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Abstract—This paper analyzes the use of some re-
gression shrinkage methods in adaptive signal pro-
cessing. Some shrinkage strategies that render inter-
pretable models can be solved as a linearly-constrained
least squares problem and render model coefficients
which are exactly zero. As a consequence, they produce
estimators which may be more economical and have
lower variance than those produced by ordinary least
squares estimators, at the price of some bias. Economy,
in this case, means less computations, consequently less
battery consumption and more sustainable systems.

I. Introduction

In adaptive filtering, the model often used is that of a
finite-duration impulse response linear system, where an
M × 1 set of signals are fed to the adaptive filter at every
iteration. Let x(k) denote the vector whose M elements,
xi(k), are the input signals to the adaptive filter, and let
y(k) be its scalar output signal, all at the time instant kT .
M is the length of the filter (therefore its order is M − 1)
and w is the filter coefficient vector:

y(k) = x
T(k)w, (1)

where (·)T denotes vector transposition. At every iteration
k, an adaptation algorithm must be used to produce (or
estimate) the elements of w(k), wi(k), which are the best
for a particular rule, mathematically described by a metric
or objective function, with the knowledge available at iter-
ation k. The objective function may use a reference signal,
denoted here by d(k), to be pursued by the filter’s output;
in this case the adaptive filter is said to be supervised. In
some applications, usually when constraints are imposed
to the filter coefficients, the reference signal is missing and
the adaptive filter is called unsupervised. An error e(k)
compares the reference and the output signal:

e(k) = d(k) − y(k). (2)

A. Least Squares Estimation

In the context proposed here, the least squares estima-
tion of w at time instant kT , which can be traced back to
the works of Gauss in the early nineteenth century, relies
on past observations of the input and reference signals in

order to produce a coefficient vector, w(k), which satisfies

min
w

k
∑

i=1

[

d(i) − x
T(i)w

]2

. (3)

In the previous equation, the minimization is performed
over the space R

M , but the extension to the field of
complex numbers is trivial.

Let

X(k) = [x(k) x(k − 1) · · · x(1)] and

d(k) = [d(k) d(k − 1) · · · d(1)]
T

.
(4)

The minimization problem solved by the least squares
estimator can be rewritten as

min
w

‖d(k) − X
T(k)w‖2, (5)

yielding

w(k) =
[

X
T(k)X(k)

]

−1

X(k)d(k). (6)

This solution is the minimum variance unbiased estimate
and can be achieved recursively; at each time instant kT , a
column is added to matrix X(k), which means that a rank-
one update is made to matrix R(k) = X(k)XT(k). The
recursive least squares uses the matrix inversion lemma
to obtain an algorithm whose computational complexity
is less severe than that of matrix inversion and whose
memory requirements are not increasing with k [1]:

e(k) = d(k) − x
T(k)w(k − 1),

w(k) = w(k − 1) +
e(k)R(k − 1)x(k)

1 + xT(k)R(k − 1)x(k)
,

R(k) = R(k − 1) −
R(k − 1)x(k)xT(k)R(k − 1)

1 + xT(k)R(k − 1)x(k)
.

(7)

This algorithm needs to be properly initialized with some
value for wi(0), often chosen equal to zero, and a full-rank
matrix R(0). The implication of such initialization is that
the objective function becomes

min
w

k
∑

i=1

[

d(i) − x
T(i)w

]2

+ w
T
R(0)w. (8)



B. A Statistical View of Some Signal Processing Tools

In the field of statistics, the nomenclature is usually
different from that encountered in the signal processing
literature, but the mathematical tools are often quite
similar, if not the same. Input signals are independent

variables, or regressors, and output signals are dependent

variables, or regressands. Input signal correlation is in-
dependent variable collinearity. However, once we have
mapped problems and solutions from one field to the other,
successful methods employed by statisticians can be used
in signal processing, and vice-versa.

Statisticians and chemometricians have been using to a
great extent a variety of tools based on shrinkage, particu-
larly when the volume of observational data is very large,
or when collinearity of regressors is high. These include
partial least squares, principal components, subset selection,
ridge regression [2][3], and least absolute shrinkage [4].

This paper presents a comparison of some regression
shrinkage techniques in signal-processing applications of
adaptive filters. The next section presents the basics of
regression shrinkage, whereas Section III presents an adap-
tive filter implementation of the least absolute shrinkage
and selection operator (LASSO). Section IV presents sim-
ulation results for two different scenarios and Section V
presents some preliminary conclusions.

II. Regression Shrinkage

In statistics, it is often desirable to trade bias for vari-
ance as a strategy to improve prediction accuracy. Among
the strategies available, shrinking the solution coefficient
vector away from the least squares estimates yields good
results in many situations.

