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ABSTRACT
Multichannel fast QR decomposition recursive least-squares (MC-
FQRD-RLS) algorithms are well known for their good numerical
properties and low computational complexity. However, these al-
gorithms have been restricted to problems seeking an estimate of
the output error signal. This is because their transversal weights are
embedded in the algorithm variables and are not explicitly available.
In this paper we present a novel technique that can extract the filter
weights associated with the MC-FQRD-RLS algorithm at any time
instant. As a consequence, the range of applications is extended
to include problems where explicit knowledge of the filter weights
is required. The proposed weight extraction technique is used to
identify the beampattern of a broadband adaptive beamformer im-
plemented with an MC-FQRD-RLS algorithm. The results confirm
that the extracted coefficients of the MC-FQRD-RLS algorithm are
identical to those obtained by any RLS algorithm such as the inverse
QRD-RLS algorithm.

1. INTRODUCTION

Multichannel adaptive signal processing can be found in various
applications such as broadband beamforming, equalization, stereo-
phonic echo cancellation, and speech enhancement [1].

When considering multichannel adaptive implementations, it is
often possible to directly apply standard single-channel algorithms
to the multichannel problem, e.g., the numerically stable and fast
converging QR decomposition RLS algorithm (QRD-RLS). Even
though such a solution would provide fast convergence, it may be
computationally too complex due to a large number of coefficients.
In order to obtain a computationally efficient solution, RLS-type al-
gorithms specially tailored for the multichannel setup are a good
option. Two types of multichannel algorithms have been proposed
in the literature: 1)Block-type algorithms where the channels are
processed simultaneously, and; 2)Sequential algorithms that pro-
cess each channel individually [1].

In this paper, we focus on block-typemultichannel fast QR de-
composition RLS (MC-FQRD-RLS) algorithms, which enable par-
allel implementation due to the joint processing of channels. The
MC-FQRD-RLS algorithms exhibit RLS like convergence and nu-
merical robustness at a lower complexity than the single-channel
QRD-RLS. The main idea of MC-FQRD-RLS algorithms is to ex-
ploit the underlying time-shift structure of the input-signal vector of
each channel in order to replace matrix update equations with vector
update equations. By doing so, the computational complexity can
be reduced fromO(P2) of the standard QRD-RLS implementation
toO(M2P) of the block MC-FQRD-RLS algorithms, whereP is the
total number of filter coefficients andM is the number of channels.

The main disadvantage of MC-FQRD-RLS algorithms is the
fact that the weight vector associated with the underlying weighted
least-squares problem is embedded in the internal algorithm vari-
ables. Furthermore, they do not directly provide the variables al-
lowing for a straightforward computation of the weight vector, as
is the case with the conventional QRD-RLS algorithm, where a

back-substitution procedure can be used to compute the coefficients.
Therefore, the applications are limited to output error based settings
(e.g., noise or echo cancellation), or to those requiring a decision-
feedback estimate of the training signal (e.g., adaptive beamformer
operating in decision-directed mode). The absence of weights in
MC-FQRD-RLS algorithms makes the problem of system identifi-
cation non-trivial. For example, the beampattern (spatial response)
is not available in an adaptive beamformer implementation using an
MC-FQRD-RLS algorithm.

This paper addresses the problem of identifying the weight vec-
tor from the internal variables of the block MC-FQRD-RLS algo-
rithm. This weight extraction problem was solved for the single-
channel FQRD-RLS algorithms in [2]. The main results, summa-
rized by two lemmas, provide us with an algorithm that allows
us at any time instant during adaptation to sequentially extract the
columns of the Cholesky factor embedded in the MC-FQRD-RLS
algorithm. From the Cholesky factor we can obtain the true weights
of the underlying LS solution by reusing the known MC-FQRD-
RLS variables. We emphasize that the proposed method relies on
the knowledge of only vector updates present in the MC-FQRD-
RLS algorithms, as opposed to the matrix-embedded structure of the
conventional QRD-RLS described in [3]. The problem of parame-
ter identification has been addressed in [4] using the duality between
the single channel FQRD-RLS algorithm in [4, 5] to a normalized
lattice structure. The relation between the results of this paper that
are related to the identification of transversal filter weights and those
of the multichannel extension of the lattice parameter identification
in [4] is currently under investigation.

