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Abstract—QR-decomposition-based least-squares lattice (QRD-
LSL) algorithms do not provide the transversal weight vector in ex-
plicit form. These weights can be computed from the variables of
the QRD-LSL algorithm using the Levinson–Durbin (LD) recur-
sion. If the prediction coefficients do not vary over time, a reduced
complexity but approximate solution can be obtained. Nonetheless,
this approximate solution requires algorithm convergence and in-
finite memory support (forgetting factor equal to one). To obtain
the exact weights at any time instant and for any choice of the for-
getting factor, the computational complexity of the true LD recur-
sion increases by an order of magnitude. In this letter, we show
that an exact solution can be obtained with a reduced computa-
tional complexity and without any added restriction. Simulation
results show that the solutions obtained using the proposed method
and the exact LD recursion are the same up to the precision used,
whereas the weights from the approximate method always deviate
from the true solution.

Index Terms—Adaptive filtering, adaptive systems.

I. INTRODUCTION

LEAST-SQUARES lattice (LSL)-based algorithms provide
a good alternative to the recursive least-squares (RLS)

algorithm. These algorithms are stable in finite precision [1],
and their computational complexity is , with being
the number of coefficients, thus making them attractive for
practical applications. An example of such algorithm is the
(angle-normalized) QRD-LSL algorithm [1].

It is known that the QRD-LSL recursions do not explicitly
provide the transversal weight vector. If an application does not
require weight coefficients at each iteration, e.g., in system iden-
tification, a weight extraction mechanism can be used in tandem
with the QRD-LSL algorithm at the particular iteration of in-
terest, thus saving computational cost. In order to identify the
exact weights, the least-squares version of the Levinson–Durbin
(LD) recursion may be used [1], [2] for which the computational
cost is . However, if infinite memory support and algo-
rithm convergence are assumed, the computational complexity
may be decreased by an order of magnitude. This is because the
backward prediction weights have converged and the “solution
pyramid” of the LD recursion reduces to the one in [3]. Since
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these assumptions do not usually hold in practice, only an ap-
proximate solution is obtained which may differ significantly
from the true solution (even after convergence).

In this letter, we show how to extract the exact transversal
weights associated with the QRD-LSL algorithm using the
least-squares LD with a computational complexity of ,
i.e., significantly reducing the computational cost. In our so-
lution, the backward prediction coefficients of all orders are
efficiently computed by exploiting their relation to the Cholesky
factor of the input-data matrix. The elements of each column in
the inverse Cholesky factor are recursively computed using the
LD recursion in conjunction with a sequence of Givens rotations.
Thereafter, the transversal weights can be obtained as in [1]. The
proposed method is different than the serial weight identification
technique proposed for the fast QRD-RLS algorithm in [4] (or
its multichannel version in [5]), where two Givens rotations
matrices were used to get the rows of the inverse Cholesky
factor. For the purpose of comparison, a system identification
setup is considered and the weights obtained from the proposed
method and the approximate LD recursion are compared to those
obtained with the exact Levinson–Durbin algorithm. Also, the
computational complexity of the proposed method is addressed.

II. BASIC EQUATIONS FOR THE ALGORITHMS

In this section, we provide the basic concepts of the
QRD-RLS and the QRD-LSL algorithms to aid the explanation
of the proposed weight extraction technique. The notation
used with the QRD-LSL is adopted from [1], where a detailed
description and pseudo-code implementation can be found.

A. Basic Concepts of QR Decomposition Algorithms

The RLS algorithm minimizes the following cost function:

(1)

where is the forgetting factor, denotes complex conju-
gate, is the th desired signal value, is the
input vector at the th instant, is the coefficient
vector, and is the a posteriori error vector

...
...

(2)

where is the desired signal vector, and
is the input data matrix. Note that the for-

getting factor is incorporated into the definition of and
. The QRD-RLS algorithm uses an orthogonal rotation

matrix to triangularize matrix [1] as

(3)
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where is the Cholesky factor of
; denotes Hermitian. Pre-multi-

plying (2) with , gives

(4)
If is zero, the cost function in (1) is

minimized and

(5)

The QRD-RLS update of and is given by

(6)

(7)

where is a sequence of Givens ro-
tation matrices which annihilates the input vector in (7)
and can be partitioned as [6]

(8)

The QRD-RLS algorithm is complete with the definition of
the a priori error value

, where is a scalar found in matrix
; see (8). An alternative relation used in the inverse

QRD-RLS algorithm is [7]

(9)

where and means .
The above relation will be used in the weight extraction method
presented in Section III.

