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Abstract. Fast QR decomposition (QRD) RLS algorithms based on
backward prediction errors are well known for their good numerical be-
havior and their low complexity when compared to similar algorithms
with forward error update. Although the basic matrix expressions are
similar, their application to multiple channel input signals generate more
complex equations. This paper presents a lattice version of the multichan-
nel fast QRD algorithm based on a posteriori backward errors updating.
This new algorithm comprises scalar operations only; its modularity and
pipelinability favors its systolic array implementation.

1 Introduction

Digital processing of multichannel signals using adaptive filters has recently
found a variety of new applications including color image processing, multi-
spectral remote sensing imagery, biomedicine, channel equalization, stereophonic
echo cancellation, multidimensional signal processing, Volterra –type nonlinear
system identification, and speech enhancement [1]. This increased number of ap-
plications has spawned a renewed interest in efficient multichannel algorithms.
One class of algorithms, known as multichannel fast QR decomposition least-
squares adaptive algorithms based on backward error updating, has become an
attractive option because of fast convergence properties and reduced computa-
tional complexity.

In the case of one single channel, a unified formulation for Fast QRD-LS
algorithms is available in [2]. In this paper, a new algorithm based on the a

posteriori backward error updating is developed, using an approach similar to
the one used in [3]. Our starting point is the block multichannel algorithm based
on the a posteriori backward error updating presented in [4]. It is well known
that, due to its blocking characteristic, the algorithm of [4] deals with matrix
inversions which are potential sources of instability. To overcome this, a new
expression is derived; moreover, with the help of order recursive implementations,
the resulting new lattice–type algorithm is introduced. This new algorithm uses
scalar operations only.

This paper is organized as follows. In Section 2, we review the basic matrix
equations of the Multichannel Fast QR Decomposition Least Squares
(MCFQRD-LS) algorithms based on backward prediction errors. Section 3
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Fig. 1. Multichannel Adaptive Filter.

addresses the Multichannel Fast QRD based on the updating of the a posteri-

ori error vector (MCFQRD POS B). In Section 4, the Lattice version of the
MCFQRD POS B algorithm is presented. Simulation results and conclusions
are Summarized in Sections 5 and 6, respectively.

2 The Multichannel Fast QRD Algorithm Based on

Backward Prediction Errors Updating

The objective function to be minimized according to the least-squares (LS) al-
gorithm is defined as

ξLS(k) =

k∑

i=0

λk−ie2(i) = eT (k)e(k) (1)

where e(k) =
[
e(k) λ1/2e(k − 1) · · · λk/2e(0)

]T
is an error vector and may

be represented as follows.

e(k) =




d(k)

λ1/2d(k − 1)
...

λk/2d(0)


 −




xT
N (k)

λ1/2xT
N (k − 1)
...

λk/2xT
N (0)


 wN (k) = d(k) − XN (k)wN (k) (2)

where, as seen in Figure 1,

xT
N (k) =

[
xT

k xT
k−1 · · · xT

k−N+1

]
(3)

and xT
k = [x1(k) x2(k) · · · xM (k)] is the input vector at time instant k.

Note that N is defined here as the order or the number of filter coefficients per
channel, M is the number of input channels, and wN (k) is the MN×1 coefficient
vector at time instant k.



If UN (k) is the Cholesky factor of the (k+1)×M input data matrix XN (k),
obtained through the Givens rotation matrix QN (k), then

eq(k) = QN (k)e(k) =

[
eq1(k)
eq2(k)

]
=

[
dq1(k)
dq2(k)

]
−

[
0

UN (k)

]
wN (k) (4)

From the definition of the forward prediction problem in a multichannel
scenario, we can write matrix XN+1(k) as follows

XN+1(k) =


Df (k)

XN (k − 1)
0T

0(M−1)×(MN+M)


 (5)

where Df (k) = [xk λ1/2xk−1 · · ·λ
k/2x0]

T is the (k +1)×M forward reference
signal and the subscript N+1 corresponds to the (N + 1)th order problem.

The triangularization process of XN+1(k) leading to UN+1(k) is performed
applying Givens rotations to (5) as follows.

