact that the coe�cient vec-tor of the adaptive �lter is not known explicitly. As a consequence, applications likesystem identi�cation and pre-equalizers discussed in Chapter 2 have not been as-sociated with FQRD-RLS algorithms. In order to compensate for this shortcomingof the FQRD-RLS algorithm, we develop tools that enable the FQRD-RLS algo-rithm to be used in such applications. We �rst show in Section 4.2.1 how to extractthe coe�cient weights through the so-called weight extraction method. This weightextraction technique can be used in a system identi�cation application to obtainthe plant coe�cients at any stage of convergence. Thereafter, in Section 4.2.2 amethod for output �ltering is discussed in which the adaptive �lter coe�cients arekept constant. We refer to this method as �output �ltering for burst type train-ing�, since it can be used for periodic update applications, such as equalizer design46



in GSM systems. Section 4.2.3 describes an output �ltering method referred to as�output �ltering for pre-equalizer type setup� which enables �ltering of a di�erentsequence than the one associated with the �lter update. The method is particu-larly useful in a pre-equalizer application. The computational complexity of theproposed tools in terms of multiplications, additions, divisions and square-roots isalso discussed. Section 4.3 describes the experiments and illustrates the results. Thethree examples chosen in order to verify the proposed tools are system identi�ca-tion, pre-equalization and post-equalization. Section 4.4 draws conclusions from theexperimental results.
4.2 Weight Extraction and output �ltering techniques4.2.1 Weight ExtractionThe novel weight extraction (WE) technique to be presented in the following canbe invoked at any iteration of the conventional FQRD-RLS algorithm. The internalvariables of the FQRD-RLS algorithm at the time of interest are computed in aserial manner, i.e., N iterations for an N coe�cient vector.Consider the output of the adaptive �lter y(k) given as

y(k) = wT(k − 1)x(k) = dTq2(k − 1)U−T(k − 1)x(k) (4.1)Let us de�ne δi =
[

0 . . . 0 1 0 . . . 0
]T to be a vector of zeros containing a `1'at the ith position. We can now get the ith coe�cient of vector w(k − 1) as

wi(k − 1) = dTq2(k − 1)U−T(k − 1)δi = dTq2(k − 1)ui(k − 1) (4.2)where ui(k−1) denotes the ith column of matrix U−T(k−1). This means that when
dq2(k − 1) is given, the elements of the weight vector w(k − 1) can be computed ifall the columns of matrix U−T(k − 1) are known. Using the following two lemmas47



we show how all column vectors ui(k − 1) can be obtained in a serial manner given
u0(k−1). The main result is that the column vector ui(k−1) can be obtained fromthe column vector ui−1(k − 1).Lemma 1. Let uTi (k) =

[

ui,0(k) . . . ui,N−1(k)
]T

∈ R
N×1 denote the ith column ofthe upper triangular matrix U−T(k) ∈ R

N×N . Given Qθ(k−1) ∈ R
(N+1)×(N+1) fromTable 4.1, then ui(k − 2) can be obtained from ui(k − 1) using the relation below

[

0

λ−1/2ui(k − 2)

]

= QT
θ (k − 1)

[

zi

ui(k − 1)

]

, i = 0, . . . , N − 1 (4.3)where zi = −fT(k − 1)ui(k − 1)/γ(k − 1).Lemma 2. Let ui(k) =
[

ui,0(k) . . . ui,N−1(k)
]T

∈ R
N×1 denote the ith columnof the upper triangular matrix U−T(k − 1) ∈ R

N×N . Given Q̃θf (k) ∈ R
(N+1)×(N+1)from Table 4.1, then ui(k − 1) can be obtained from ui−1(k − 2) using the followingrelation

[
−wb,i−1(k−1)

‖eb(k−1)‖

ui(k − 1)

]

= Q̃θf (k − 1)

[

ui−1(k − 2)
−wf,i−1(k−1)

‖ef (k−1)‖

]

, i = 0, . . . , N − 1 (4.4)where
wf,i−1 =

{

−1 for i = 0

uTi−1(k − 2)dfq2(k − 1) otherwise (4.5)and u−1(k − 2) = 0N×1.The proofs of Lemmas 1 and 2 are in the Appendices A1 and A2. Another set ofalternative lemmas and their proofs are given in Appendices B1 and B2, these lem-mas require division operations and are mentioned only for the sake of completeness.In order to extract the implicit weights w(k − 1) of the FQRD-RLS, Lemma 2 isinitialized with u−1(k−2), and as a result we get column vector u0(k−1). Lemma 1is then invoked to compute column vector u0(k−2). From u0(k−2) we can compute
u1(k − 1) using Lemma 2. By induction we can conclude that all ui(k − 1) can beobtained. The procedure is illustrated in Fig 4.1. As a consequence, the elements48
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for w1(k − 1)Figure 4.1: The procedure for updating ui(k − 1) for weight extraction.of w(k − 1) can be obtained from Eq. (4.2) in a serial manner. The WE algorithmis summarized in Table 4.1.The number of operations required to completely extract all the coe�cients is givenin Table 4.2. For comparison, the computational cost of the FQRD-RLS algorithmbased on a priori backward prediction errors and the Inverse QRD-RLS algorithmupdates are also given.4.2.2 Output �ltering for burst type setupThe output �ltering problem under consideration is illustrated in Figure 4.2. Ascan be seen from the �gure, the adaptive �lter for time instants k < kF is updatedusing its input and desired signal pair {x(k), d(k)}; we call it training mode. Attime instant k = kF , the adaptive process is stopped and from there onwards thecoe�cient vector at hand w(kF ) is frozen and used for �ltering, with a possiblydi�erent input sequence, i.e., x̃(k); we call it data mode.Such scenario can occur, for example, in periodic training where the adaptive �lterweights are not updated at every iteration but after a certain data block. So, theadaptive �lter acts as an ordinary �lter for the data block. As an example, consider49



an equalizer design in a GSM environment, where the blocks of training symbols arelocated within the data stream, and the estimation process is only carried out whentraining symbols are encountered. The output of the �lter is given by
y(k) =

{

wT(k − 1)x(k) k < kF

wT
F x̃(k) k ≥ kF

(4.6)where wF = w(kF −1) is the coe�cient vector of the adaptive �lter �frozen� at timeinstant immediately before k = kF and x̃(k) is the input signal for the time instant
k ≥ kF .In the proposed method, the FQRD-RLS algorithm is used during the training mode.In next section, we describe how output �ltering is carried out in data mode usingthe implicit weights of the FQRD-RLS algorithm obtained at k = kF − 1.If the FQRD-RLS algorithm is used for updating w(k), one alternative for carryingout the �ltering for the data mode is to �ush the FQRD-RLS �lter coe�cients (seeSection 4.2.1) and, thereafter, perform the �ltering of x̃(k) with a simple transversalstructure. Alternatively, to avoid the increased peak complexity of this operation,we can reuse the variables from the FQRD-RLS update at time instant k = kF − 1to reproduce the equivalent output signal without explicitly extracting the weights
wF . For this purpose, the output after weight freezing is written as

y(k) = dTq2(kF − 1)U−T(kF − 1)x̃(k)

= dTq2(kF − 1)r(k), k ≥ kF

(4.7)where, dq2(kF − 1) is the vector dq2(k) and U−T(kF − 1) is the matrix U−T(k) attime instant k = kF − 1, respectively, and r(k) = U−T(kF − 1)x̃(k). The followinglemmas are required in order to compute Eq. (4.7) without explicitly computingmatrix U−T(kF − 1).Lemma 3. Let x(k) ∈ R
N×1 be the input data vector and ur,i(k) ∈ R

N×1 denotethe ithcolumn of the upper triangular matrix U−1(k) ∈ R
N×N . Given Qθ(k − 1) ∈

R
(N+1)×(N+1) from Table 4.3, then U−T(k − 2)x(k) can be obtained from U−T(k −50
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Figure 4.2: The output �ltering with �xed weights using adaptive �lter setup.
1)x(k) using the relation below

[

0

λ−1/2U−T(k − 2)x(k)

]

= QT
θ (k − 1)

[

zi(k)

U−T(k − 1)x(k)

] (4.8)where zi(k) = −fT(k−1)U−T(k−1)x(k)
γ(k)

.Lemma 4. Let x(k) ∈ R
N×1 be the input data vector and ur,i(k) ∈ R

N×1 denotethe ith column of the upper triangular matrix U−1(k) ∈ R
N×N . Given Qθf (k) ∈

R
(N+1)×(N+1) from Table 4.3, then U−T(k − 1)x(k) can be obtained from U−T(k −

2)x(k − 1) using the following relation
[

eb(k)
‖eb(k−1)‖

U−T(k − 1)x(k)

]

= Qθf (k − 1)

[

U−T(k − 2)x(k − 1)
ef (k)

‖ef (k−1)‖

] (4.9)where ef (k) = x(k) − dTfq2(k − 1)U−T(k − 2)x(k − 1).The proofs for Lemmas 3 and 4 are in the Appendices A3 and A4. Another set of al-ternative lemmas and their proofs are given in Appendices B3 and B4, these lemmasrequire division operations and are mentioned only for the sake of completeness. Ifwe substitute U−T(k− 1) with U−T(kF − 1) and x(k) with x̃(k) in the Lemmas, weget
[

0

λ−1/2r̃(k − 1)

]

= QT
θ (kF − 1)

[

zi(k)

r(k − 1)

] (4.10)51



and [
eb(k)

‖eb(k−1)‖

r(k)

]

= Qθf (kF − 1)

[

r̃(k − 1)
ef (k)

‖ef (k−1)‖

] (4.11)where r̃(k− 1) is an intermediate value required to get r(k). At a time instant after
k = kF we have

r(k − 1) = U−T(kF − 1)x̃(k − 1) (4.12)Applying Eq. (4.10) we get
r̃(k − 1) = U−T(kF − 2)x̃(k − 1) (4.13)and applying Eq. (4.11) to r̃(k − 1), we have

r(k) = U−T(kF − 1)x̃(k) (4.14)The output y(k) can then be obtained by using the updated r(k) in Eq. (4.7). Notethat when r(k) is obtained from r(k− 1), only the input vector x̃(k) is updated andthe matrix U−T(kF −1) remains the same in the process. The detailed algorithm forthe �ltering operation is given in Table 4.3 along with the initialization procedure.Note that matrix multiplications are avoided; instead Givens rotations are used,rendering a low-complexity solution. The peak complexity in terms of number ofoperations required per iteration for the proposed method and the inverse QRD-RLSalgorithm are given in Table 4.4 for comparison.
4.2.3 Output �ltering for pre-equalizer type setupConsider the pre-equalizer setup described in Section 2.2.3; for clarity the setup isillustrated in Figure 4.3. As discussed before, in the pre-equalizer setup, the weightsof the adaptive �lters are copied at each iteration to the pre-equalizer block withinput signal x̃(k) which is independent of the input to the adaptive �lter x(k). Theoutput ỹ(k) is then computed with the updated copy of the weight vector. The52



Unknown System

(Pre−equalizer)

