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22290-270, Rio de Janeiro, RJ, Brazil
apolin@ieee.org

M. R. Petraglia

Federal University of Rio de Janeiro

COPPE/Program of Electrical Engineering
P.O. Box 68504

21.945-970, Rio de Janeiro, RJ, Brazil
mariane@lps.ufrj.br

ABSTRACT
Subband adaptive filtering techniques have been recently
developed for a number of applications, such as acoustic
echo cancellation and wideband active noise control. Such
applications require adaptive filters with hundreds of taps,
resulting in high computational complexity and low con-
vergence rate for LMS based algorithms. For fullband sys-
tems, a variety of adaptive algorithms, which improve the
adaptation convergence rate, have been developed. Most
of them (such as the affine projection algorithm), however,
present larger complexity than the conventional LMS algo-
rithm. Such computational load can be reduced by making
use of subband processing techniques. Considering these
matters, we apply the affine projection algorithm (APA) in
a recently proposed subband adaptive filter structure.

1. INTRODUCTION

Adaptive filtering techniques, particularly using FIR filters
in view of their stability and unimodal performance proper-
ties, are used in many applications. However, in some ap-
plications such as acoustic echo cancellation and wideband
active noise control, the order of the adaptive filter is very
high, resulting in a large number of operations for their im-
plementation and hence presenting a slow convergence rate
when using LMS-based algorithms.

As an attempt to solve the above problem, subband pro-
cessing techniques have been proposed for adaptive filters
[1]-[2]. The main advantages of subband processing are: (a)
the computational complexity is reduced by approximately
the number of subbands, because both the number of taps
and weight update rate can be decimated in each subband;
and (b) the convergence rate is improved because the spec-
tral dynamic range is greatly reduced in each subband.

For the fullband case, a class of algorithms named Affine
Projection Algorithm (APA), has been developed [3] in or-
der to improve the convergence rate of applications where
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the input signal is highly correlated. The main idea of this
paper is to implement the affine projection algorithm [5] as
well as its set-membership version [4] in the adaptive sub-
band structure proposed in [2].

This paper is organized as follows. In Section 2, the sub-
band adaptive structure proposed in [2] is described. Sec-
tion 3 reviews the AP and the Set-Membership AP algo-
rithms. The subband adaptive algorithms based on APA and
SM-APA are developed in Section 4. Simulation results are
presented in Section 5, and Section 6 contains concluding
remarks.

2. THE SUBBAND ADAPTIVE FILTER
STRUCTURE

The adaptive subband structure presented in [2] was derived
from the filter bank structure with sparse adaptive subfilters
of Fig. 1. In a system identification application, such a
structure models exactly any FIR system if the sparse adap-
tive filters

� � � � �
satisfy the following equation:

� � � � � � � � � � � � � � � 	 
 � � � � � �
� 
 � � � � 
 � � � � � � � 
 	 
 � � � � � � � � � �

(1)

where

 � � � �

are the polyphase components of the unknown
system transfer function


 � � �
, and

� � � � �
is the type-2 poly-

phase matrix of the synthesis bank which results in per-
fect reconstruction when associated with the analysis filters� � � � �

of Fig. 1.
By including maximally decimated perfect reconstruc-

tion analysis and synthesis banks following each sparse sub-
filter in Fig. 1, moving the sparse subfilters

� � � � 	 �
to the

right of the decimators, and assuming that non-adjacent fil-
ters of the analysis bank have frequency responses which
do not overlap, the structure of Fig. 2 is obtained. Observe
that, in the resulting structure, the subfilters

� � � � �
operate

at a rate which is � � � -th of the input rate, and that from
(1), their lengths should be � � � � � � � � � � � � � , where
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Fig. 1. Adaptive structure with an analysis filter bank and
sparse subfilters.

� �
is the length of the system

� � � �
to be identified and

� �
is the length of each synthesis filter � � � � �
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Fig. 2. Adaptive subband structure with critical sampling
applied to system identification problems.

3. THE AFFINE PROJECTION ALGORITHM

In this section, we review the derivation of the Affine Pro-
jection Algorithm for the usual single channel case and es-
tablish the notation used hereafter. For a full band adap-
tive filter, � � � �

denotes the input signal, � � � �
is the refer-

ence signal, and � � � �
is the coefficient vector. Moreover,� � � � � � � � � 	 � � � �

where � � � � � � � � � � � � � �
is the output

signal with
� � � � � 	 � � � � � � � 	 
 � 
 
 
 � � � 	 � � � � being

the input signal vector.
For the APA, we define the a priori error vector as

� � � � � 
 � � � 	 � � � � � � � � 	 
 �
(2)

where


 � � � �

����
�

� � � �� � � 	 
 �
...� � � 	 � � 
 �

� ���
� (3)

and

� � � � � 	 � � � � � � � 	 
 � 
 
 
 � � � 	 � � 
 � �
(4)

with � being the number of projections, that is, the number
of data pairs (reference signal samples and input vectors)
used in the L-order APA.