In the following we present the basic principles of the block
MC-FQRD-RLS algorithm. Thereafter, the weight extraction (WE)
algorithm is derived. Simulation results are followed by conclu-
sions.

2. THE MULTICHANNEL FAST QR-DECOMPOSITION
ALGORITHM

This section presents the basic concepts of MC-QRD-RLS algo-
rithms. Two versions of the MC-FQRD-RLS algorithms are re-
viewed to aid the explanation of the weight extraction technique.

2.1 Basic concepts of QR decomposition algorithms

Consider the multichannel adaptive filter setup in Fig. 1 withM
channels andN filter coefficients per channel, i.e., a total ofP = MN
coefficients. The MC-QRD-RLS algorithm minimizes the follow-
ing cost function with respect towP(k)

ξ (k) =
k

∑
i=0

λ k−i|d∗(i)−xH
P (i)wP(k)|2 = ‖e∗(k)‖2 (1)
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Figure 1: Multichannel adaptive filter setup.

whereλ is the forgetting factor,∗ denotes the conjugate, ande(k)∈
C(k+1)×1 is thea posteriori error vector given as

e∗(k) =




d∗(k)
λ 1/2d∗(k−1)

...
λ k/2d∗(0)


−




xH
P (k)

λ 1/2xH
P (k−1)
...

λ k/2xH
P (0)


wP(k)

= d∗(k)−XP(k)wP(k)

(2)

whered(k) ∈ C(k+1)×1 is the desired signal vector,wP(k) ∈ CP×1

is the multichannel coefficient vector,xP(k) ∈ CP×1 is the multi-
channel input vector

xP(k) =
[
xT(k) xT(k−1) . . . xT(k−N +1)

]T (3)

and
x(k) = [x1(k) x2(k) . . . xM(k)]T (4)

is theM×1 input vector. The QRD-RLS algorithm uses an orthog-
onal rotation matrixQN(k) ∈ C(k+1)×(k+1) to triangularize matrix
XP(k) as [6] [

0(k+1−P)×P
UP(k)

]
= QP(k)XP(k) (5)

whereUP(k) ∈ CP×P is the Cholesky factor of the deterministic
autocorrelation matrixRP(k) = XH

P (k)XP(k).
Pre-multiplying (2) withQP(k) gives

QP(k)e∗(k) =
[
eq1(k)
eq2(k)

]
=

[
dq1(k)
dq2(k)

]
−

[
0(k+1−P)×P

UP(k)

]
wP(k) (6)

We emphasize thatdq1(k) anddq2(k) are partitions of vectord∗(k)
after rotation, similarlyeq1(k) andeq2(k) are partitions of vector
e∗(k) after rotation. The cost function in (1) is minimized by choos-
ing wP(k) such thatdq2(k)−UP(k)wP(k) is zero, i.e.,

wP(k) = U−1
P (k)dq2(k) (7)

The QRD-RLS algorithm updates vectordq2(k) and matrix
UP(k) as follows [6][

eq1(k)
dq2(k)

]
= Qθ (k)

[
d∗(k)

λ 1/2dq2(k−1)

]
(8)

[
01×P
UP(k)

]
= Qθ(k)

[
xH

P (k)
λ 1/2UP(k−1)

]
(9)

whereQθ(k) ∈ C(P+1)×(P+1) is a sequence of Givens rotation ma-
trices which annihilates the input vectorx(k) in (9) and can be par-
titioned as [7]

Qθ (k) =
[

γ(k) gH
P (k)

fP(k) EP(k)

]
(10)

The QRD-RLS algorithm is complete with the definition of thea
priori error valuee(k) = e∗q1(k)/γ(k) whereγ(k) is a scalar element
in matrixQθ(k), see (10).