[
Q(k − 1) 0

0 IMxM

] 
 Df (k)

XN (k − 1)
0T

0(M−1)x(MN+M)


 =




Efq1(k) 0
Dfq2(k) UN (k − 1)

λ1/2xT
0 0T

0(M−1)×(MN+M)


 (6)

Now, premultiplying (6) by a series of Givens rotations Qf (k), that zeroes its

first k −MN rows, and by Q′

f (k) that completes the triangularization process,
we have

UN+1(k) = Q′

θf (k)

[
Dfq2(k) UN (k − 1)
Ef (k) 0

]
(7)

after removing the resulting null sections. In (7), Q′

θf (k) is a fixed order matrix

obtained from Q′

f (k). It is clear that the (MN +M)×(MN +M) matrix Q′

θf (k)
contains the Given rotations that annihilates Dfq2(k) against the diagonal of
Ef (k), the M × M Cholesky factor of the forward error covariance matrix.

Based on (7), it is possible to obtain

[UN+1(k)]
−1

=

[
0 E−1

f (k)

U−1
N (k − 1) −U−1

N (k − 1)Dfq2(k)E−1
f (k)

]
Q′T

θf (k). (8)

The result in (8) will be used in the next section to derive an expression for
the updating of the a posteriori backward prediction error vector. Also from (7)
we can write

[
0

E0
f (k)

]
= Q′

θf (k + 1)

[
Dfq2(k)
Ef (k)

]
(9)

where E0
f (k) corresponds to the zero order forward error covariance matrix.

Algebraic manipulations based on Givens rotations applied to (6), generate
the following equation using fixed order matrix Qθ(k) obtained from QN (k).

[
ẽ

T
fq1(k + 1)

Dfq2(k + 1)

]
= Qθ(k)

[
xT

k+1

λ1/2Dfq2(k)

]
(10)



where ẽT
fq1(k + 1) is the first row of ET

fq1(k + 1).
Similarly, from (6) it is possible to obtain

[
0T

Ef (k + 1)

]
= Qf (k + 1)

[
ẽ

T
fq1(k + 1)

λ1/2Ef (k)

]
(11)

where Qf (k + 1) is a fixed order matrix of the orthogonal matrix Qf (k + 1),

responsible for annihilate ẽ
T
fq1(k + 1) against λ1/2Ef (k).

Finally, the joint process estimation is performed by the following expres-
sions [1] [

eq1(k + 1)
dq2(k + 1)

]
= Qθ(k + 1)

[
d(k + 1)

λ1/2dq2(k)

]
(12)

e′(k) = eq1(k)/γ(k) = e(k)/γ2(k) (13)

Remark: The expression needed to obtain Qθ(k) depends on the type of error to
be updated (a priori or a posteriori) and is provided in the next section for the
a posteriori case.

3 The Multichannel Fast QRD POS B Algorithm

Regardless the type of triangularization applied to XN (k) to generate UN (k),
matrix Qθ(k) can be partitioned as

Qθ(k) =

[
γ(k) gT

N (k)
fN (k) EN (k)

]
(14)

where γ(k) =
∏MN

i=0 cos θi(k); fN (k), gN (k), and EN (k) have more complicated
expressions and depend on the type of triangularization used (in our case, lower
triangularization, corresponding to backward prediction errors).

From (6) and (14), we can write

[
0T

UN (k)

]
= Qθ(k)

[
xT

N (k)
λ1/2UN (k − 1)

]
=

[
γ(k) gT

N (k)
fN (k) EN (k)

] [
xT

N (k)
λ1/2UN (k − 1)

]

(15)
We know that Qθ(k) is orthogonal. Hence,

IN+1 = Qθ(k)QT
θ (k) =

[
γ(k) gT

N (k)
fN (k) EN (k)

] [
γ(k) fT

N (k)

gN (k) ET
N (k)

]
(16)

From (15) and (16), we can obtain the two following relations:

fN (k)xT
N (k) + λ1/2EN (k)UN (k − 1) = UN (k) (17)

and

γ(k)fN (k) + EN (k)gN (k) = 0 (18)



From (15), we can observe that UN (k) is Cholesky factor of [xN (k) λ1/2UT
N (k−

1)]T . Hence, we can premultiply (15) by its transpose to have

UT
N (k)UN (k) = xN (k)xT

N (k) + λUT
N (k − 1)UN (k − 1) (19)

Premultiplying (17) by UT
N (k) and comparing to (19) we can write

fN (k) = U−T
N (k)xN (k) (20)

EN (k) = λ1/2U−T
N (k − 1)UT

N (k − 1) (21)

fN (k) is referred to as the a posteriori backward error vector and it is our par-
ticular vector of interest in the fast QRD-RLS algorithms based on a posteriori

backward error updating. By substituting (20) and (21) in (18), it is possible to
obtain

gN (k) = −γ(k)U−T
N (k − 1)xN (k)/

√
λ (22)

which is the quantity of interest in the Fast QRD-RLS algorithms based on the
a priori backward error updating.