B. QRD-LSL Algorithm

The main idea in the QRD-LSL algorithm is to use order-re-
cursive equations to find an efficient output-error-based adaptive
filtering algorithm.

1) Normalized Output Error Order-Recursive Equations:
The output-error vector in (2), considered for filter order , is
normalized by and rewritten in order recursive form as
[1]

(10)

where the order update is from to ,
is the normalized backward prediction error vector, and

(11)

is the regression coefficient responsible for the order update
where corresponds to the scaled value of .

The normalized version of error vector in (2) is achieved for
; however, it is only after (10) has been computed for
. Instead of the normalized output-error vector ,

we are actually interested in computing the current value of the
normalized output-error (scalar) . According to [1], the

th order update for is written as

(12)

where is a Givens rotation matrix respon-
sible for the th order update of with values of sine and co-
sine given by
and .

2) Normalized Backward Prediction Order-Recursive Equa-
tions: The order-recursive equation for the normalized back-
ward prediction error vector is written as

(13)

where is the backward reflection coefficient and
. Note that (13) provides the update for

which is needed in (10). The backward reflection coef-
ficient is computed similarly to regression coefficient in
Section II-BI, i.e.,

(14)

Similarly, the update of the scalar is provided using
Given rotation matrices as [1]

(15)

where is a Givens rota-
tion matrix responsible for the th order update
of with sine and cosine values given by

,
.

3) Normalized Forward Prediction Order-Recursive Equa-
tions: The order-recursive equation for normalized forward pre-
diction error vector, which is crucial for computing (13), is
given by

(16)

The update of is similar to in (15), i.e.,

(17)

where is the Givens rotation matrix used for the
update of , and is the th-order conversion
factor which corresponds to the scalar in (8) for .

III. WEIGHT EXTRACTION FOR QRD-LSL

In this section, we briefly describe the conventional weight
extraction method using the Levinson–Durbin recursions. We
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point out reasonable approximations leading to a simplified so-
lution and discuss the restrictions they impose on the method.
Thereafter, we present the details of the reduced complexity so-
lution for exact weight identification.

A. Conventional Method

The weights of the RLS algorithm are related to the auto-cor-
relation matrix and cross-correlation vector as

. The relation for the QRD-RLS algo-
rithm is given in (5). Another relationship involves the backward
prediction weight vectors given in form of the
backward prediction error equation

(18)

and the regression coefficients defined in (11) [1]. Equa-
tion (18) is obtained directly from (5) by applying the definition
of the Cholesky matrix and making use of [2]

(19)

where . Therefore

(20)

with

(21)
and .

The scaled version of the elements of vector is available
as variable defined in (11). Henceforth, we need to find a
method to compute the backward prediction transversal weights
in . The LD recursion uses the reflection coefficients
and to compute the backward prediction weights, for

, as follows [1]:

(22)

where , and
are vectors containing the forward and backward prediction
transversal weights, respectively. The computational com-
plexity of this LD recursion is . The reason is that the
LD recursion in (22) requires the knowledge of the vector at
previous time instant, , for computing the order
updated vector at current time instant, i.e., . That is

(23)

where denotes that there exists a relation from left to right.
However, if we can assume that , the
complexity is reduced to . This assumption holds to be
fairly accurate only after that convergence has taken place and
for values of the forgetting factor close to 1, i.e., infinite memory
support. Therefore, the realization of (22) is only an
approximation of the weight vector in (20).

B. Proposed Weight Extraction Method

The weight extraction technique proposed here can be in-
voked at any iteration of the QRD-LSL algorithm. The main
computational load associated with the Levinson–Durbin of the
previous section is due to the construction of the matrix ,
for which the chain in (23) must be followed. Using Lemma 1
below, we show how the weights can be obtained
from using variables available in the QRD-LSL algo-
rithm. This results in a great reduction of complexity as
can be obtained from recursions in (22) as compared with

recursions using the conventional method.
Lemma 1: Let denote the th row of the

upper triangular matrix . Given
from (17), then can be obtained from

using the relations

(24)

and

(25)

where is 0 to and
.