(Copy of the weight vector)

(Adaptive Filter)

PSfrag replacementsx̃(k) ỹ(k)x(k)
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Figure 4.3: The pre-equalizer using indirect learning architectureoutput of the copied weight vector ỹ(k) is given as
ỹ(k) = wT(k)x̃(k) (4.15)Let x̃(k) be an input sequence independent of x(k). Then Eq. (4.15) can be modi�edas

ỹ(k) = dTq2(k − 1)U−T(k − 1)x̃(k) = dTq2(k − 1)r̄(k) (4.16)where r̄(k) = U−T(k − 1)x̃(k). As can be seen from Eq. (4.16), the variables
dq2(k) and U−T(k−1) are changing throughout the adaptation of w(k), contrary tooutput �ltering mentioned in Section 4.2.2 where the weight vector is not changing.Lemma 4 can be used to update r̄(k) as follows

[
eb(k)

‖eb(k−1)‖

r̄(k)

]

= Q̃θf (k − 1)

[

r̄(k − 1)
ef (k)

‖ef (k−1)‖

] (4.17)For output �ltering we also require to update the rotation matrix Q̃θf (k) along with
dq2(k). This is only possible if a FQRD-RLS algorithm is running in parallel asin case of a pre-equalizer. In summary, the rotation matrix Q̃θf (k) and the vector
dq2(k) are provided by the FQRD-RLS algorithm, and the update for r̄(k) can becomputed from Lemma 4 as described above. The algorithm for output �ltering for53



the pre-equalizer is given in Table 4.5.The computational complexity of the algorithm is given in Table 4.6 along withFQRD-RLS and IQRD-RLS algorithm for comparison. Note that for pre-equalizerthe output �ltering algorithm also includes the FQRD-RLS algorithm.
4.3 Experimental ResultsThe weight extraction and output �ltering techniques for the FQRD-RLS algorithmsallow it to be used in applications such as system identi�cation, pre-equalizationand post-equalization. In the following subsections the experimental setups forsystem identi�cation, post-equalization, and pre-equalization are given along withthe experimental results. For comparison purpose, the inverse QRD-RLS algorithmis selected. It is shown that the di�erence in results from the FQRD-RLS algorithmto the IQRD-RLS algorithms are within machine precision.
4.3.1 System Identi�cationThe proposed WE algorithm is applied to the FQRD-RLS algorithm in a systemidenti�cation setup. The plant has N = 11 coe�cients and a colored noise inputsignal was used with SNR set to 30 dB. The condition number of the input-signal au-tocorrelation matrix is 821. The extracted weights of the FQRD-RLS algorithm arecompared to those of the IQRD-RLS algorithm [21] which, with proper initialization,provides an identical solution in an in�nite precision environment. As a measureof accuracy, the squared weight-di�erence from both algorithms was calculated andaveraged over K = 100 ensemble using

∆w̄i =
1

K

K−1∑

j=0

[wj
IQRD,i − wj

FQRD,i]
2 (4.18)54
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FQRD,i are the ith coe�cients ofthe IQRD-RLS and the FQRD-RLS algorithms, respectively. Figure 4.4 shows thatthe di�erence between the extracted weights of the FQRD-RLS and those of theIQRD-RLS are within machine precision. The learning-curves for both algorithmsare plotted in Figure 4.5. As can be seen from the �gure, they are identical up tonumerical accuracy. Also the di�erence of the MSE curves is given in Figure 4.6.4.3.2 Post-EqualizationThe channel equalization example is taken from [28], where the channel taps aregiven as [

0.5 1.2 1.5 −1
]T. The SNR is 30 dB and the equalizer has N = 35coe�cients. The equalizer runs in two modes: the training mode and the datamode. In training mode 150 symbols from a 4-QAM are used whereas in datamode 750 symbols from a 16-QAM constellation are processed. For comparison,55
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4.3.3 Pre-EqualizationThe pre-equalizer is discussed in Section 2.2.3. The pre-equalizer experiment is doneto verify that the FQRD-RLS algorithm can be used for pre-equalizer setup with the56
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help of the proposed output �ltering algorithm. The inverse QRD-RLS algorithmis also used in the experiment as the standard algorithm. Due to di�erent initialvalues, the algorithm will be given di�erent results in the transient. Therefore, theexperiment is considered successful if both the algorithms converge to the samesolution. The input signal to the pre-equalizer setup is the same as de�ned in theprevious section, with 2000 samples. Zero-mean and 1 × 10−7 variance noise isadded after the channel. The channel taps are same as in the previous section.For this experiment a 35 taps adaptive �lter is used. The pre-equalizer results areobtained after 50 runs. To provide the evidence for the fact that both the algorithmsconverge to the same solution, the MSE curves, the di�erence of MSE curves andthe di�erence of weight vectors after 2000 samples are given in Figure 4.10, 4.11and 4.12 respectively. 61
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4.4 ConclusionIn this chapter three novel algorithms were presented which extend the applicationsof the FQRD-RLS algorithms. In the weight extraction algorithm the weight coe�-cients for the FQRD-RLS algorithm are obtained, which means that the FQRD-RLSalgorithms can be used for applications such as system identi�cation and burst-typetraining of the post-equalizer. However, for the burst type training a more e�cientway in terms of peak complexity has been proposed by introducing the output �l-tering. In this algorithm the output of the coe�cient vector is obtained directlywithout extracting the weights and it has computational advantages over the weightextraction method when the number of training symbols are close to the number ofcoe�cients. The third algorithm is the output �ltering for the pre-equalizer setup.The FQRD-RLS algorithm can be used for pre-equalizers using this algorithm. Thevalidity of the algorithms is �rst established by mathematical proofs and their properfunctionality in the practice was veri�ed by experimental results.
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Table 4.1: Weight extraction algorithm.Conventional FQR_PRI_B algorithmfor each k{ Obtain dfq2(k):
[
efq1(k)
dfq2(k)

]

= Qθ(k − 1)

[
x(k)

λ1/2dfq2(k − 1)

]Obtain a(k)
[

eb(k)

λ1/2‖eb(k−1)‖

a(k)

]

= Qθf (k − 1)

[

a(k − 1)
ef (k)

λ1/2‖ef (k−1)‖

]Obtain ‖ef (k)‖:
‖ef (k)‖ =

√

e2
fq1(k) + λ‖ef (k − 1)‖2Obtaining Qθf (k):

[
0

‖e
(0)
f (k)‖

]

= Qθf (k)

[
dfq2(k)
‖ef (k)‖

]Obtaining Qθ(k):
[
1/γ(k)

0

]

= Qθ(k)

[
1

−a(k)

]Joint Process Estimation:
[
eq1(k)
dq2(k)

]

= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]

e(k) = eq1(k)/γ(k) }Weight extraction at any chosen time instant kinitializing wf,−1(k − 1) and obtaining f(k − 1)
wf,−1(k − 1) = −1
[
γ(k − 1)
f(k − 1)

]

= Qθ(k − 1)

[
1

0N×1

]for each i = 0 : N − 1{ Obtaining ui(k − 1)
[

−wb,i(k−1)

‖eb(k−1)‖

ui(k − 1)

]

= Q̃θf (k − 1)

[

ui−1(k − 2)
−wf,i−1(k−1)

‖ef (k−1)‖

]Obtaining zi(k − 1) and ui(k − 2)
zi(k − 1) = −fT(k − 1)ui(k − 1)/γ(k − 1)
[

0
λ−1/2ui(k − 2)

]

= QT
θ (k − 1)

[
zi(k − 1)
ui(k − 1)

]Obtaining the coe�cients wf,i−1(k − 1)
wf,i(k − 1) = uTi (k − 2)dfq2(k − 1)Obtaining the coe�cients
wi(k − 1) = uTi (k − 1)dq2(k − 1) }65



Table 4.2: Computational complexity of weight extraction (WE).
ALG. × OPER. MULT DIV SQRTFQR_PRI_B 19N + 4 4N + 1 2N + 1WE (per weight i) 16N − 6 − 14i 1 0WE (total) 7N2 + N 1 0IQRD-RLS 3N2 + 4N + 1 N N
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Table 4.3: Equivalent output-�ltering method for burst type trainingConventional FQRD-RLS algorithm with input signal x(k)for each 0 ≤ k < kF{ Obtain dfq2(k):
[
efq1(k)
dfq2(k)

]

= Qθ(k − 1)

[
x(k)

λ1/2dfq2(k − 1)

]Obtain a(k)
[

eb(k)

λ1/2‖eb(k−1)‖

a(k)

]

= Qθf (k − 1)

[

a(k − 1)
ef (k)

λ1/2‖ef (k−1)‖

]Obtain ‖ef (k)‖:
‖ef (k)‖ =

√

e2
fq1(k) + λ‖ef (k − 1)‖2Obtaining Qθf (k):

[
0

‖e
(0)
f (k)‖

]

= Qθf (k)

[
dfq2(k)
‖ef (k)‖

]Obtaining Qθ(k):
[
1/γ(k)

0

]

= Qθ(k)

[
1

−a(k)

]Joint Process Estimation:
[
eq1(k)
dq2(k)

]

= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]

e(k) = eq1(k)/γ(k)}Equivalent output-�ltering method with input signal x̃(k)Initialization:
r̃(kF − 1) = 0for each k ≥ kF{Obtaining r(k) from r̃(k − 1)
[

eb(k)
‖eb(k−1)‖

r(k)

]

= Qθf (kF − 1)

[

r̃(k − 1)
ef (k)

‖ef (k−1)‖

]Obtaining zi(k − 1)
zi(k − 1) = −fT(k − 1)r(k)/γ(k − 1)Updating r̃(k)
[

0
λ−1/2r̃(k)

]

= QT
θ (kF − 1)

[
zi(k)
r(k)

]Obtaining ef (k − 1)
ef (k − 1) = r̃T(k)dfq2(k − 1)Obtaining the output
y(k) = dTq2(kF − 1)r(k)} 67



Table 4.4: Computational complexity in terms of number of operations.
Algorithm MULT DIV SQRTFQR_PRI_B training mode 20N + 5 3N + 1 2N + 1FQR_PRI_B data mode 16N − 6 1 0Inverse QRD-RLS 3N2 + 4N + 1 N N
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Table 4.5: Output Filtering for pre-equalizer type setupfor each k{ Obtain dfq2(k):
[
efq1(k)
dfq2(k)

]

= Qθ(k − 1)

[
x(k)

λ1/2dfq2(k − 1)

]Obtain a(k)
[

eb(k)

λ1/2‖eb(k−1)‖

a(k)

]

= Q̃θf (k − 1)

[

a(k − 1)
ef (k)

λ1/2‖ef (k−1)‖

]Obtain ‖ef (k)‖:
‖ef (k)‖ =

√

e2
fq1(k) + λ‖ef (k − 1)‖2Obtaining Q̃θf (k):

[
0

e
(0)
f (k)

]

= Q̃θf (k)

[
dfq2(k)
‖ef (k)‖

]Obtaining Qθ(k):
[
1/γ(k)

0

]

= Qθ(k)

[
1

−a(k)