From (20), it is straightforward to see that

fN+1(k + 1) = U−T
N+1(k + 1)xN+1(k + 1) (23)

Now, combining (8) and the expression above, we obtain [5]

fN+1(k + 1) = Q′

θf (k + 1)

[
fN (k)

p(k + 1)

]
(24)

where
p(k + 1) = E−T

f (k + 1)ẽf (k + 1) (25)

with ẽf (k + 1) –the first line of the multichannel forward error, transposed–
being the a posteriori forward error vector. Also from [5], we have the following
expression, similar to its single dimension counterpart, to update Qθ(k).

Qθ(k + 1)

[
1
0

]
=

[
γ(k + 1)

fN (k + 1)

]
(26)

The expression in (25) requires a matrix inversion operation which can be
numerically unstable, leading to stability problems. For calculating p(k + 1) in
a simpler manner, it is easily shown from (11) that the following equation can
be used instead of (25):

Qf (k + 1)

[
γ(k)
0

]
=

[
∗

p(k + 1)

]
(27)

Proof. From (11), it is clear that Ef (k + 1) is the Cholesky factor of

[ẽfq1 λ1/2ET
f (k)]T [6]. Consequently, we can write

ET
f (k + 1)Ef (k + 1) =

[
ẽT

fq1(k + 1)

λ1/2Ef (k)

]T [
ẽT

fq1(k + 1)

λ1/2Ef (k)

]

= ẽfq1(k + 1)ẽT
fq1(k + 1) + λET

f (k)Ef (k) (28)



The above equation is the product form of (11). Now, premultiplying and post
multiplying (28) by E−T

f (k + 1)γ2(k) and E−1
f (k + 1), respectively, after some

algebraic manipulations, yields

γ2(k)I = p(k + 1)pT (k + 1) + Ψ (29)

where Ψ = λγ2(k)E−T
f (k + 1)ET

f (k)Ef (k)E−1
f (k + 1).

Finally, premultiplying and post multiplying (29) by pT (k +1) and p(k +1),
respectively, it simplifies to

γ2(k) = pT (k + 1)p(k + 1) +
pT (k + 1)Ψp(k + 1)

pT (k + 1)p(k + 1)
= pT (k + 1)p(k + 1) + ∗2

(30)

With farther manipulation, it can be shown that the quantity represented by the
asterisk is known prior to the computation of p(k +1); this knowledge, however,
is useless for that purpose because it suffices to know γ(k) and Qf (k + 1) to
obtain p(k + 1) in a simple manner.

The expression in (30) is clearly a Cholesky product. Hence, there must exist
an orthogonal matrix Q such that

[
γ(k)
0

]
= Q

[
∗

p(k + 1)

]
(31)

Now, recalling our starting point in (11), we figure out that Q is related to
Qf (k+1). Moreover, from the knowledge of the internal structure of Qf (k+1), we

finally realize that Q = Q
T

f (k +1) satisfies (31) leading to (27), which concludes
the proof. �

4 The New LATTICE Multichannel Fast QRD POS B

algorithm

Because of the blocking nature of the input vector used to derive the equations of
the algorithm presented in the previous section, the quantities Dfq2(k), dq2(k),
and fN (k) can be split up into N blocks from top to bottom. For the matrix
Dfq2(k) we have

Dfq2(k) =




D
(1)
fq2(k)

...

D
(N)
fq2 (k)


 (32)

where D
(i)
fq2(k) has dimensions M × M . In light of this assumption, (9) can be

rewritten as



0M(N−i−1)×M

0M(i−1)×M

E
(i−1)
f (k + 1)


 = Q

′

θf
(N−i+1)

(k + 1)




0M(N−i)×M

D
(N−i+1)
fq2 (k)

0M(i−1)×M

E
(i)
f (k + 1)


 (33)



Table 1. The MCFQRD POS B Equations.

Initializations:

fN (0) = 0; Dfq2(0) = 0
dq2(0) = 0; Ef (0) = I

All cosines = 1, and all sines = 0;
For each k, do
{

1. Obtaining Dfq2(k + 1) and ẽfq1(k + 1)[
ẽ

T
fq1(k + 1)

Dfq2(k + 1)

]
= Qθ(k)

[
xT

k+1

λ1/2Dfq2(k)

]

2. Obtaining Ef (k + 1)[
0T

Ef (k + 1)

]
= Qf (k + 1)

[
ẽ

T
fq1(k + 1)

λ1/2Ef (k)

]

3. Obtaining p(k + 1)[
∗

p(k + 1)

]
= Qf (k + 1)