Ridge regressors [5] shrink the solution by adding a
small positive quantity to the main diagonal of matrix
X(k)XT(k). Although any positive value does the regular-
ization trick, improving matrix conditioning and shrinking
the solution, ridge regressors call for a particular value that
satisfies

min
w

k
∑

i=1

[

d(i) − x
T(i)w

]2

s.t. ‖w‖2

2
≤ t, t > 0. (9)

A. LASSO

Figures 1 and 2 show contour plots of points having
equal error norms for a constrained minimization problem
in a two-dimensional case. From Figure 1, it is clear that
although the strategy shrinks the solution, it will seldom
yield zero coefficients, even for very small values of t. In [4],
Tibshirani proposed an alternative shrinkage strategy, the
LASSO regressor, for which the minimization problem
becomes

min
w

k
∑

i=1

[

d(i) − x
T(i)w

]2

s.t.

M
∑

i=1

|wi| ≤ t. (10)
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Fig. 1. Least squares and ridge regressor solutions for t = 16.
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Fig. 2. Least squares and LASSO regressor solutions for t = 4.

The LASSO regressor, although quite similar to the ridge
regressor, will likely cause some of the coefficients to shrink
all the way to zero. Figure 2 illustrates the constrained
minimization problem, where one can clearly see that the
optimal solution is met when w1 is zero. Several algorithms
have been proposed to solve for the LASSO regressor
coefficients (e.g., [6]–[8]). However, a very simple one,
albeit not efficient, was proposed by Tibshirani in [4]: Let
s(w) be defined as

s(w) = sign(w). (11)

Therefore s(w) is a member of the set

S = {sj} , j = 1, . . . , 2M , (12)
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Fig. 3. Boundaries of the constraint sets for different values of γ [2].

whose elements are of the form

sj = [±1 ± 1 · · · ± 1] , j = 1, . . . , 2M . (13)

The algorithm is based on the fact that the constraint
∑M

i=1
|wi| ≤ t is satisfied if

s
T

j w ≤ t, for all j. (14)

The constrained optimization problem becomes a linearly
constrained quadratic programming problem whenever the
constraint is not satisfied by the least squares estimator.

The constraint equation can be generalized as [2]

M
∑

i=1

|wi|
γ ≤ t, γ > 0. (15)

Figure 3 illustrates what happens for the two-dimensional
case for different values of γ. When the constraints are
active, the solution will likely be more oblique to the
coefficient axes, as γ → ∞, or aligned with one of the
coefficient axes, for γ ≤ 1.

III. Conceptual Adaptive LASSO

As hardware and software design needs to cope with
increasingly tighter environmental restrictions, the ability
to turning off coefficients automatically may certainly
be an advantage worth considering for more economical
and greener systems. The fact that the LASSO regressor
shrinks coefficients to zero is particularly important for
its reduced computational requirements and consequent
battery consumption.

Our purpose in this work is to show the potential of
applying shrinkage methods in adaptive filtering. At this
point, a fully adaptive version of the LASSO algorithm
was not our main interest, but the concept and advantages
of using it. Therefore, the adaptive LASSO algorithm

described herein is subject of further research such that
complexity and efficiency are properly tackled.

A simplified adaptive LASSO algorithm is presented
here based on Tibshirani’s suggested procedure [4]. If
wRLS(k) denotes the least squares estimator, i.e., the
coefficient vector that solves Eq. (3), one may obtain the
coefficient vector that solves the linearly-constrained least
squares problem, wCRLS(k), as [9][10]

wCRLS(k) = wRLS(k)

− R
−1(k)C(CT

R
−1(k)C)−1[f − C

T
wRLS(k)],

(16)

where matrix C is the constraint matrix and f is the
gain vector. The solution wCRLS(k) is the vector w that
satisfies

min
w

k
∑

i=1

[

d(i) − x
T(i)w

]2

s.t. C
T
w = f . (17)

The adaptive LASSO algorithm in its conceptual form is
presented in Table I where the RLS part is carried out
with forgetting factor λ = 1.

TABLE I

The Conceptual Adaptive LASSO Algorithm.

Initialization:
α (between zero and one)

1 = [1 1 · · · 1]T

for each k
{

% RLS iteration:
eRLS(k) = d(k) − wT

RLS
(k − 1)x(k)

k(k) = R−1(k − 1)x(k)

κ(k) =
k(k)

1+xH(k)k(k)

R−1(k) = R−1(k − 1) − κ(k)kH(k)
wRLS(k) = wRLS(k − 1) + eRLS(k)κ(k)
% LASSO iteration:
t = αsign(wT

RLS
)wRLS

eLASSO(k) = d(k) − wT

LASSO
(k − 1)x(k)

wLASSO(k) = wRLS(k)
C = [ ]
while sign(wT

LASSO
)wLASSO > t

{
C = [C sign(wLASSO)]

wLASSO(k) = wRLS(k) − R−1(k)C
`

CT R−1(k)C
´

−1
×

ˆ

t1 − CT wRLS(k)
˜

}
}

Parameter α in the algorithm of Table I has the effect
of controlling the number of coefficients which are equal
to zero.