]Joint Process Estimation:
[
eq1(k)
dq2(k)

]

= Qθ(k)

[
d(k)

λ1/2dq2(k − 1)

]

ε(k) = eq1(k)γ(k)}The output �ltering algorithmInitialization:
r̄(k − 1) = 0for each k{Obtaining r̄(k):
[

eb(k)
‖eb(k−1)‖

r̄(k)

]

= Q̃θf (k − 1)

[

r̄(k − 1)
ef (k)

‖ef (k−1)‖

]Obtaining ef (k − 1)
ef (k − 1) = r̃T(k)dfq2(k − 1)Obtaining the output:
y(k) = dTq2(k − 1)r̄(k)}
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Table 4.6: Computational complexity in terms of number of operations.
Algorithm MULT DIV SQRTFQR_PRI_B 20N + 5 3N + 1 2N + 1FQR_PRI_B Output �ltering for Pre-equalizer 4N − 3 1 0Inverse QRD-RLS 3N2 + 4N + 1 N N
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Chapter 5
Multichannel Fast QRD-RLSAlgorithm - Weight Extraction
In this chapter FQRD-RLS algorithms for multichannel systems are considered. Asin the case of a single-channel systems, the multichannel FQRD-RLS algorithmdoes not provide direct access to the �lter weights. For this purpose, we proposeweight extraction for multichannel algorithms and equivalent-output �ltering. Theproposed algorithms can be seen as multichannel extensions of the single-channelalgorithms presented in Chapter 4. They can be used for multichannel systemidenti�cation and multichannel pre-equalization. The multichannel FQRD-RLS al-gorithms can be based on the updating of backward or forward prediction errorsin the same way as the single-channel algorithms. As in the single-channel case,only the FQRD-RLS algorithm based on updating backward prediction errors isconsidered here because of its numerical robustness.First, the multichannel system is introduced and the concept of multichannel adap-tive �ltering is presented in Section 5.1. The applications for the multichanneladaptive �ltering are discussed in Section 5.2. The multichannel FQRD-RLS algo-rithm is derived in Section 5.3. The weight extraction and the equivalent-output�ltering algorithms for the multichannel case are discussed in Section 5.4.1, 5.4.2,71



and 5.4.3, respectively. Section 5.5 shows experimental results for the weight ex-traction and the equivalent-output �ltering algorithms in a multichannel scenario.Finally, Section 5.6 draws the conclusions.
5.1 The Multichannel Adaptive FilteringA multichannel system has multiple input signals, each signal being fed to an inde-pendent set of weights. In this chapter, the number of coe�cients in each channel isconstrained to be the same. Let M be the number of channels and N be the numberof coe�cients in each channel. The input signal for the ith channel is denoted by
xi(k). The M -channel input signal vector at an instant k is de�ned as

xTk =
[

x1(k) x2(k) . . . xM(k)
]

. (5.1)The input signal vector for M �lters with N coe�cients is, therefore, de�ned as
xTN(k) =

[

xTk xTk−1 . . . xTk−N+1

] (5.2)We denote the NM ×1 coe�cient vector as wN(k). The output of the multichannelsystem yN(k) at instant k is obtained as
yN(k) = xTN(k)wN(k) (5.3)A multichannel system is depicted in Figure 5.1. The adaptive �lter equations ofmultichannel system are similar in form to the adaptive �lter based on a single-channel system. The most notable di�erence is that vector updates are changedto matrix updates, whose dimensions relates to the number of channels M . Inthis thesis we focus on the least-squares based adaptive �ltering algorithms for themultichannel systems. The error-signal vector for the weighted least-squares solutionis written as

e(k) = d(k) − XN(k)wN(k) (5.4)72
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Figure 5.1: A multichannel systemwhere the multichannel input data matrix is given by
XN(k) =

[

xN(k) λ1/2xN(k − 1) . . . λk/2xN(0)
]T (5.5)and the desired signal vector is expressed as

d(k) =
[

d(k) λ1/2d(k − 1) . . . λk/2d(0)
]T (5.6)The minimization of the weighted least-squares error results in the solution for theoptimum weights given as

wN(k) = [XT
N(k)XN(k)]−1[XT

N(k)d(k)] (5.7)It is important to note that the solution is of the same form as Eq. (2.15) in thesingle-channel case. They are identical if M = 1.For multi-channel adaptive �lters, the same RLS and QRD-RLS algorithms can beused as in the single channel case; only the dimensions of the vectors and matricesare increased and the input signal is multi-channel. However, for the FQRD-RLSalgorithms some modi�cations are required.73



5.2 Adaptive Multichannel Filtering ApplicationsAs noted before, there are several applications of multichannel adaptive �ltering. Inthis section system identi�cation and broadband adaptive beamforming applicationsare discussed in detail.
5.2.1 Multichannel System Identi�cationSingle-channel system identi�cation was explained in Section 2.2.1. The systemidenti�cation setup for multichannel system is shown in Figure 5.2, where xk is themultidimensional input signal, d(k) is the desired signal, yN(k) is the output ofthe adaptive �lter, hN is the unknown system, wN(k) is coe�cient vector of themultichannel adaptive �lter, e(k) is the error signal, and n(k) is the measurementnoise.After the convergence, the multichannel adaptive �lter weight vector gives the es-timate of the coe�cients of the unknown multichannel system. The multichannelFQRD-RLS algorithm does not provide the weight vector at each iteration. There-fore, system identi�cation is not possible with this algorithm. The weight extractionalgorithm for the FQRD-RLS algorithm will be presented later in this chapter.
5.2.2 Broadband beamformerA beamformer is inherently a multichannel system. It usually comprises a uniformlyspaced linear array of M sensors. The sensors receive K signals from di�erentdirections resulting in a multichannel signal at the input of the beamformer. Thereceived signal x(k) consists of unwanted interference signal and a desired signalgiven as

x(k) = SAu(k) + n(k) (5.8)74
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Figure 5.2: Multichannel system identi�cation setup
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where
S =

[

s(θ1) s(θ2) . . . s(θK)
]T (5.9)is the steering matrix, containing the steering vectors of the users of the form

s(θi) =
[

1 ejπ sin θi . . . ejMπ sin θi

]T
, (5.10)

θi denotes the direction of arrival,
A = diag [

A1 A2 . . . AK

] (5.11)contains the amplitudes of the signals,
u(k) =

[

u1(k) u2(k) . . . uK(k)
] (5.12)is the vector of the transmitted signal and the interferers, and n(k) is the samplednoise sequence across the antenna array. The signal is assumed to be broadbandso that N coe�cients per sensor are considered, with the overall coe�cient vector

wN for all sensors. The objective of the beamformer is to suppress the interferersignals by adjusting the coe�cients so that nulls are placed in the directions of theinterference signals.The antenna beam pattern can be obtained from the coe�cients after convergence,and the attenuation factor for the nulls placed for each interfering signal can beobserved. The beamformer setup is illustrated in Fig 5.3.
5.3 The Multichannel FQRD-RLS AlgorithmsIn the derivation of the multichannel FQRD-RLS algorithms we have a multichannelinput data matrix. This means that the equations become more complicated butare still very similar to those of the single-channel FQRD-RLS algorithm. Here we�rst introduce the forward and backward prediction equations and then we derive76
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the complete FQRD-RLS algorithm.For the multichannel input data matrixXN(k), there exists a unitary rotation matrix
Q̃Nθ(k) such that

[

0(k−MN+1)×(k−MN+1)

UN(k)

]

= Q̃Nθ(k)XN(k) (5.13)This is due to the fact that the matrix XN(k) consists of M×N independent columnvectors, the lower triangular matrix UN(k) ∈ R
NM×NM is called the Cholesky factorof XT

N(k)XN(k). Consider the forward and backward prediction equation for themultichannel case
Ef (k) = Df (k) −

[

XN(k − 1)

01×NM

]

WNf (k) (5.14)
Eb(k) = Db(k) − XN(k)WNb(k) (5.15)this can also be written as

Ef (k) =

[

Df (k)

(

XN(k − 1)

01×NM

)] [

I

−WNf (k)

] (5.16)
Eb(k) =

[

XN(k) Db(k)
]
[

−WNb(k)

I

] (5.17)where the matrix Ef (k), and Eb(k) are the forward and the backward predictionerror matrices, respectively, and the forward and backward reference signal matricesare
Df (k) =

[

xk λ1/2xk−1 . . . λk/2x0

]T (5.18)
Db(k) =

[

xk−N λ1/2xk−N−1 . . . λ(k−N)/2x0 0M×(N+1)

]T (5.19)Note that the forward and backward prediction equations are decoupled because asample value for each channel is predicted separately. Applying the rotation matrix78



Q̃Nθ(k) to Eq. (5.16) and (5.17) results in
[

Q̃Nθ(k − 1) 0k×M

0M×k IM×M

]

Ef (k)

=

[

Q̃Nθ(k − 1) 0k×M

0M×k IM×M

][

Df (k)

(

XN(k − 1)

01×NM

)][

1

−WNf (k)

] (5.20)
carrying out the multiplication gives

[

Efq1(k)

Efq2(k)

]

=







Dfq1(k) 0(k−NM)×(k−NM)

Dfq2(k)

(

UN(k − 1)

01×NM

)







[

I

−WNf (k)

] (5.21)
Q̃Nθ(k)Eb(k) = Q̃Nθ(k)

[

XN(k) Db(k)
]
[

−WNb(k)

I

][

Ebq1(k)

Ebq2(k)

]

=

[

0(k−NM)×(k−NM) Dbq1(k)

UN(k − 1) Dbq2(k)

][

−WNb(k)

I

] (5.22)where it is obvious that Efq1(k) = Dfq1(k) and Ebq1(k) = Dbq1(k). And the forwardand backward prediction weight vectors are, therefore, given by
WNf (k) = U−T

N (k − 1)Dfq2(k) (5.23)
WNb(k) = U−T

N (k)Dbq2(k) (5.24)>From Eq. (5.16) and Eq. (5.17) we can write matrix XN+1(k) as
XN+1(k) =







Df (k)

(

XN(k − 1)

01×NM

)

0(M−1)×(M)0(M−1)×(MN)







(5.25)and
XN+1(k) =

[

XN(k) Db(k)

0(M−1)×(MN) 0(M−1)×(M)

] (5.26)79



Similar to Eq. (5.13) we can �nd a unitary rotation matrix Q̃(N+1)θ(k) to determinethe Cholesky factor of the matrix XT
N+1(k)XN+1(k)







0(k+1−NM−M)×(NM) 0(k+1−NM−M)×(M)

0M×NM Ebq1(k)

UN(k) Dbq2(k)







=

[

0(k+1−NM−M)×(NM+M)

UN+1(k)

]

= Q̃(N+1)θ(k)XN+1(k)

(5.27)
where the lower triangular matrix UN+1(k) ∈ R

NM×NM is the Cholesky factor of
XT

N+1(k)XN+1(k). The unitary rotation matrix can be written as a series of Givensrotation matrices as follows
[

0(k+1−NM−M)×(NM+M)

UN+1(k)

]