2.2 Block MC-FQRD-RLS algorithm based on backward pre-
diction error update

MC-FQRD-RLS algorithms update either thea priori or thea pos-
teriori backward prediction error vector [9]. Therefore we have
two versions of the backward prediction error update based MC-
FQRD-RLS algorithm, referred to as MC-FQRPRI B and MC-
FQR POSB. The MC-FQRPRI B algorithm updates vectoraP(k)
defined as

aP(k) = λ −1/2U−H
P (k−1)xP(k) = −gP(k)/γ(k) (11)

while the MC-FQRPOSB algorithm updates vectorfP(k) given by

fP(k) = U−H
P (k)xP(k) (12)

The basic idea of the MC-FQRD based algorithms is to replace
the update for matrixU−H

P (k) in (9) with an update equation for
a vector, i.e., eitheraP(k) or fP(k). The extended Cholesky matrix
UP+1(k) ∈ C(P+M)×(P+M) is defined as the Cholesky factor of the
extended input matrixXP+1(k) ∈ C(k+1)×(P+M) as[

0(k+1−P−M)×(P+M)
UP+1(k−1)

]
= QP+1(k−1)XP+1(k−1) (13)

whereXP+1(k) is constructed by appending a column to the right
of XP(k−1) consisting of corresponding past input values. Note
that the forward and backward prediction equations can be specified
usingXP+1(k−1). Therefore, the triangularization ofXP+1(k−1)
can be approached from either a forward or a backward predic-
tion perspective. The extended Cholesky matrix is therefore written
as [8]

U−H
P+1(k−1) = Q′

θ f (k−1)×[
0P×M U−H

P (k−2)
[E′

f (k−1)]−H −[E′
f (k−1)]−HDH

f q2(k−1)U−H
P (k−2)

]
(14)

whereE′
f (k) andD f q2(k) are the rotated forward prediction error

and desired signal matrices, respectively. By post-multiplying (14)
with the extended multichannel input data vectorxP+1(k−1) and
λ −1/2 we obtain the update equation for vectoraP(k)

aP+1(k) = λ −1/2Q′
θ f (k−1)

[
aP(k−1)

r(k)

]
(15)

where r(k) = λ−1/2[E′
f (k − 1)]−Hẽ f (k) and ẽ f (k) = γ(k −

1)ẽ f q1(k). If we instead post-multiply (14), evaluated at time in-
stantk, with the vectorxP+1(k−1), we get the update equation for
fP(k)

fP+1(k) = Q′
θ f (k)

[
fP(k−1)

p(k)

]
(16)

wherep(k) = [E′
f (k)]

−Hẽ f (k) andẽ f (k) = γ(k−1)ẽ f q1(k).



Table 1: The FQRPRI B algorithm based on backward prediction
errors:P = MN is the total number of coefficients,M is the number
of channels, andN is the number of coefficients per channel.

for eachk
{ ObtainingD f q2(k):[

ẽH
f q1(k)

D f q2(k)

]
= Qθ(k−1)

[
xH(k)

λ 1/2D f q2(k−1)

]
ObtainingE′

f (k):[
01×M
E′

f (k)

]
= Q̄ f (k)

[
ẽH

f q1(k)
λ 1/2E′

f (k−1)

]
Obtainingr(k):[

ξ
0M×1

]
= Q̄ f (k)

[
1/γ(k)
−r(k)

]
ObtainingaP(k):

aP+1(k) = λ −1/2Q̃θ f (k−1)
[
aP(k−1)

r(k)

]
ObtainingQ̃θ f (k):[

0P×M

E
(0)
f (k)

]
= Q̃θ f (k)

[
D f q2(k)
E′

f (k)

]
ObtainingQθ(k):[
1/γ(k)

0

]
= Qθ (k)

[
1

−aP(k)

]
Joint Process Estimation:[

eq1(k)
dq2(k)

]
= Qθ(k)

[
d∗(k)

λ 1/2dq2(k−1)

]
e(k) = e∗q1(k)/γ(k)

}

From the updated vectoraP(k), the update equation for the ro-
tation matrixQθ (k) is obtained as[

1/γ(k)
0P×1

]
= Qθ (k)

[
1

−aP(k)

]
(17)

Similarly, the rotation matrix is also obtained from the updated vec-
tor fP(k) [

1
0P×1

]
= QT

θ(k)
[

γ(k)
fP(k)

]
(18)