In the Affine Projection algorithm, we minimize the ex-
pression � � � � � 	 � � � 	 
 � � � subject to
 � � � � � � � � � � � � �

(5)

that is, the a posteriori error vector is made zero. Now using
(5) in (2), we have� � � � � � � � � � 	 � � � � 	 � � � 	 
 � �

� � � � � � � � � � �
(6)

which leads to the solution� � � � � � � � � � 	 � � � � � � � � � � � 
 � � � �
(7)

With the introduction of a step-size, the final updating equa-
tion for the APA is given by

� � � � � � � � 	 
 � � � � � � � 	 � � � � � � � � � � � 
 � � � �
(8)

In the Set-Membership Affine Projection algorithm [4],
an upper bound for the estimation error is set, resulting in
the following update equation:

� � � � � �� � � � �  ! " #$ % � � " & % ' � � " % � � " ( ) * + � � " , - + � � " - . /� � �  ! " , otherwise

(9)

which corresponds to the conventional APA whenever the
coefficient vector is within the so-called constraint set1.

4. THE APA IN SUBBANDS

For the subband structure of Fig. 2, we define the 0 -th sub-
band error vector as1 � � � � � 2 � � � � 	 3 � � � �

(10)

1Set of all vectors 4 with estimation errors upper bounded in magni-
tude by 5 .
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(13)

with

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
(14)

and � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � .
The coefficients of the subband adaptive filters � � � � �

are updated such that the a posteriori error vector is null for
every subband, or equivalently,
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Substituting (13) and (15) in (10), and defining
� � � � � � �

� � � � � � � � � � � � �
, we obtain the following system of � �

equations:
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M-1,M-1 � � � � � M-1 � � � � � M-1 � � �
(16)

which can be expressed as

� � � � � � � � � � � � � � �
(17)

where
� � � � �

,
� � � � �

, and
� � � �

, defined below 2, have
dimensions � � � � 	 , � 	 � � , and � � � � , respectively:
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M-1
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with

� � � � � � � �
 � � � � � � � � � � � � � �
M-1

� � � � � (21)

Finally, we express the weight updating equation for the
subband APA as

� � � � � � � � � � � � � � � � � � � � � � � � � � � � 
 � � � � �
(22)

In an attempt to achieve both fast convergence and low
misadjustment using this new algorithm, we introduce the
concept of set-membership filtering also as a mean to ac-
complish an average reduction of the computational com-
plexity. Using the trivial choice for vector # � � �

, from (9),
and from (22), we write the updating equation of the coeffi-
cient vector as

� � � � � �� 
 � � � � � � �� � � � � � � � � � � � � �  � � � � � � � ! � � � � ! " #� � � � � � � otherwise

(23)

The parameter $ is application dependent but we can sug-
gest � � � times the value used in the full band case [4],
yielding $ � % & ' $( � � , where

' $( corresponds to the vari-
ance of the observation error.

5. SIMULATION RESULTS

The identification of a length
� � ) & *

FIR system is con-
sidered. Experiments were performed with the subband struc-
ture of Fig. 2 with � � ) + , + -

and � *
subbands and perfect-

reconstruction cossine modulated filter banks with proto-
type filters of lengths

� . � / ) + * , + � ) -
and

) & *
, respec-

tively. The input signal was a colored noise sequence gener-
ated by passing a gaussian white noise sequence through the
IIR filter:

� 0 � � � � � � � � � 1 � 2 2 2 � 
 � � 1 � 2 2 � 
 $ � � 2 2 & � 
 3 �1 � 2 2 � 
 4 �
.

Figure 3 presents the MSE evolution for the subband
algorithm with � � -

subbands and different numbers of
projections � . As expected, as � increases, the convergence
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rate becomes faster. However, for � larger than
�
, there is

no noticeable alteration in the convergence rate.
Figure 4 presents the MSE evolution of the subband and

fullband APA for �
� �

projections, varying the number of
subbands � . From this plot, we observe that, for small � ,
the subband algorithm has a better convergence rate than the
fullband algorithm, and that the convergence rate increases
with the number of subbands. For � � �

, the subband
structure converges to an MSE of the order of the stopband
attenuation of the analysis filter (which is around �

� �
dB

for the prototype filters used in the simulations).
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Figure 5 presents the MSE evoltuion of the subband and
fullband APA for �

� �
. In this case, the convergence rate

of the subband APA is still better than that of the fullband
APA, and it does not change as the number of subbands
increases.

2The index � of the matrices � � � � � � � was ommited in the defi nition of
� � � � � in order to simplify the notation.
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6. CONCLUSIONS

We have derived a new APA and set-membership APA for
a subband structure with critical sampling. Experimental
results have shown that the convergence rate is improved
when compared to the fullband affine projection algorithm
with small number of projections when the input signal is
highly correlated.
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