= Q′
f (k)Qf (k)

[

Q(k − 1) 0k×M

0M×k IM×M

]

XN+1(k) (5.28)The triangularization of matrix XN+1(k) is done in three steps. Firstly, we obtainthe rightmost rotation matrix as
[

0(k+1−NM−M)×(NM+M)

UN+1(k)

]

= Q′
f (k)Qf (k)

[

Q(k − 1) 0k×M

0M×k IM×M

]







Df (k)

(

XN(k)

01×NM

)

0(M−1)×(MN+M)







= Q′
f (k)Qf (k)









Efq1 0(k−NM−1)×(NM)

Dfq2(k) UN(k − 1)

λk/2xT0 01×NM

0(M−1)×(M) 0(M−1)×(MN)







 (5.29)Next we apply rotation matrix Qf (k). As a result, the values at the upper part ofthe vectors are rotated down to the lower part, resulting in

[

0(k+1−NM−M)×(NM+M)

UN+1(k)

]

= Q′
f (k)







0(k−NM−1)×(M) 0(k−NM−1)×(NM+M)

Dfq2(k) UN(k − 1)

E′
f (k) 0M×NM







. (5.30)80



The ever increasing size of the matrices can be avoided by removing the redundantzeros from both sides of Eq. (5.30) and the corresponding rows and columns fromthe rotation matrix. Therefore we get
[

0M×NM Ebq1(k)

UN(k) Dbq2(k)

]

= Q′
θf (k)

[

Dfq2(k) UN(k − 1)

E′
f (k) 0M×NM

] (5.31)where the rotation matrix Q′
θf (k) is the matrix Q′

f (k) with the redundant rows andcolumns removed. Finally, the rotation matrix Q′
θf (k) results in complete triangu-larization, which means we can obtain a lower triangular matrix E

(0)
f (k) as follows

[

01×M

E
(0)
f (k)

]

= Q′
θf (k)

[

Dfq2(k)

E′
f (k)

] (5.32)where matrix E
(0)
f (k) is referred to as the forward error covariance matrix. In thefollowing we derive the update equations for E′

f (k) and Dfq2(k). The rotationmatrices Qf (k) and Q(k − 1) can also be written as
Qf (k) = Qf (k)

[

1 01×k+M−1

0k+M−1×1 QT
f (k − 1)

]

︸ ︷︷ ︸

Q̂f (k)

[

1 01×k+M−1

0k+M−1×1 Qf (k − 1)

]

= Q̂f (k)

[

1 01×k+M−1

0k+M−1×1 Qf (k − 1)

]

(5.33)
and

Q(k − 1) = Q(k − 1)

[

1 01×k+M−1

0k+M−1×1 QT(k − 2)

]

︸ ︷︷ ︸

Q̂(k−1)

[

1 01×k+M−1

0k+M−1×1 Q(k − 2)

]

= Q̂(k − 1)

[

1 01×k+M−1

0k+M−1×1 Q(k − 2)

]

(5.34)
It is also important to mention that the two rotation matrices are commutative [30],81



i.e.,
[

1 01×k+M−1

0k+M−1×1 Qf (k − 1)

] [

Q̂(k − 1) 0M×k

0k×M IM×M

]

=

[

Q̂(k − 1) 0M×k

0k×M IM×M

][

1 01×k+M−1

0k+M−1×1 Qf (k − 1)

] (5.35)
Using the commutative property Eq. (5.28) can be written as







0k−N(1+M)×1

Dfq2(k)

E′
f (k)







= Qf (k)

[

Q(k − 1) 0M×k

0k×M IM×M

]












xTk
λ1/2xTk−1...
λk/2xT0
0M−1×M












(5.36)
Combining Eq. (5.36) with Eqs. (5.33)-(5.34) we get







0k−N(1+M)×1

Dfq2(k)

E′
f (k)







= Q̂f (k)









Q̂(k − 1)







xTk
0k−N(M+1)+1×1

λ1/2Dfq2(k − 1)







λ1/2Ef (k − 1)









= Q̂f (k)









ẽTfq1(k)

0

Dfq2(k)

λ1/2Ef (k − 1)









(5.37)
Eq. (5.37) results in two update equations, one for the vector Dfq2(k) and one formatrix E′

f (k). These equations are given by
[

ẽTfq1(k + 1)

Dfq2(k + 1)

]

= Qθ(k)

[

xTk+1

λ1/2Dfq2(k)

] (5.38)
82



and [

0T
Ef (k + 1)

]

= Q̄f (k + 1)

[

ẽTfq1(k + 1)

λ1/2Ef (k)

] (5.39)where Q̄f (k + 1) is obtained from Q̂(k + 1) by removing the redundant rows andcolumns contributing to the ever increasing size of it. Finally, the update equationfor vector dq2(k) is given by
[

eq1(k + 1)

dq2(k + 1)

]

= Qθ(k + 1)

[

d(k + 1)

λ1/2dq2(k + 1)

] (5.40)where the a priori error is given as
e(k) = eq1(k)/γ(k) (5.41)Next the a priori and the a posteriori algorithms are derived based on the updateequation obtained in this section.

5.3.1 The Multichannel FQR_PRI_B AlgorithmThe multichannel a priori FQRD-RLS algorithm updates vector aN(k) de�ned as
aN(k) = λ−1/2U−T

N (k − 1)xN(k) (5.42)As discussed before, the basic idea in the FQRD based algorithms is to eliminatethe matrix updates for the matrix U−T
N (k). Therefore, the update equation forvector aN(k) is considered. The extended Cholesky matrix UN+1(k) is de�ned inEq. (5.31). Taking the inverse and the transpose of both sides we get

U−T
N+1(k) = Q′

θf (k)

[

0NM×M U−T
N (k − 1)

[E′
f (k)]−T −[E′

f (k)]−TDT
fq2(k)U−T

N (k − 1)

] (5.43)83



By post multiplying both sides of Eq. (5.43) with the extended multichannel inputdata vector xN+1(k) and λ−1/2 we obtain the update equation for vector aN(k)

aN+1(k + 1) = Q′
θf (k)

[

aN(k)

r(k + 1)

] (5.44)where r(k + 1) = λ1/2[E′
f (k)]−Tẽf (k + 1) and ẽf (k + 1) = γ(k)ẽfq1(k + 1). >Fromthe updated vector aN(k), the update equation for the rotation matrix Qθ(k + 1) isobtained [

1/γ(k + 1)

0NM×1

]

= Qθ(k + 1)

[

1

−aN(k + 1)

] (5.45)In order to avoid the computation of matrix inversion in r(k + 1) we can use [30]
[

∗

0M×1

]

= Q̄f (k + 1)

[

1/γ(k + 1)

−r(k + 1)

] (5.46)The algorithm is summarized in Table 5.1.
5.3.2 The Multichannel FQR_POS_B AlgorithmThe derivation for the a posteriori algorithm follows the same lines as those for thea priori case. The vector fN(k + 1) is de�ned as

fN(k + 1) = U−T
N (k + 1)xN(k + 1) (5.47)By post multiplying Eq. (5.31) with the multichannel input data vector xN+1(k) weget the update equation for the vector fN(k) as

fN+1(k + 1) = Q′
θf (k + 1)

[

fN(k)

p(k + 1)

] (5.48)84



Table 5.1: The FQR_PRI_B Algorithm based on backward prediction errors.for each k{ Obtaining dfq2(k):
[
ẽTfq1(k + 1)
Dfq2(k + 1)

]

= Qθ(k)

[
xTk+1

λ1/2Dfq2(k)

]Obtaining ‖Ef (k + 1)‖:
[

01×M

E′
f (k + 1)

]

= Q̄f (k + 1)

[
ẽTfq1(k + 1)

λ1/2E′
f (k)

]Obtaining r(k + 1)
[

∗
0M×1

]

= Q̄f (k + 1)

[
1/γ(k + 1)
−r(k + 1)

]Obtaining aN(k + 1)

aN+1(k + 1) = Q̃θf (k)

[
aN(k)

r(k + 1)

]Obtaining Q̃θf (k + 1):
[

0NM×M

E
(0)
f (k + 1)

]

= Q̃θf (k)

[
Dfq2(k + 1)
‖E′

f (k + 1)‖

]Obtaining Qθ(k + 1):
[
1/γ(k + 1)

0

]

= Qθ(k + 1)

[
1

−aN(k + 1)

]Joint Process Estimation:
[
eq1(k + 1)
dq2(k + 1)

]

= Qθ(k + 1)

[
d(k + 1)

λ1/2dq2(k)

]

e(k) = eq1(k)/γ(k)}
where vector p(k + 1) = [E′

f (k + 1)]−Tẽ′
f (k + 1). We can avoid the backwardsubstitution using the following relation [30]

[

∗

p(k + 1)

]

= Q̄f (k + 1)

[

γ(k)

0M×1

] (5.49)85



Table 5.2: The FQR_POS_B Algorithm based on backward prediction errors.for each k{ Obtain dfq2(k):
[
ẽTfq1(k + 1)
Dfq2(k + 1)

]

= Qθ(k)

[
xTk+1

λ1/2Dfq2(k)

]Obtain ‖Ef (k + 1)‖:
[

01×M

E′
f (k + 1)

]

= Q̄f (k + 1)

[
ẽTfq1(k + 1)

λ1/2E′
f (k)

]Obtaining Q̃θf (k + 1):
[

0NM×M

E
(0)
f (k + 1)

]

= Q̃θf (k)

[
Dfq2(k + 1)
‖E′

f (k + 1)‖

]Obtaining pN(k + 1)
[

∗
p(k + 1)

]

= Q̄f (k + 1)

[
γ(k)
0M×1

]Obtain fN(k + 1)

fN+1(k + 1) = Q̃θf (k + 1)

[
fN(k)

p(k + 1)

]Obtaining Qθ(k + 1):
[
1
0

]

= QT
θ (k + 1)

[
γ(k + 1)
fN(k + 1)

]Joint Process Estimation:
[
eq1(k + 1)
dq2(k + 1)

]

= Qθ(k + 1)

[
d(k + 1)

λ1/2dq2(k)

]

e(k) = eq1(k)/γ(k)}
The update for the rotation matrix can be obtained from the vector fN(k) with thehelp of the following equation

[

γ(k + 1)

fN(k + 1)

]

= Qθ(k + 1)

[

1

0NM×1

] (5.50)The complete algorithm is summarized in Table 5.2.86



5.4 Weight-Extraction and Output Filtering Approachfor MC-FQRD-RLS algorithmsIn Chapter 4, new applications for the single channel FQRD-RLS algorithm werepresented that required the knowledge of the coe�cients. The objective of thissection is to show that, with slight modi�cations, the lemmas of Chapter 4 can beextended for the MCFQRD-RLS algorithm cases.In Subsection 5.4.1, the idea of weight extraction for the multichannel case is pre-sented. Next the output �ltering for burst-type errors and the equivalent output�ltering for pre-equalizer setup is elaborated with the help of the modi�ed lemmas.The proofs for the lemmas are presented in Appendix A.
5.4.1 Weight Extraction for the a priori Multichannel FQRD-RLS AlgorithmConsider the output of the multichannel adaptive �lter yN(k) given by

yN(k) = wT
N(k − 1)xN(k)