In order to avoid the matrix inversion associated withr(k) and
p(k) in (15) and (16), respectively, we can use [9][

ξ
0M×1

]
= Q̄ f (k)

[
1/γ(k)
−r(k)

]
(19)

and [
ξ

p(k)

]
= Q̄ f (k)

[
γ(k)
0M×1

]
(20)

whereξ is ana priori unknown variable (dummy variable). The
MC-FQR PRI B algorithm is summarized in Table 1. For details
on the MC-FQRPOSB implementation, see [9]. As can be seen
from Table 1, the weight vectorwP(k) is not available. The next
section presents an algorithm that extracts the weight vector values
of both algorithms.

3. THE MULTICHANNEL WEIGHT EXTRACTION

The weight extraction method presented in this section is a multi-
channel extension of the method given in [2]. The method computes
the coefficient values in a serial manner.

Consider thea priori output of the multichannel adaptive filter
yP(k) given by

y∗P(k) = wH
P (k−1)xP(k) = dH

q2(k−1)U−H
P (k−1)xP(k) (21)

u
(0)
0

u
(0)
0

u
(0)
1u
(1)
0

u
(1)
0

u
(1)
1

U
−

T(k−
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Step 1 applying:Qθ(k)

w(0)
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1
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0 w(1)

1

channel 0
channel 1Lemma 2

Lemma 1

M

Figure 2: The procedure for updatingun
i (k−1) for weight extrac-

tion in MCFQRD-RLSa priori algorithm. The number of channels
M = 2. Note that the indices of some variables have been omitted.

Let us define aP×1 impulse vectorδi with a “1” at theith position
(1 ≤ i ≤ P). Note that vectorxP(k) in (3) comprises input vectors
from M channels. As can be seen from (3) and Fig. 1, the elements
corresponding to one channel are placed at everyMth position in
vectorxP(k). The jth element of the weight vector for theith chan-
nel is given as

w∗
P,i+ jM(k) = wH

P (k−1)δi+ jM

= dH
q2(k−1)U−H

P (k−1)δi+ jM

= dH
q2(k−1)ui+ jM(k−1)

(22)

whereui+ jM(k−1) is the(i+ jM)th column ofU−H
P (k−1). It can

be seen from (22) that the elements of coefficient vectorwP(k) can
be computed if all the column vectors ofU−H

P (k− 1) are known.
Using the following two lemmas we show how all the column vec-
torsui(k−1) can be obtained in a serial manner. The main result is
that the column vectorui(k−1) can be obtained fromui−1(k−1).
Lemma 1 was derived in [2] and is included here for sake of clarity.

Lemma 1. Let uT
i (k) = [ui,0(k) . . . ui,P−1(k)]

T ∈ C
P×1 denote

the ith column of the upper triangular matrix U−H
P (k) ∈ CP×P.

Given Qθ(k−1) ∈ C(P+1)×(P+1) from Table 1, then ui(k−2) can
be obtained from ui(k−1) using the relation below[

0
λ −1/2ui(k−2)

]
=QH

θ (k−1)
[

zi
ui(k−1)

]
, i = 0, . . . ,N−1 (23)

where zi = −fH
N (k−1)ui(k−1)/γ(k−1).

Lemma 2. Let ui(k) = [ui,0(k) . . . ui,P−1(k)]
T ∈ CP×1 denote

the ith column of the upper triangular matrix U−H
P (k−1) ∈ CP×P.

Given Q̃θ f (k)∈C(P+1)×(P+1) from Table 1, then ui+ jM(k−1) can
be obtained from ui+( j−1)M(k−2) using the following relation

[
r̃′(k)

ui+ jM(k−1)

]
= Q̃θ f (k−1)

[
ui+( j−1)M(k−2)

r̃i+( j−1)M(k)

]
, (24)

where r̃i(k) =−[E′
f (k)]

−HDH
f q2(k)ui(k−1). Also for j = 1, . . . ,M,

u− j(k−2) = 0P×1 and r̃− j(k) = e f ,− j(k), where e f ,− j(k) is the
jth column of −[E′

f (k)]
−H.