[
γ(k)
0

]

4. Obtaining Q′

θf (k + 1)[
0

E0
f (k + 1)

]
= Q′

θf (k + 1)

[
Dfq2(k + 1)
Ef (k + 1)

]

5. Obtaining fN (k + 1)

fN+1(k + 1) = Q′

θf (k + 1)

[
fN (k)

p(k + 1)

]

6. Obtaining Qθ(k + 1) and γ(k + 1)

Qθ(k + 1)

[
1
0

]
=

[
γ(k + 1)

fN (k + 1)

]

7. Joint Estimation[
eq1(k + 1)
dq2(k + 1)

]
= Qθ(k + 1)

[
d(k + 1)

λ1/2dq2(k)

]

8. Obtaining the a priori error
e′(k + 1) = eq1(k + 1)/γ(k + 1)

}

for i = N,N − 1, · · · , 1, which means a backward execution. From the previous
equation, it is easy to see that

Q′

θf (k + 1) = Q′

θf
(N)

(k + 1)Q′

θf
(N−1)

(k + 1) · · ·Q′

θf
(1)

(k + 1).

Nevertheless, (33) suggests that it can also be performed in a forward manner,
that is, for i = 1, 2, · · · , N . This property is the key to derive the lattice version
of the algorithm. Now, recalling that Q′

θf (k) is used to update fN (k), we can
rewrite (24) as




0M(N−i)×M

f (N−i+1)(k + 1)
0M(i−1)×M

pi−1(k + 1)


 = Q

′

θf
(N−i+1)

(k + 1)




0M(N−i)×M

f (N−i+2)(k)
0M(i−1)×M

pi(k + 1)


 (34)

for i = 1, 2, · · · , N . Note that we are taking into account the forward option for
both (33) and (34).



From the last two equations, we realize that steps 4 and 5 of the algorithm
in Table 1 can now be carried out in a forward manner. The rotation angles

Q
(i)
θ (k + 1) are obtained through

Q
(i)
θ (k + 1)

[
γi−1(k + 1)

0

]
=

[
γi(k + 1)

f (N−i+2)(k + 1)

]
(35)

and the joint estimation is performed according to
[

e
(i)
q1 (k + 1)

d
(N−i+1)
q2 (k + 1)

]
= Q

(N−i+1)
θ (k + 1)

[
e
(i)
q1 (k + 1)

λ1/2d
(N−i+1)
q2 (k)

]
(36)

In order to adequate the equations of steps 1 to 3 of the algorithm as in Table 1
to this formulation, it suffices to observe that they can be easily split up into
M ×M blocks that will be executed recursively as shown in Table 2. It is worth
mentioning that, for the sake of simplification due to space constraints, we have
used matrix notation in the single loop operations as shown in Table 2. However,
when implementing these equations, it is straightforward to reduce the simple
Givens rotations matrices into scalar operations.

5 Simulations Results

In this section we perform an evaluation of the Multichannel Fast QRD-RLS in
an adaptive beamforming scenario. Although this kind of application requires the
use of constrained algorithms, structures like the Generalized Sidelobe Canceller

(GSC) [7], used here, or the Householder structure [8], make possible the use of
unconstrained algorithms to solve constrained problems.

In our adaptive beamforming experiment, we have used a linear array of 7
sensors with a look-direction set to 0◦ and three jammers with incident angles
corresponding to −25◦, 45◦, and 50◦. The signal-to-noise ratio (SNR) was set to
0dB and a jammer-to-noise ratio (JNR) of 30dB was used. The forgetting factor
(λ) was set to 0.98.

The MSE converging paths (identical) are presented in Figure 2 for both
MCFQR POS B (introduced here in its lattice version) and the MCFQR PRI B
of [3]. Both algorithms are of O(NM 3) computational complexity. Nevertheless
our proposed algorithm saves 2NM multiplications and 2NM divisions in steps 3
and 6 when compared with its equivalent counterpart of [3]. After 10 independent
runs of a considerably large number of samples (6 × 106), we have observed no
sign of divergence, as expected for algorithms of the QRD-LS family.

6 Conclusions

In this paper we have introduced the Lattice version of the Multichannel Fast
QRD-RLS algorithm based on the a posteriori backward error updating. Its
order recursiveness and stability are very attractive features and it can be used
in a wide range of applications, many of them in the field of telecommunications.
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Although the new algorithm introduced here presents the same converge
properties as the one of [3], it is worth mentioning that it saves computational
load that makes it particularly attractive as N and M increase.
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Performance,” Birkhäuser Circuits, Systems, and Signal Processing, vol. 22, no. 4,
pp. 335–349, July/August 2003.