= dTq2(k − 1)UT
N(k − 1)xN(k)

(5.51)Let us de�ne an impulse vector δi =
[

0 . . . 0 1 0 . . . 0
]T

∈ R
NM×1 to bea vector with a �1� at the ith position (1 ≤ i ≤ NM). Note that vector xN(k)comprises of input vectors from M channels. From the de�nition of vector xN(k)given in Section 5.1 it can be seen that the elements corresponding to one channelare placed at every M th instant. The jth element of the weight vector for the ith87



channel is given as
wN,i+jM(k) = wT

N(k − 1)δi+jM

= dTq2(k − 1)U−T
N (k − 1)δi+jM

= dTq2(k − 1)ui+jM(k − 1)

(5.52)
Similar to the single channel case in Chapter 4, the weight coe�cient vector forthe multichannel algorithm is obtained by computing the columns of the matrix
U−T

N (k − 1). For this purpose, we need to extend Lemma 2 of Chapter 4 to coverthe multichannel case. Lemma 1 will still be valid here.Lemma 5. (Multichannel extension of Lemma 2)Let ui(k) =
[

ui,0(k) . . . ui,NM−1(k)
]T

∈ R
NM×1 denote the ith column of the uppertriangular matrix U−T

N (k − 1) ∈ R
NM×NM . Given Q̃θf (k) ∈ R

(NM+1)×(NM+1) fromTable 5.1, then ui+jM(k−1) can be obtained from ui+(j−1)M(k−2) using the followingrelation
[

r̃′(k)

ui+jM(k − 1)

]

= Q̃θf (k−1)

[

ui+(j−1)M(k − 2)

r̃i+(j−1)M(k)

]

, i = 0, . . . ,M−1; j = 0, . . . , N−1(5.53)where r̃i(k) = −[E′
f (k)]−TDT

fq2(k)ui(k − 1). Also for j = 1, . . . ,M u−j(k − 2) =

0NM×1 and r̃−j(k) = ef,−j(k), where ef,−j(k) is the jth column of −[E′
f (k)]−T.Proof: See Appendix A5Assuming vector ui+(j−1)M(k − 1) to be known, Lemmas 1 and 5 can be used tocompute vector ui+(j−1)M(k − 2) and ui+jM(k − 1), respectively. Therefore all thecolumn vectors corresponding to the ith channel are obtained by iterating throughall the possible values of j. Consequently, we obtain all the weights for the ithchannel. Note that in order to obtain the column vector ui+jM(k−1) correspondingto a particular channel, we need to initialize Eq. (5.53) given in Lemma 5 properly,which means choosing the appropriate column of matrix [E

(0)
f (k−1)]−1. A schematic88
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Table 5.3: �Weight Extraction� algorithm
r̃l(k) = ef,l(k) for l = −M, . . . ,−1
ul(k − 2) = 0NM×1 for l = −M, . . . ,−1for each i = 0 : N − 1for each j = 0 : M − 1{Obtaining ui(k − 1)
[

r̃′(k)
ui+jM(k − 1)

]

= Q̃θf (k − 1)

[
ui+(j−1)M(k − 2)

r̃i+(j−1)M(k)

]

,

[
i = 0, . . . ,M − 1
j = 0, . . . , N − 1

]Obtaining zi+jM(k)

zi+jM(k) =
f(k)ui+jM (k−1)

γ(k)Obtaining ui(k − 2), to get the column vector of U−T(k − 1)
[

0
λ−1/2ui+jM(k − 2)

]

= QT
θ (k − 1)

[
zi+jM(k)

ui+jM(k − 1)

]Obtaining r̃i+jM(k)
r̃i+jM(k) = −[E′

f (k)]−TDT
fq2(k)ui+jM(k − 2)Obtaining the coe�cients

wi,j(k − 1) = uTi+jM(k − 1)dq2(k − 1)}for obtaining the column vectors is given in Figure 5.4. It is shown that, startingfrom u0(k − 1), �rst the column u0(k − 2) is obtained using Lemma 1 and then
uM(k − 1) using Lemma 5. Both of them correspond to channel 1. These columnvectors can be used to compute the weight coe�cients w0(k − 1) and wM(k − 1)respectively. The other channels from 2 to M are treated in the same way to computethe corresponding weight coe�cients. There are a total of NM weight coe�cientsso that it takes NM iterations to compute the whole coe�cient vector. The weightextraction algorithm is summarized in Table 5.3.5.4.2 Output �ltering for burst type setupOne important application for output �ltering is adaptive beamforming. The beam-former considered here is �rst adapted using training signals. After convergence90



the weight vector is not updated, and the output of interest is obtained by giving adi�erent input to the weights. The equivalent output �ltering algorithm can be usedhere in conjunction with the multichannel FQRD-RLS algorithm. The advantage ofequivalent output �ltering is that explicit weight extraction is not necessary.In this section we extend the output �ltering method for single channel in Sec-tion 4.2.2 to the multichannel case. Instead of having a single set of N coe�cients,we now have M di�erent coe�cient vectors of N taps. There are also M inputvectors. The multichannel counterpart of Eq. (4.6) is given as
yN(k) =

{

wT
N(k)xN(k) k < kF

wT
N,F x̃N(k) k ≥ kF

(5.54)where kF is the time instant after which the adaptive �lter coe�cient vector is notupdated, i.e., wN,F = wN(kF − 1), and the multichannel input vector x̃N(k) isindependent of the input vector xN(k). The output after weight freezing is given by
yN(k) = dTq2(kF )U−T

N (kF )x̃N(k) = dTq2(kF )rN(k), k ≥ kF (5.55)As we are interested in using the multichannel FQRD-RLS algorithm to compute theoutput of the adaptive �lter with frozen weights, the lemmas for the single-channelcase have to be modi�ed. Lemma 3 requires slight modi�cations; the matrix U−T(k)is replaced with the multichannel upper triangular matrix U−T
N (k), the input vectoris replaced with the multichannel input vector xN(k), and the rotation matrix istaken from Table 5.1. Similarly, Lemma 4 also needs to be modi�ed.Lemma 6. (Multichannel extension of Lemma 4)Let xN(k) ∈ R

NM×1 be the input data vector and let ur,i(k) ∈ R
1×NM denotethe ith column vector of the upper triangular matrix U−1

N (k) ∈ R
NM×NM . Given

Q̃θf (k) ∈ R
(NM+1)×(NM+1) from Table 5.1, then UN(k − 1)−TxN(k) can be obtainedfrom U−T

N (k − 2)xN(k − 1) using the following relation
[

r̃′(k)

U−T
N (k − 1)xN(k)

]

= Q̃θf (k − 1)

[

U−T(k − 2)xN(k − 1)

r̃(k)

] (5.56)91



where r̃(k) = [E′
f (k)]−Txk+1 − [E′

f (k)]−TDT
fq2(k)U−T

N (k − 1)xN(k).
Proof: See Appendix A6.Lemma 6 can be considered for any input vector xN(k). For sake of simplicitywe de�ne vectors p(k) = U−T(k − 1)x(k) and p̄(k) = U−T(k − 2)x(k). If vector
p(k) is assumed known, the problem is to obtain its update such that the weightsremain constant. In order to do so we �rst invoke Lemma 3 which results in vector
p̄(k). Then using Lemma 6 with p̄(k) on the right hand side we can compute vector
p(k + 1). The algorithm is given in Table 5.4.
5.4.3 Output �ltering for pre-equalizer type setupThis section describes the multichannel pre-equalizer using a multichannel FQRD-RLS algorithm. The output �ltering for pre-equalizer has already been presentedfor the single-channel case in Section 4.2.3. The multichannel output �ltering algo-rithm for the pre-equalizer setup uses only Lemma 6. The output of a multichanneladaptive �lter is de�ned as

ỹN(k) = wT
N(k)x̃N(k) (5.57)Eq. (5.57) can also be written as,

ỹN(k) = dTq2(k − 1)U−T
N (k − 1)x̃N(k) = dTq2(k − 1)p̄(k) (5.58)where p̄ = U−T

N (k − 1)x̃N(k). Using this de�nition in Lemma 6 we get
[

r̃′(k)

p̄(k + 1)

]

= Q̃θf (k)

[

p̄(k)

r̃(k)

] (5.59)92



To obtain the updated value, we use the updated rotation matrix Q̃θf (k + 1) asfollows [

r̃′(k)

p̄(k + 2)

]

= Q̃θf (k + 1)

[

p̄(k + 1)

r̃(k)

] (5.60)Equivalent-output �ltering for pre-equalizer requires a multichannel FQRD-RLS al-gorithm running in parallel in order to use its state variables i.e., the rotation matrix
Qθ(k) and the matrix [E

(0)
f (k)]−T at each iteration. The algorithm is summarizedin Table 5.5.

5.5 Experimental Results5.5.1 Multichannel System Identi�cationThe multichannel system consists of M = 3 channels with each channel having
N = 6 taps. The SNR is 30 dBs. The multichannel FQRD-RLS algorithm was usedto identify the system. After convergence the weight extraction algorithm was runto compute the �lter weights. In order to verify how close the weights are to the trueones, an IQRD-RLS algorithm is used to identify the system. The weights obtainedfrom the weight extraction method are then compared with those obtained by theIQRD-RLS algorithm. After 4000 iteration the di�erence of weights from both thealgorithms is seen to be approximately −300 dB, which is within the numericalaccuracy of the software used in simulation (MATLAB), as shown in Fig. 5.5.5.5.2 Broadband beamformerA uniform linear array with M = 4 antenna elements with spacing equal to halfwavelength is used in a system with K = 4 signals, one being the desired signal andrest interference signals with the direction of arrivals 0o, −35o, 45o, and 50o, and
N = 6 coe�cients per channel. The SNR for the interfering signals was set to 40dB93
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Figure 5.6: The beam pattern obtained from IQRD-RLS and FQRD-RLS algorithmand 5 dB for the desired signal. The RLS and the FQRD-RLS algorithms are usedfor adapting the beamformer. The Weight Extraction algorithm is used to extractthe weights of the FQRD-RLS algorithm. The beam pattern for both algorithms isshown for comparison in Fig. 5.6, this validates the weight extraction procedure.
5.6 ConclusionsIn this chapter we have shown how multichannel FQRD-RLS algorithms can be usedfor applications other than the output error based ones (i.e., noise, echo cancellationetc.). First, we presented a literature review of the a priori multichannel FQRD-RLS algorithms based on backward prediction error. Next, three novel algorithmswere derived to extend the range of applications of the multichannel FQRDR-RLSalgorithm. These algorithms are based on lemmas that are generalized from those95



presented in Chapter 4. The weight extraction algorithm enables multichannel ap-plications that require the explicit knowledge of the weights. The accuracy of theweight extraction algorithm is validated by a system identi�cation and a broadbandbeamforming application. The example shows that the weight extraction algorithmand the IQRD-RLS algorithm give identical results.
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Table 5.4: Equivalent-output �ltering algorithm for pre-equalizer.for each 0 ≤ k < kF{ Obtain dfq2(k):
[
ẽTfq1(k + 1)
Dfq2(k + 1)