IV. Simulation Results

In order to test the performance of the concepts ad-
dressed in the previous section, two experiments were
conducted.

In the first experiment, we assumed that the input signal
of an adaptive filter of length 50 was formed with signals
from 50 different sensors. From these sensors, we assumed
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Fig. 4. Number of LASSO zeroed coefficients over time.

that 10% of them, 5 sensors, were defective and were
reading only noise.

A second experiment was carried out with the adaptive
filter identifying a system having as its impulse response
the echo path model 1 used in ITU Recommendation
G.168 [11].

For both experiments we implemented the RLS al-
gorithm, the RLS-SSS (Subset Selection) solution, and
the adaptive LASSO algorithm. We expected the shrunk
versions of the adaptive filter to be able to null some
coefficients due to the defective sensors or to their inherent
small optimal values. The least squares estimation, needed
for all three algorithms, assumed stationary environments
and used a forgetting factor equal to one. Further de-
velopments of the algorithm may certainly benefit from
other weighting options. The subset selection solution is
obtained from the ordinary least squares solution, but
with a prescribed number of the smallest coefficients (in
magnitude) forced to be equal to zero.

A. Experiment with Faulty Sensors

From the 50 sensors signals used to form the input signal
vector, we assumed that sensors 10, 20, 22, 39, and 40 were
faulty such that only white noise was obtained in these
positions. The optimum coefficient vector (unknown plant)
was formed from random values uniformly distributed
from 0 to 1 and an ensemble of 500 independent runs was
carried out.

Figure 4 depicts the number of coefficients zeroed in
average by the adaptive LASSO algorithm. Based on this
result, the number of zeros set to the SSS algorithm (from
the RLS solution) was chosen to be 15.

For this first experiment, a value of t equal to 0.8t0 was
set. Note that t0 =

∑M
i=1

|wRLSi
| changes at each iter-

ation, for wRLS(k) varies over time. Another possibility,
although not very convenient since we do not know wopt

and we would not have a good control of the algorithm,
would be a fixed value corresponding, for instance, to
0.8topt, with topt = ‖wopt‖1.

Figure 5 shows the learning curves (MSE in dB) of the
three algorithms for this faulty input sensor experiment.
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Fig. 5. Learning curves from the faulty coefficients experiment.

0 10 20 30 40 50 60 70
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k

h
(k

)

Fig. 6. Impulse response of the ITU-T G. 168 echo path model 1.

Note, as expected, that although having a similar number
of null coefficients, the MSE of the adaptive LASSO algo-
rithm exhibits a lower level of MSE. This is due to the fact
that it corresponds to the optimal solution constrained to
an specific Manhattan norm (leading to a certain number
of nulls) while the Subset Selection algorithm corresponds
to the RLS solution with the 15 coefficients with smallest
magnitudes made equal to zero.

B. ITU-T G.168 Echo Path Identification

A system identification application is carried out with
the ITU-T G.168 impulse response model of a long-
distance echo path for telephone circuits, shown in Fig-
ure 6. This model was chosen for its general availability
and for having a long duration with a large tail of values
with small magnitude. For this case, the parameter con-
trolling the amount of shrinkage was set to t = 0.85tRLS =
0.85‖wRLS‖1.

We have once more used the average number of coeffi-
cients zeroed by the adaptive LASSO algorithm, as seen in
Figure 7, to set the number of zeros in the SSS algorithm,
now chosen to be 36.
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Fig. 7. Number of LASSO zeroed coefficients over time for the case
of the ITU-T G.168 echo path identification.
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Fig. 8. Learning curves for the ITU-T G.168 echo path identification
experiment.

The result of this experiment in terms of MSE is shown
in Figure 8 from where we can note that the adaptive
LASSO also shows a better behavior than the SSS algo-
rithm.

After convergence, a typical figure with the regressors
of the three adaptive algorithms is found in Figure 9.
As we can see from this figure, the SSS-RLS algorithm
follows exactly the RLS values whenever they are not zero,
whereas the adaptive LASSO algorithm presents different
values. Nevertheless, in both cases, the samples tend to be
zero for the low energy samples of the RLS solution.

V. Conclusion

In this article, we explored the use of shrinkage tech-
niques together with adaptation algorithms in order to
make some coefficients equal to zero. We compared the
MSE obtained with the LASSO implementation and with
a subset selection implementation, which simply replaces
coefficients with small absolute value by zero. We tested
the concept in two different scenarios. In the first one,
some samples of the input signal vector are missing and
only additive noise is presented to the adaptive filter, as if
some sensors were malfunctioning. In the second scenario,
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Fig. 9. Adaptive filters regressors for the sparse system identification
experiment.

the adaptive filter is to identify a system whose impulse
response is very long, but with the energy concentrated
in few coefficients. The results for both experiments in-
dicate that the LASSO has a potential to yield shrunk
estimates with zero coefficient values and yet acceptable
performance.
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