Assuming vectorui+( j−1)M(k − 1) to be known, Lemmas 1
and 2 can be used first to compute vectorui+( j−1)M(k − 2) and



Table 2: “Weight Extraction” algorithm:M is the number of chan-
nels,N is the number of coefficients per channel,P = MN is the
total number of coefficients.

r̃l(k) = e f ,l(k) for l = −M, . . . ,−1
ul(k−2) = 0P×1 for l = −M, . . . ,−1
EI = [E′

f (k−1)]−H

for eachi = 0 : N −1
for eachj = 0 : M−1
{

Computeui(k−1)[
r̃′(k)

ui+ jM(k−1)

]
= Q̃θ f (k−1)

[
ui+( j−1)M(k−2)

r̃i+( j−1)M(k)

]
Computezi+ jM(k)
zi+ jM(k) = fH

P (k)ui+ jM(k−1)
γ(k)

Computeui(k−2)[
0

λ −1/2ui+ jM(k−2)

]
= QH

θ (k−1)
[

zi+ jM(k)
ui+ jM(k−1)

]
Compute ˜ri+ jM(k)
r̃i+ jM(k) = −EID

H
f q2(k−1)ui+ jM(k−2)

Compute the coefficients
wi, j(k−1) = uH

i+ jM(k−1)dq2(k−1)
}

thenui+ jM(k−1), respectively. Therefore all the column vectors
corresponding to theith channel are obtained by iterating through
all the possible values ofj. Consequently, we obtain all the weights
for the ith channel. Note that in order to obtain the column vec-
tor ui+ jM(k−1) corresponding to a particular channel, we need to
initialize (24) given in Lemma 2 properly, which means choosing
the appropriate column of matrix[E′

f (k−1)]−H. A schematic for
obtaining the column vectors is given in Figure 2. It is shown that
starting fromu0(k−1), first the columnu0(k−2) is obtained using
Lemma 1 and thenuM(k−1) using Lemma 2. Both of them corre-
spond to channel 1. These column vectors can be used to compute
the weight coefficientsw0(k−1) andwM(k−1) respectively. The
other channels from 2 toM are treated in the same way to compute
the corresponding weight coefficients. There are a total ofP weight
coefficients, so that we needP iterations to compute the whole co-
efficient vector. The multichannel weight extraction algorithm is
summarized in Table 2.

The number of operations required to completely extract all the
coefficients is given in Table 3. For comparison, the computational
costs of the MC-FQRD-RLS algorithm based ona priori backward
prediction errors and the inverse QRD-RLS algorithm are given.

4. SIMULATIONS

This section investigates the equivalence of the weights obtained
using weight extraction and inverse QRD-RLS algorithm in two
applications. First the beampattern identification of a broadband
beamformer is considered. The second application is a multichan-
nel system-identification application.

4.1 Broadband beamforming

A uniform linear array withM = 4 antenna elements with spacing
equal to halfwavelength is used in a system withK = 4 signals, one
being the desired signal with direction of arrival 0o and the rest are
interference signals with direction of arrivals−35o, 45o, and 50o

respectively. The number of coefficients per channel isN = 6. The
SNR for the interfering signals was set to 40 dB and 5 dB for the
desired signal. The inverse QRD-RLS and MC-FQRD-RLS algo-
rithms are used for adapting the beamformer. The Weight Extrac-
tion algorithm is used to extract the weights of the MC-FQRD-RLS
algorithm. The beampatterns for both algorithms after 4000 itera-

tions are shown in Fig. 3. It can be observed that both algorithms
give the same solution for the beam pattern. Most importantly the
solution using a MC-FQRD-RLS algorithm followed by weight ex-
traction leads to a solution with much lower overall complexity.

4.2 System identification

The multichannel system consists ofM = 3 channels andN = 6 taps
per channel. The SNR is 30 dB. The MC-FQRD-RLS algorithm
was used to identify the system. After convergence the weight ex-
traction algorithm was run to compute the filter weights. In order
to verify how close the weights are to the true ones, an IQRD-RLS
algorithm was used to identify the same system. The difference of
weights from both the algorithms after 4000 iterations is seen to
be approximately−300 dB as shown in Fig. 4. This is within the
numerical accuracy of the software used in simulation (MATLAB).
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Figure 3: Comparison of beam pattern obtained with the IQRD-
RLS algorithm and the MC-FQRD-RLS algorithm with weight ex-
traction.