]

= Qθ(k)

[
xTk+1

λ1/2Dfq2(k)

]Obtain ‖Ef (k + 1)‖:
[

01×M

E′
f (k + 1)

]

= Q̄f (k + 1)

[
ẽTfq1(k + 1)

λ1/2E′
f (k)

]Obtain aN(k)

aN+1(k + 1) = Q̃θf (k)

[
aN(k)

r(k + 1)

]Obtaining Q̃θf (k + 1):
[

0NM×M

E
(0)
f (k + 1)

]

= Q̃θf (k)

[
Dfq2(k + 1)
‖E′

f (k + 1)‖

]Obtaining Qθ(k + 1):
[
1/γ(k + 1)

0

]

= Qθ(k + 1)

[
1

−aN(k + 1)

]Joint Process Estimation:
[
eq1(k + 1)
dq2(k + 1)

]

= Qθ(k + 1)

[
d(k + 1)

λ1/2dq2(k)

]

ε(k) = eq1(k)γ(k)}Output-�ltering for pre-equalizer with input signal x̃(k)Initialization:
p̄(kF ) = 0for each k ≥ kF{Obtaining r(k + 1) from r̄(k):
[

r̃′(k)
p(k + 1)

]

= Qθf (kF − 1)

[
p̄(k)

r̃i+jM(k)

]Obtaining zi(k − 1)
zi(k − 1) = −fT(k − 1)p(k + 1)/γ(k − 1)Updating r̄(k + 1)
[

0
λ−1/2p̄(k + 1)

]

= QT
θ (kF − 1)

[
zi(k)

p(k + 1)

]Obtaining tilderi+jM(k)
r̃i+jM(k) = −[E′

f (k)]−TDT
fq2(k)p̄(k + 1)Obtaining the output:

yN(k) = dTq2(kF )p(k + 1)} 97



Table 5.5: Equivalent-output �ltering algorithm for pre-equalizer.for each k{ Obtain dfq2(k):
[
ẽTfq1(k + 1)
Dfq2(k + 1)

]

= Qθ(k)

[
xTk+1

λ1/2Dfq2(k)

]Obtain ‖Ef (k + 1)‖:
[

01×M

E′
f (k + 1)

]

= Q̄f (k + 1)

[
ẽTfq1(k + 1)

λ1/2E′
f (k)

]Obtain aN(k)

aN+1(k + 1) = Q̃θf (k)

[
aN(k)

r(k + 1)

]Obtaining Q̃θf (k + 1):
[

0NM×M

E
(0)
f (k + 1)

]

= Q̃θf (k)

[
Dfq2(k + 1)
‖E′

f (k + 1)‖

]Obtaining Qθ(k + 1):
[
1/γ(k + 1)

0

]

= Qθ(k + 1)

[
1

−aN(k + 1)

]Joint Process Estimation:
[
eq1(k + 1)
dq2(k + 1)

]

= Qθ(k + 1)

[
d(k + 1)

λ1/2dq2(k)

]

ε(k) = eq1(k)γ(k)}Output-�ltering for pre-equalizer with input signal x̃(k)Initialization:
r̄(kF ) = 0for each k{Obtaining r(k + 1) from r̄(k):
[

r̃′(k)
p(k + 1)

]

= Qθf (kF − 1)

[
p̄(k)

r̃i+jM(k)

]Obtaining r̃i+jM(k)
r̃i+jM(k) = −[E′

f (k)]−TDT
fq2(k)p̄(k + 1)Obtaining the output:

yN(k) = dTq2(kF )r̄(k + 1)}
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Chapter 6
Conclusions and Future Work
This chapter concludes the results of the thesis and suggests future research topics.
6.1 ConclusionThe objective of this thesis was to obtain the weights embedded in the internal vari-ables of the FQRD-RLS algorithm, in order to extend the range of applications of thesingle-channel and multichannel FQRD-RLS algorithms. The knowledge of weightsenables new applications for FQRD-RLS algorithms such as system identi�cation forlinear and non-linear Volterra based systems, spectral analysis of the channel equal-izer weights, and antenna beamforming for MIMO systems. In order to achieve theobjective, a literature survey of QRD-RLS, Inverse QRD-RLS (IQRD-RLS), singlechannel and multichannel FQRD-RLS algorithms were presented. Thereafter, weprovided new theoretical results that lead to algorithms which allow us to extractthe weights of the single-channel and multichannel algorithms.It was shown that the weight extraction method provides identical solution to thatof any RLS-type algorithms, e.g., the IQRD-RLS algorithm used in this work. Thetheoretical results presented in the thesis were veri�ed with the help of several ex-99



periments and the results were compared with those of the IQRD-RLS algorithm.The results from both approaches were found to be equal up to machine precision.The single-channel weight extraction algorithm for the FQRD-RLS algorithm wassuccessfully applied in three applications, i.e., system identi�cation, channel equal-ization and pre-equalization. The multichannel weight extraction algorithm wasveri�ed using multichannel system identi�cation and broadband beamforming.It can be concluded that the objective of the thesis was achieved. A novel techniquefor weight extraction was developed for both single and multichannel algorithmswhich extends the range of applications of the FQRD-RLS algorithms.6.2 Future WorkThere are two interesting directions where to further develop the results of the thesis:1. The proposed method for weight extraction was veri�ed using only the FQRD-RLS algorithm based on updating the a priori backward prediction errors. Animmediate task would be to develop a common framework for all other fastQRD-RLS algorithms.2. The solution proposed for the multichannel case can also be generalized bymodifying it for the case of a multiple order �lter. This is expected to enablee�cient implementation of Volterra-based applications, such as Volterra sys-tem identi�cation or Volterra based indirect learning architecture for nonlinearpredistortion.
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Appendix A
Proof of Lemmas
A.1 Proof of Lemma 1The update equation for U−T(k − 2) in the IQRD-RLS algorithm is given by

[

zT(k − 1)

U−T(k − 1)

]

= Qθ(k − 1)

[

0T
λ−1/2U−T(k − 2)

] (A.1)where z(k − 1) = γ−1(k − 1)fT(k − 1)U−T(k − 1). Pre-multiplying both sides with
QT

θ (k − 1) and considering each column we get
[

0

λ−1/2ui(k − 2)

]

= QT
θ (k − 1)

[

zi(k − 1)

ui(k − 1)

] (A.2)where zi(k − 1) is the ith element of vector z(k)

zi(k − 1) = −fT(k − 1)ui(k − 1)/γ(k − 1) (A.3)and the elements of vector f(k − 1) and γ(k − 1) are obtained from the rotationmatrix Qθ(k − 1) as 101



[

γ(k − 1)

f(k − 1)

]

= Qθ(k − 1)

[

1

0N×1

] (A.4)
A.2 Proof of Lemma 2The FQRD-RLS algorithm of Table 4.1 updates a(k) at every iteration as follows

[
eb(k)

λ1/2‖eb(k−1)‖

a(k)

]

= Q̃θf (k − 1)

[

a(k − 1)
ef (k)

λ1/2‖ef (k−1)‖

] (A.5)where eb(k) and ef (k) are the backward and the forward prediction error valuesgiven by [21]:
ef (k) = x(k) − wT

f (k − 1)x(k − 1)

eb(k) = x(k − N − 1) − wT
b (k)x(k)

(A.6)with wf (k) = U−T (k)dfq2(k) [21] and wb(k) denoting the forward and backwardprediction weight vectors, respectively. Using Equation (A.6), the de�nition of
a(k) = λ−1/2U−T(k − 1)x(k), and removing scalars and vectors related to inputsignal x(k), the following relation is obtained from Equation (A.5)

[
−wTb (k)

‖eb(k−1)‖
1

‖eb(k−1)‖

U−T(k − 1) 0

]

= Q̃θf (k − 1)




0 U−T(k − 2)

1
‖ef (k−1)‖

−wTf (k−1)

‖ef (k−1)‖





(A.7)
Considering the partitioning of matrix U−T(k−1) into its column vectors ui(k−1),the column version of (A.7) becomes

[
−wb,i(k−1)

‖eb(k−1)‖

ui(k − 1)

]

= Q̃θf (k − 1)

[

ui−2(k − 2)
−wf,i−1(k−1)

‖ef (k−1)‖

]

, i = 0, . . . , N − 1 (A.8)102



where wb,i(k) and wf,i(k − 1) are the ith elements of the forward and backwardprediction weight vectors, respectively. To account for the �rst column of (A.7) weinitialize with u−1(k − 2) = 0N×1 and wf,−1(k − 1) = −1.A.3 Proof of Lemma 3It can be shown that the following relation holds for the QRD-RLS algorithms [29]
[

zT(k − 1)

U−T(k − 1)

]

= Qθ(k − 1)

[

0T
λ−1/2U−T(k − 2)

] (A.9)Pre-multiplying (A.9) with QT
θ (k−1) followed by post-multiplication with x(k) leadsto [

0

λ−1/2U−T(k − 2)x(k)

]

= QT
θ (k − 1)

[

zT (k − 1)x(k)

U−T(k − 1)x(k)

] (A.10)where z(k) = − fT(k)U−T(k)
γ(k)

. The elements of vector f(k−1) and γ(k−1) are obtainedusing Eq. (A.4).A.4 Proof of Lemma 4Combining the de�nition of a(k) with (3.41), we get
[

eb(k)
‖eb(k−1)‖

U−T(k − 1)x(k)

]

= Qθf (k − 1)

[

U−T(k − 2)x(k − 1)
ef (k)

‖ef (k−1)‖

] (A.11)where eb(k) and ef (k) are the backward and the forward prediction error valuesgiven by [21]:
ef (k) = x(k) − wT

f (k − 1)x(k − 1)

eb(k) = x(k − N − 1) − wT
b (k)x(k)

(A.12)103



with wf (k) = U−1(k)dfq2(k) [21] and wb(k) denoting the forward and backwardprediction weight vectors, respectively. All the values on the right hand side areknown, therefore, Eq. (A.11) can be evaluated. This concludes the proof.
A.5 Proof of Lemma 5The multichannel FQRD-RLS algorithm of Table 5.1 updates aN(k) = λ−1/2U−T

N (k−

1)xN(k) at every iteration as follows
aN+1(k + 1) = Q̃θf (k − 1)

[

aN(k)

r(k + 1)

] (A.13)where r(k + 1) = λ1/2[E′
f (k)]−Tẽ′

f (k + 1) and
ẽ′

f (k + 1) = xk+1 − WT
Nf (k)xN(k) (A.14)with wNf (k) = U−T

N (k)Dfq2(k) from Eq. (5.23). Using Equation (A.14), the def-inition of aN(k), and removing vectors related to input signal x(k), the followingrelation is obtained from Equation (A.5)
[

[−Ebq1(k)]−TDT
bq2(k)U−T

N (k − 1) [Ebq1(k)]−T
U−T

N (k) 0NM×M

]