3. A. A. Rontogiannis and S.Theodoridis, “Multichannel fast QRD-LS adaptive filter-
ing: New technique and algorithms,” IEEE Transactions on Signal Processing, vol.
46, pp. 2862–2876, November 1998.

4. C. A. Medina S., J. A. Apolinário Jr., and M. G. Siqueira, “A unified framework for
multichannel fast QRD-LS adaptive filters based on backward prediction errors,”
IEEE Midwest Symposium on Circuits and Systems,vol.3, pp. 668–671 , USA, Au-
gust 2002.

5. J. A. Apolinário Jr., New algorithms of adaptive filtering: LMS with data-reusing

and fast RLS based on QR decomposition, D.Sc. Thesis, COPPE/Federal University
of Rio de Janeiro, Rio de Janeiro, Brazil, 1998.

6. G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore: The Johns
Hopkins University Press, 1983.

7. L. J. Griffiths and C. W. Jim, “An alternative approach to linearly constrained
adaptive beamforming,” IEEE Transactions on Antennas and Propagation, vol.
AP-30, pp. 27–34, January 1982.

8. M. L. R. de Campos, S. Werner, J. A. Apolinário Jr., and T. I. Laakso, “Constrained
adaptation algorithms employing Housholder transformation,” IEEE Transactions

on Signal Processing, vol. 50, no. 9, pp. 2187–2195, September 2002.



Table 2. The Lattice MCFQRD POS B Equations.

Initializations:

fN (0) = 0; Dfq2(0) = 0; γ0(0) = 1;
dq2(0) = 0; Ei

f (0) = µI, µ = small number
All cosines = 1, and all sines = 0;
For each k, do

{ ẽ
(0)
fq1

T
(k + 1) = xT

k+1

A. Obtaining E
(0)
f (k + 1) and Q

(0)

f (k + 1)[
0T

E
(0)
f (k + 1)

]
= Q

(0)

f (k + 1)

[
ẽ

(0)
fq1

T
(k + 1)

λ1/2E
(0)
f (k)

]

B. Obtaining p0(k + 1)[
∗

p0(k + 1)

]
= Q

(0)

f (k + 1)

[
γ0(k)

0

]

f (N+1)(k + 1) = p0(k + 1); γ0(k + 1) = 1;
eq1(k + 1) = d(k + 1);
for i = 1 : N

{ 1. Obtaining D
(N−i+1)
fq2 (k + 1) and e

(i)
fq1(k + 1)[

ẽ
(i)
fq1

T
(k + 1)

D
(N−i+1)
fq2 (k + 1)

]
= Q

(i)
θ (k)

[
ẽ

(i−1)
fq1

T
(k + 1)

λ1/2D
(N−i+1)
fq2 (k)

]

2. Obtaining E
(i)
f (k + 1)[

0T

E
(i)
f (k + 1)

]
= Q

(i)

f (k + 1)

[
ẽ

(i)
fq1

T
(k + 1)

λ1/2E
(i)
f (k)

]

3. Obtaining pi(k + 1)[
∗

pi(k + 1)

]
= Q

(i)

f (k + 1)

[
γi(k)

0

]

4. Obtaining Q′

θf
(N−i+1)

(k + 1)




0M(N−i−1)×M

0M(i−1)×M

E
(i−1)
f (k + 1)


 = Q′

θf
(N−i+1)

(k + 1)




0M(N−i)×M

D
(N−i+1)
fq2 (k)

0M(i−1)×M

E
(i)
f (k + 1)




5. Obtaining f (N−i+1)(k + 1)


0M(N−i)×M

f (N−i+1)(k + 1)
0M(i−1)×M

pi−1(k + 1)


 = Q′

θf
(N−i+1)

(k + 1)




0M(N−i)×M

f (N−i+2)(k)
0M(i−1)×M

pi(k + 1)




6. Obtaining Q
(i)
θ (k + 1) and γi(k + 1)

Q
(i)
θ (k + 1)

[
γi−1(k + 1)

0

]
=

[
γi(k + 1)

f (N−i+2)(k + 1)

]

7. Joint Estimation[
e

(i)
q1 (k + 1)

d
(N−i+1)
q2 (k + 1)

]
= Q

(i)
θ (k + 1)

[
e

(i−1)
q1 (k + 1)

λ1/2d
(N−i+1)
q2 (k)

]

}
8. Obtaining the a priori error
e′(k + 1) = eq1(k + 1)/γ(k + 1)

}