5. CONCLUSIONS

This paper showed how to reuse the internal variables of the MC-
FQRD-RLS algorithms to extract the weights in a serial man-
ner. The presented technique enables new applications of the MC-
FQRD-RLS algorithms which are different to the standard output-
error type applications. The new weight extraction technique was
used in a beamforming and in a system identification setup to make
the weight vector explicitly available. The results were compared
with those using a design based on the inverse QRD-RLS algorithm.
It was verified that identical results are obtained using the proposed
design method at a much lower computational cost.

6. APPENDIX

Proof of Lemma 1:
The update equation forU−H

P (k−2) in the inverse QRD-RLS algo-
rithm is given by

[
zH(k−1)

U−H
P (k−1)

]
= Qθ (k−1)

[
0T

1×P
λ −1/2U−H

P (k−2)

]
(25)

wherez(k−1) = γ−1(k−1)fH
P (k−1)U−H

P (k−1). Pre-multiplying
both sides withQT

θ (k−1) and considering each column we get

[
0

λ −1/2ui(k−2)

]
= QH

θ (k−1)
[

zi(k−1)
ui(k−1)

]
(26)
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wherezi(k−1) is theith element of vectorz(k)

zi(k−1) = −fH
P (k−1)ui(k−1)/γ(k−1) (27)

and the elements of vectorfP(k−1) andγ(k−1) are obtained from
the rotation matrixQθ (k−1) as[

γ(k−1)
f(k−1)

]
= Qθ(k−1)

[
1

0P×1

]
(28)

Equation (28) needs only to be evaluated once at the beginning of
the weight extraction procedure.

Proof of Lemma 2:
The update equation foraP(k) andfP(k) is given by (15) and (16)
respectively. If same rotation matrix̃Qθ f is considered we get

aP+1(k) = Q̃θ f (k−1)
[
aP(k−1)

r(k)

]
(29)

fP+1(k−1) = Q̃θ f (k−1)
[
fP(k−2)
p(k−1)

]
(30)

wherer(k) = λ 1/2[E′
f (k−1)]−Hẽ′f (k), p(k−1) = λ−1/2r(k), and

ẽ′∗f (k) = x∗(k)−WH
P f (k−1)xP(k−1) (31)

with WP f (k) = U−1
P (k)D f q2(k). Using Equation (31), the defini-

tion of aP(k), and removing vectors related to input signalx(k), the
following relation is obtained from Equation (15)[

[−Ebq1(k)]−HDH
bq2(k)U

−H
P (k−1) [Ebq1(k)]−H

U−H
P (k) 0P×M

]

= Q′
θ f (k)

[
0P×M U−H

P (k−1)
[E′

f (k)]
−H −[E′

f (k)]
−HDH

f q2(k)U
−H
P (k−1)

]
(32)

Note that we can also reach (32) from (30). Considering the par-
tition of matrix U−H

P (k−1) into its column vectorsui(k−1), the
column version of (32) becomes[

r̃′(k)
ui−1+M(k)

]
= Q′

θ f (k)
[
ui−1(k−1)

r̃i−1(k)

]
(33)

wherer̃i−1(k) = −[E′
f (k)]

−HDH
f q2(k)ui−1(k−1). From (32), the

first M columns correspond to initialization. In (33) we have
u− j(k−2) = 0NM×1 andr̃− j(k) = e f ,− j(k), wheree f ,− j(k) is the
jth column of−[E′

f (k)]
−H.

Table 3: Operations required for weight extraction (WE):M is the
number of channels,N is the number of coefficients per channel,
P = MN is the total number of coefficients.

ALG. MULT DIV SQRT
MCFQR 4PM2 +11PM PM +P PM +P

+9P +5.5M2 +1.5M2 +M +M
+7.5M +1 +1

WE (5PM +5P M 0
(per weighti) +M2)i

WE 5P2M +5P2 M 0
(total) +PM2

IQRD-RLS 3P2 +2P +1 2P P
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