= Q′
θf (k)

[

0NM×M U−T
N (k − 1)

[E′
f (k)]−T −[E′

f (k)]−TDT
fq2(k)U−T

N (k − 1)

] (A.15)
Considering the partition of matrix U−T

N (k − 1) into its column vectors ui(k − 1),the column version of (A.7) becomes
[

r̃′(k)

ui−1+M(k)

]

= Q′
θf (k)

[

ui−1(k − 1)

r̃i−1(k)

] (A.16)104



where r̃i−1(k) = −[E′
f (k)]−TDT

fq2(k)ui−1(k − 1). From Eq. (A.15), the �rst Mcolumns correspond to initialization. In Eq. (A.16) we have u−j(k − 2) = 0NM×1and r̃−j(k) = ef,−j(k), where ef,−j(k) is the jth column of −[E′
f (k)]−T.A.6 Proof of Lemma 6The multichannel FQRD-RLS algorithm of Table 5.1 updates aN(k) = λ−1/2U−T

N (k−

1)xN(k) at every iteration as follows
aN+1(k + 1) = Q̃θf (k − 1)

[

aN(k)

r(k + 1)

] (A.17)where r(k + 1) = λ1/2[E′
f (k)]−Tẽ′

f (k + 1) and
ẽ′

f (k + 1) = xk+1 − WT
Nf (k)xN(k) (A.18)with wNf (k) = U−T

N (k)Dfq2(k) from Eq. (5.23). Using Equation (A.18), the de�ni-tion of aN(k) the following relation is obtained from Equation (A.5)
[

[−Ebq1(k)]−TDT
bq2(k)U−T

N (k)xN(k + 1) + [Ebq1(k)]−Txk−N

U−T
N (k)xN(k + 1)

]

= Q′
θf (k)

[

U−T
N (k − 1)xN(k)

[E′
f (k)]−Txk+1 − [E′

f (k)]−TDT
fq2(k)U−T

N (k − 1)xN(k)

] (A.19)
All the variables at the right hand side are known therfore the expression can beevaluated. This concludes the proof.
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Appendix B
Alternative Proof of Lemmas
In this Appendix we provide lemmas that lead to di�erent form of weight extractionalgorithm. This approach di�ers from previous approach from computational aspect.In this case the algorithm will have less multiplications. However, divisions will beneeded. The need for divisions my prohibit the use of these algorithms. They areincluded here for sake of completeness.
B.1 Proof of Lemma 1bThe proof of this lemma is given in two parts. The �rst part proves the existence ofthe relation given by Equation (4.3). The solution to Equation (4.3) without the apriori knowledge of the variable ∗ is given in the second part.Part 1: In IQRD-RLS algorithm, the update equation for U−T(k − 2) is given as

[

zT(k − 1)

U−T(k − 1)

]

= Qθ(k − 1)

[

0T
λ−1/2U−T(k − 2)

] (B.1)106



The above equation can also be written as follows
[

0T
λ−1/2U−T(k − 2)

]

= QT
θ (k − 1)

[

zT(k − 1)

U−T(k − 1)

] (B.2)or, alternatively, for each column
[

0

λ−1/2ui(k − 2)

]

= QT
θ (k − 1)

[

zi(k − 1)

ui(k − 1)

]

,where i = 0, . . . , N − 1 (B.3)where, zi(k − 1) is the ith element of vector z(k) and it corresponds to the variable
∗ in Equation (4.3) which is unknown a priori. This concludes the proof of Part 1.Part 2: Before starting the proof, it is important here to mention that the rotationmatrix Qθ(k − 1) can be written in the form of a sequence of rotation matrices,the details are mentioned in Section 2.4.2. The value of unknown zi(k − 1) can becomputed in two ways. The �rst approach requires the explicit construction of partsof the rotation matrix Qθ(k − 1), therefore the solution provided is not attractivefrom a pratical point of view. However, the second approach computes the unknowniteratively and does not require the extra computation of the �rst approach. There-fore, second approach provides a practical solution.Approach 1:It is known that the partition of the rotation matrix is given as

Qθ(k) =

[

γ(k) gT(k)

f(k) E(k)

] (B.4)Therefore, using Equation (4.3), the value of ∗ can be computed from the knownvalues with the help of the following expression
∗ = −fT(k − 1)ui(k − 1)/γ(k − 1) (B.5)the elements of vector f(k−1) are given by fj(k−1) = sin θN−j−1(k−1)

∏N−j−2
i=0 cos θi(k−107



1) and it requires N(N + 1)/2 multiplications. The vector can then be stored forfurther use. This concludes the �rst approachApproach 2:Premultiplying Equation (4.3) with matrix Qθ(k − 1) gives
Qθ(k − 1)

[

0

λ−1/2ui(k − 2)

]

=

[

zi(k − 1)

ui(k − 1)

] (B.6)or equivalently
QθN−1

(k − 1)QθN−2
(k − 1) . . .Qθ0(k − 1)

[

0

λ−1/2ui(k − 2)

]

=

[

zi(k − 1)

ui(k − 1)

] (B.7)By carrying out the sequence of rotations in Equation (B.7) the value zi(k − 1) isobtained by recursively updating z
(n)
i (k − 1) where n corresponds to the index ofrotation matrix Qθn(k− 1) in Equation (B.7). Therefore, after the last rotation hasbeen applied, we have zi(k− 1) = z
(N−1)
i (k− 1). After applying the rotation matrix

Qθ0(k − 1) onto vector [

0 λ−1/2uTi (k − 2)
]T we get







cos θ0 0T − sin θ0

0 I 0

sin θ0 0T cos θ0







[

0

λ−1/2ui(k − 2)

]

=












z
(0)
i (k − 1)

λ−1/2ui,0(k − 2)...
λ−1/2ui,N−2(k − 2)

ui,N−1(k − 1)












(B.8)
From Equation (B.7) and Equation (B.8) the values of z

(0)
i and ui,N−1(k − 1) areidenti�ed as

− sin θ0λ
−1/2ui,N−1(k − 2) = z

(0)
i (k − 1)

cos θ0λ
−1/2ui,N−1(k − 2) = ui,N−1(k − 1)

(B.9)Rearranging the order of the expressions in Equation (B.9) and solving for the108



unknowns ui,N−1(k − 2) and z
(0)
i (k − 1) we get

ui,N−1(k − 2) = λ1/2ui,N−1(k − 1)/ cos θ0

z
(0)
i = − sin θ0λ

−1/2ui,N−1(k − 2)
(B.10)Next, Qθ1(k − 1) is applied to Equation (B.8) in order to solve ui,N−2(k − 2) and

z
(1)
i (k − 1), i.e.,








cos θ1 0T − sin θ1 0

0 I 0 0

sin θ1 0T cos θ1 0

0 0 0 1




















z
(0)
i (k − 1)

λ−1/2ui,0(k − 2)...
λ−1/2ui,N−2(k − 2)

ui,N−1(k − 1)












=















z
(1)
i (k − 1)

λ−1/2ui,0(k − 2)...
λ−1/2ui,N−3(k − 2)

ui,N−2(k − 1)

ui,N−1(k − 1)















(B.11)
As a result, we have

ui,N−2(k − 2) = [λ1/2ui,N−2(k − 1) − z
(0)
i (k − 1) sin θ1]/ cos θ1

z
(1)
i (k − 1) = z

(0)
i (k − 1) cos θ1 − λ−1/2ui,N−2(k − 2) sin θ1

(B.12)

109



In general, after applying the jth rotation we get








cos θj(k − 1) 01×(N−j−1) − sin θj(k − 1) 01×j

0(N−j−1)×1 I(N−j−1) 0(N−j−1)×1 0(N−j−1)×j

sin θj(k − 1) 01×(N−j−1) cos θi(k − 1) 01×j

0j×1 0i×(N−j) 0j×1 Ij


























z
(j−1)
i (k − 1)

λ−1/2ui,0(k − 2)...
λ−1/2ui,N−1−j(k − 2)

ui,N−2−j(k − 1)...
ui,N−1(k − 1)


















=


















z
(j)
i (k − 1)

λ−1/2ui,0(k − 2)...
λ−1/2ui,N−j(k − 2)

ui,N−1−j(k − 1)...
ui,N−1(k − 1)
















 (B.13)where the values ui,N−1−j(k − 2) and z

(j)
i (k − 1) are computed as follows

ui,N−1−j(k − 2) = [λ1/2ui,N−1−j(k − 1) − z
(j−1)
i sin θj]/ cos θj

z
(j)
i = z

(j−1)
i cos θj − λ−1/2ui,N−1−j(k − 2) sin θj

(B.14)Thus, after N rotations, all elements of ui(k − 2) are computed, and z
(N−1)
i is thevalue of unknown zi(k − 1). This concludes the proof of part 2.

B.2 Proof of Lemma 2bThe proof is given in two parts. In the �rst part the existence of the relation givenin Lemma 2 is proved. In the second part, a solution to the relation without a priori110



knowledge of variables ∗ is given.Part 1: The FQRD-RLS algorithm of Table 3.2 updates a(k) = λ−1/2U−T(k −

1)x(k) at every iteration as follows
[

eb(k)

λ1/2‖eb(k−1)‖

a(k)

]

= Q̃θf (k − 1)

[

a(k − 1)
ef (k)

λ1/2‖ef (k−1)‖

] (B.15)where eb(k) and ef (k) are the backward and the forward prediction error values,respectively:
ef (k) = x(k) − wT

f (k − 1)x(k − 1)

eb(k) = x(k − N − 1) − wT
b (k)x(k)

(B.16)with wf (k) and wb(k) denoting the forward and backward prediction weight vectors,respectively. Using Equation (B.16) and the de�nition of a(k), Equation (B.15) canbe written as
[

−wTb (k)x(k)

λ1/2‖eb(k−1)‖
+ x(k−N−1)

λ1/2‖eb(k−1)‖

U−T(k − 1)x(k)/λ1/2

]

= Q̃θf (k − 1)




U−T(k − 2)x(k − 1)/λ1/2

x(k)

λ1/2‖ef (k−1)‖
−

wTf (k−1)x(k−1)

λ1/2‖ef (k−1)‖



 (B.17)or further simpli�ed
[

−wTb (k)

‖eb(k−1)‖
1

‖eb(k−1)‖

U−T(k − 1) 0

][

λ−1/2x(k)

λ−1/2x(k − N − 1)

]

=

Q̃θf (k − 1)




0 U−T(k − 2)

1
‖ef (k−1)‖

−wTf (k−1)

‖ef (k−1)‖





[

λ−1/2x(k)

λ−1/2x(k − 1)

] (B.18)
In Equation (B.18) the two vectors λ−1/2

[

x(k) xT(k − 1)
]T and
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λ−1/2
[

xT(k) x(k − N − 1)
]T are identical, leading to the following relation

[
−wTb (k)

‖eb(k−1)‖
1

‖eb(k−1)‖

U−T(k − 1) 0

]

= Q̃θf (k − 1)




0 U−T(k − 2)

1
‖ef (k−1)‖

−wTf (k−1)