The proof of Lemma 1 is in the Appendix . In order to
build matrix , the recursions in (22) are initialized as
the Levinson–Durbin approach [1] to get . Lemma
1 is then invoked to obtain . By induction, we
conclude that all columns of matrix can be obtained.
Finally, the transversal weights are obtained from
(20). The regression coefficient vector is computed from
(11). The implementation details of the proposed method
are given in Table I. Note that the divisions in
Table I are avoided as the variable is readily
available from the QRD-LSL algorithm at each . Therefore,

can be
computed using two multiplications. Division by zero is not a
problem since as increases.
For the pseudo-code of the QRD-LSL, see [1]. The number of
operations required to extract all coefficients using the exact
and approximate Levinson–Durbin (LD) approach along with
the proposed approach are given as follows:

— LD exact: multiplications and 0
divisions;

— LD approx.: multiplications and 0 divisions;
— Proposed: multiplications and 0 divisions.

IV. SIMULATIONS

In this section, we show that the performance of the weight
extraction using the approximate LD recursion, i.e., the one
that leads to the “solution pyramid” in [3], is always worse
than the exact LD recursion. Moreover, the proposed method
and the exact LD recursion show the same results at all time
instances up to the simulation precision. We consider both fi-
nite precision and infinite precision results. A small regular-
ization factor was chosen for the initialization of
the QRD-LSL algorithm according to pseudocode given in [1,
p. 666]. We consider a system identification setup where the
input signal sequence is generated as a complex fifth-order AR
process. The plant is an FIR filter with randomly gen-
erated complex-valued taps, and the SNR was set to 30 dB. A
single simulation run (3000 iterations) is considered, and the



280 IEEE SIGNAL PROCESSING LETTERS, VOL. 15, 2008

TABLE I
WEIGHT EXTRACTION ALGORITHM

Fig. 1. Comparison of weight extraction techniques in infinite precision.

transversal weights obtained by the proposed method and the
approximate LD recursions, at every step, are compared with
those obtained by employing the exact LD recursion in (22).
Fig. 1 shows the evolution of the coefficient error, defined as

, where is the coef-
ficient vector obtained with the exact LD recursion, and
is the vector obtained with either the approximate LD or the
proposed method. We see that the approximate LD method pro-
vides a good (but not exact) approximation only under restric-
tive assumptions of convergence and infinite memory support,
while the proposed method is identical to the exact LD. The
small deviation in the transient is due to the regularization. Fig. 2
shows the finite precision results of the average coefficient error,
i.e., . We see that the pro-
posed method behaves well in finite precision environment, ap-
proaching the quantization limit. Moreover, an average of ten
independent runs of samples each was carried out. The case
of 8-mantissa bits showed no sign of divergence.

V. CONCLUSIONS

This letter showed how to use the variables of the QRD-LSL
algorithm to compute the exact transversal weights in an effi-
cient manner. The presented technique is an order of magnitude
lower in complexity than a currently known exact method

Fig. 2. Comparison of weight extraction techniques in a finite precision envi-
ronment; 8–16 mantissa bits (forgetting factor � = 0:95).

employing the Levinson–Durbin recursion. The proposed
method has similar complexity to the solution obtained with
the conventional Levinson–Durbin recursion assuming a sta-
tionary environment. Computer simulations showed that the
results of the proposed method were identical to those of the
Levinson–Durbin method in infinite precision and within the
quantization limits of the finite precision environment.

APPENDIX

Proof for Lemma 1: The relation in (24) is obtained from
(19) and (21). It is known that .
The sine and cosine of rotation matrix and are
identical [2], i.e., is the 2 2 compact form of .
From (9), we see that matrix only applies on the first
and the th row of the right-hand-side matrix. In other
words, row is available after this operation. Therefore,
compact form using is written as

(26)
Due to the upper triangular structure of , only en-
tries of will be filled after this step. We can recursively
compute by solving the expression (26) (starting from

): ,
where , , , and are known.
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