‖ef (k−1)‖



 (B.19)Considering the partition of matrix U−T(k − 1) into its column vectors ui(k − 1),we have
[

−wb,i(k)

‖eb(k−1)‖

ui(k − 1)

]

= Q̃θf (k − 1)

[

ui−1(k − 2)
−wf,i−1(k−1)

‖ef (k−1)‖

]

, i = 0, . . . , N − 1 (B.20)where wb,i(k) and wf,i(k−1) are the ith elements of the forward and backward predic-tion weight vectors, respectively. Also, note that u−1(k − 1) = 0 and wf,−1(k) = 1.This concludes the proof of the �rst part.Part 2: In the second part we prove how Equation (B.20) can be evaluatedwithout the a priori knowledge of −wf,i−1(k−1)

‖ef (k−1)‖
and −wb,i(k)

‖eb(k−1)‖
.The rotation matrix Q̃θf (k − 1) can be written as a sequence of rotation matricesas

Q̃θf (k − 1) = Q̃θN−1f (k − 1)Q̃θN−2f (k − 1) . . . Q̃θ0f (k − 1) (B.21)where Q̃θjf (k − 1) is given as
Q̃θjf (k − 1) =









Ij 0j×1 0i×(N−j−1) 0j×1

01×j cos θj(k − 1) 01×(N−j−1) − sin θj(k − 1)

0(N−j−1)×j 0(N−j−1)×1 I(N−j−1) 0(N−j−1)×1

01×j sin θj(k − 1) 01×(N−j−1) cos θj(k − 1)









(B.22)
with the de�nition of Q̃θf (k − 1) in Equation (B.21), Equation (B.20) becomes

[
−wb,i(k)

‖eb(k−1)‖

ui(k − 1)

]

= Q̃θN−1f (k − 1)Q̃θN−2f (k − 1) . . . Q̃θ0f (k − 1)

[

ui−1(k − 2)
−wf,i−1(k−1)

‖ef (k−1)‖

] (B.23)112



Let z
(j)
f denote the recursively updated value of zf =

−wf,i−1(k−1)

‖ef (k−1)‖
after the jth rotationand let zb be equal to −wb,i(k)

‖eb(k−1)‖
. Premultiplying Equation (B.23) with Q̃T

θf (k − 1)gives
[

ui−1(k − 2)

zf (k − 1)

]

= Q̃T
θ0f (k − 1)Q̃T

θ1f (k − 1) . . . Q̃T
θN−1f (k − 1)

[

zb(k − 1)

ui(k − 1)

] (B.24)After applying rotation matrix Q̃T
θN−1f (k − 1) onto the right hand side of Equation(B.24), we get















zb(k − 1)

ui−1,0(k − 1)...
ui−1,N−2(k − 1)

ui−1,N−1(k − 2)

z
(0)
f (k − 1)















=







I 0 0

0T cos θN−1(k − 1) sin θN−1(k − 1)

0T − sin θN−1(k − 1) cos θN−1(k − 1)


















zb(k − 1)

ui,0(k − 1)...
ui,N−2(k − 1)

ui,N−1(k − 1)










(B.25)The rotation matrix modi�es only the last two terms of the vector [

uTi−1(k − 2) zf (k − 1)
]T.From Equations (B.24) and (B.25), the values of z

(0)
f (k − 1) and ui,N−2(k − 1) areidenti�ed as,

ui,N−2(k − 1) = [ui−1,N−1(k − 2) − ui,N−1(k − 1)sinθN−1(k − 1)]/ cos θN−1(k − 1)

z
(0)
f (k − 1) = −ui,N−2(k − 1) sin θN−1(k − 1) + ui,N−1(k − 1) cos θN−1(k − 1)(B.26)The value of ui,N−1(k − 1) for i > 0 is known to be zero from the fact that U−T(k)is an upper triangular matrix. Next, the rotation matrix QθN−2f (k − 1) is applied
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to Equation (B.25), yielding
















zb(k − 1)

ui−1,0(k − 1)...
ui−1,N−3(k − 1)

ui−1,N−2(k − 2)

ui−1,N−1(k − 2)

z
(1)
f (k − 1)

















=









I 0 0 0

0T cos θN−2(k − 1) 0 sin θN−2(k − 1)

0 0 1 0

0T − sin θN−2(k − 1) 0 cos θN−2(k − 1)























zb(k − 1)

ui−1,0(k − 1)...
ui−1,N−2(k − 1)

ui−1,N−1(k − 2)

z
(0)
f (k − 1)













(B.27)From the above equation the unknowns can be calculated

ui,N−3(k − 1) = [ui−1,N−2(k − 2) − z
(0)
f (k − 1)sinθN−2(k − 1)]/ cos θN−2(k − 1)

z
(1)
f (k − 1) = −ui,N−3(k − 1) sin θN−2(k − 1) + z

(0)
f (k − 1) cos θN−2(k − 1)(B.28)In general, after applying the jth rotation we get

ui,N−1−j(k − 1) = [ui−1,N−j(k − 2) − z
(i−2)
f (k − 1)sinθN−j(k − 1)]/ cos θN−j(k − 1)

z
(j−1)
f (k − 1) = −ui,N−1−j(k − 1) sin θN−j(k − 1) + z

(j−2)
f (k − 1) cos θN−j(k − 1)(B.29)The value of the unknown vector ui(k− 1) can, therefore, be computed without thea priori knowledge of variables −wf,i−1(k−1)

‖ef (k−1)‖
and −wb,i(k)

‖eb(k−1)‖
. This concludes the prooffor the second part.

B.3 Proof of Lemma 3bThe proof of this lemma is given in two parts. The �rst part proves the existence ofthe relation given by Equation (4.8). The solution to Equation (4.8) without the apriori knowledge of the variable ∗ is given in the second part.114



Part 1: In IQRD-RLS algorithm, the update equation for U−T(k − 2) is given as
[

zT(k − 1)

U−T(k − 1)

]

= Qθ(k − 1)

[

0T
λ−1/2U−T(k − 2)

] (B.30)The above equation can also be written as follows
[

0T
λ−1/2U−T(k − 2)

]

= QT
θ (k)

[

zT(k − 1)

U−T(k − 1)

] (B.31)post-multiplying Equation (B.31) with x(k) yields
[

0

λ−1/2U−T(k − 2)x(k)

]

= QT
θ (k − 1)

[

zT (k − 1)x(k)

U−T(k − 1)x(k)

] (B.32)where, zT (k − 1)x(k) corresponds to the variable ∗ in Equation (4.8) which is un-known a priori. This concludes the proof of Part 1.Part 2: Before starting the proof it is important here to mention that the rotationmatrix Qθ(k − 1) can be written in the form of a sequence of rotation matrices, thedetails are mentioned in Section 2.4.2. Below we show how zT(k − 1)x(k) can becomputed using two approaches. The �rst approach requires the explicit construc-tion of vector f(k) related to the rotation matrix Qθ(k − 1). Therefore the solutionprovided is not attractive from a computational complexity point-of-view. However,the second approach computes the unknowns iteratively and does not require theextra computation of the �rst approach. Therefore, second approach provides apractical solution. For simplicity, let us call z(k − 1) = zT(k − 1)x(k); also let the
ith column of U−1(k) be denoted by ur,i(k).
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Approach 1:It is known that the partition of the rotation matrix is given as
Qθ(k) =

[

γ(k) gT(k)

f(k) E(k)

] (B.33)Therefore, using Equation (4.8), the value of ∗ can be computed from the knownvalues with the help of the following expression
∗ = −fT(k − 1)U−T(k − 1)x(k)/γ(k − 1) (B.34)the elements of vector f(k−1) are given by fj(k−1) = sin θN−j−1(k−1)

∏N−j−2
i=0 cos θi(k−

1) and it requires N(N + 1)/2 multiplications. The vector can then be stored forfurther use. This concludes the �rst approachApproach 2:Premultiplying Equation (4.8) with matrix Qθ(k − 1) gives
Qθ(k − 1)

[

0

λ−1/2U−T(k − 2)x(k)

]

=

[

z(k − 1)

U−T(k − 1)x(k)

] (B.35)The proof of this approach follows the same steps mentioned in the proof of approach2 in lemma 1 by replacing the vector ui(k−1) and ui(k−2) by vectors U−T(k−1)x(k)and U−T(k − 2)x(k) respectively. As a result we obtain the following recursion.
uTr,N−1−j(k − 2)x(k) = [λ1/2uTr,N−1−j(k − 1)x(k) − z(j−1) sin θj]/ cos θj

z(j) = z(j−1) cos θj − λ−1/2ur,N−1−j(k − 2)x(k) sin θj

(B.36)where uTr,i(k − 1) corresponds to the ith row vector of U−T(k − 1). Thus, after Nrotations, all elements of U−T(k − 2)x(k) are computed, and z(N−1) is the value ofunknown z(k − 1). This concludes the proof of Part 2.116



B.4 Proof of Lemma 4bThe proof is given in two parts. In the �rst part the existence of the relation givenin Lemma is proved. In the second part, a solution to the relation without a prioriknowledge of variables ∗ is given.Part 1: The FQRD-RLS algorithm of Table 3.2 updates a(k) = λ−1/2U−T(k −

1)x(k) at every iteration as follows
[

eb(k)

λ1/2‖eb(k−1)‖

a(k)

]

= Q̃θf (k − 1)

[

a(k − 1)
ef (k)

λ1/2‖ef (k−1)‖

] (B.37)where eb(k) and ef (k) are the backward and the forward prediction error values,respectively. Using the de�nition of a(k), Equation (B.37) can be written as
[

eb(k)

λ1/2‖eb(k−1)‖

U−T(k − 1)x(k)/λ1/2

]

= Q̃θf (k − 1)

[

U−T(k − 2)x(k − 1)/λ1/2

ef (k)

λ1/2‖ef (k−1)‖

] (B.38)or further simpli�ed
[

eb(k)
‖eb(k−1)‖

U−T(k − 1)x(k)

]

= Q̃θf (k − 1)

[

U−T(k − 2)x(k − 1)
ef (k)

‖ef (k−1)‖

] (B.39)This concludes the proof of the �rst part.Part 2: The part 2 can be proved following the same steps as mentioned in theproof of part 2 for lemma 2 by replacing the vector ui(k − 1) and ui(k − 2) with
U−T(k−1)x(k) and U−T(k−2)x(k) respectively. As a result we obtain the followingrecursion.
uTr,N−1−j(k − 1)x(k) = [uTr,N−j(k − 2)x(k) − z

(i−2)
f sinθN−j(k − 1)]/ cos θN−j(k − 1)

z
(j−1)
f = −ur,N−1−j(k − 1)x(k) sin θN−j(k − 1) + z

(j−2)
f cos θN−j(k − 1)(B.40)117



where uTr,i(k − 1) corresponds to the ith row vector of U−T(k − 1). The value of theunknown vector U−T(k − 1)x(k) can therefore be computed without the a prioriknowledge of variables ef (k−1)

‖ef (k−1)‖
and eb(k)

‖eb(k−1)‖
. This concludes the proof for part 2.
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