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This work presents two new adaptive 	ltering algorithms� one of them a least�

mean�square type with data�reusing and the other one a fast recursive least�squares

based on QR decomposition�

The 	rst part of this work presents and analyzes a new LMS�like algorithm�

the binormalized data�reusing least mean�square �BNDR�LMS� algorithm� which

compares favorably with other normalized LMS�like algorithms when the input sig�

nal is correlated� For this algorithm� convergence analyses in the mean and in the

mean�squared are presented and a closed�form formula for the mean�square error
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is provided for white input signals as well as its extension to the case of colored

input signal� A simple model for the input�signal vector which imparts simplicity

and tractability to the analysis of second�order statistics is fully described� The

methodology is readily applicable to other adaptation algorithms of di�cult anal�

ysis� Simulation results show the performance of the BNDR�LMS algorithm for

di�erent scenarios and validate the analysis and ensuing assumptions� An extension

of the BNDR�LMS algorithm to include constraints is also derived in order to apply

this algorithm to a direct�sequence code�division multiple access �DS�CDMA� mobile

receiver� Moreover� a step�size optimization is proposed to accomplish this practi�

cal application with the con�icting requirements of fast convergence and minimum

steady�state mean�square error �MSE��

In the second part of this work� the principles behind the triangularization of the

weighted input data matrix via QR decomposition and the type of errors used in

the updating process are exploited in order to investigate the relationships among

di�erent fast algorithms of the QR decomposition family� The algorithms are clas�

si	ed according to a general framework and a new fast QR algorithm based on

Givens rotation using a priori forward errors is introduced along with the detailed

description of the four classi	ed fast QR algorithms and two lattice versions� Fi�

nally� a contribution towards the 	nite precision analysis of the fast QR algorithms

is presented�

v



Table of Contents

Dedication ii

Acknowledgments iii

Abstract iv

Table of Contents vi

List of Figures xi

List of Tables xii

List of Abbreviations xiii

� Adaptive Filtering �

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Basic Concepts of Adaptive Filters � � � � � � � � � � � � � � � � � � � �

����� The Mean�Square Error and the

LMS�based Algorithms � � � � � � � � � � � � � � � � � � � � � � �

����� The Least�Squares and the RLS Algorithms � � � � � � � � � � �

��� LMS� NLMS and Data�Reusing Algorithms � � � � � � � � � � � � � � � �

��� Introducing the QR Decomposition � � � � � � � � � � � � � � � � � � � 


��� Original Contributions � � � � � � � � � � � � � � � � � � � � � � � � � � ��


 The BNDR�LMS Algorithm ��

��� Problem Statement and Algorithm Derivation � � � � � � � � � � � � � ��

vi



����� Simpli	ed Version � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Geometrical Derivation � � � � � � � � � � � � � � � � � � � � � � ��

��� Convergence Analysis of the

Coe�cient Vector � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Second�Order Statistic Analysis � � � � � � � � � � � � � � � � � � � � � ��

����� White Input Signal � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Colored Input Signal � � � � � � � � � � � � � � � � � � � � � � � ��

��� Simulation Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� A Practical Application of the BNDR�LMS Algorithm ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Re�Derivation of the NLMS and the

BNDR�LMS Algorithms � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The Constrained Algorithm � � � � � � � � � � � � � � � � � � � � � � � ��

��� Step�Size Optimization of the

BNDR�LMS Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Simulation Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


 Fast QR Algorithms	 a Uni�ed Approach 
�

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


����� The Conventional QR Algorithm � � � � � � � � � � � � � � � � �


����� Interpreting the Internal Variables � � � � � � � � � � � � � � � � ��

����� The Inverse QR Algorithm � � � � � � � � � � � � � � � � � � � � ��

��� Classi	cation of the Fast QR Algorithms � � � � � � � � � � � � � � � � ��

��� Upper Triangularization Algorithms

�Updating Forward Prediction Errors� � � � � � � � � � � � � � � � � � ��

����� The FQR POS F Algorithm � � � � � � � � � � � � � � � � � � � ��

����� The New FQR PRI F Algorithm � � � � � � � � � � � � � � � � ��

vii



��� Lower Triangularization Algorithms

�Updating Backward Prediction Errors� � � � � � � � � � � � � � � � � � ��

����� The FQR POS B Algorithm � � � � � � � � � � � � � � � � � � � ��

����� The FQR PRI B Algorithm � � � � � � � � � � � � � � � � � � � ��

��� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� The Lattice Versions of the Fast QR Algorithms ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Deriving the Lattice Versions � � � � � � � � � � � � � � � � � � � � � � ��

��� Simulation Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Contributions to the Finite�Precision Analysis of the Fast QR Al�

gorithms ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

��� In	nite�Precision Analysis � � � � � � � � � � � � � � � � � � � � � � � � 
�

����� In	nite�Precision Results for the

FQR POS B Algorithm � � � � � � � � � � � � � � � � � � � � � 
�

����� In	nite�Precision Results for the

FQR PRI B Algorithm � � � � � � � � � � � � � � � � � � � � � � 
�

��� Contribution to the Finite�Precision Analysis � � � � � � � � � � � � � � 
�

����� Fixed�Point Quantization Error Model � � � � � � � � � � � � � 
�

����� The FQR PRI B Algorithm�

Mean Squared Value of �e
�i�
fq�
�k� and �dfq�i�k� � � � � � � � � � 



����� The FQR PRI B Algorithm�

Mean Squared Value of �aux� � � � � � � � � � � � � � � � � � � ���

����� Re	ning the approximations of E���x�� and E���x�� � � � � � � ���

��� Simulation Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Conclusions and Suggestions ���

viii



��� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Suggestions for Future Research � � � � � � � � � � � � � � � � � � � � � ���

ix



List of Figures

��� Basic con	guration of an adaptive 	lter � � � � � � � � � � � � � � � � � �

��� Coe�cient vector update� � � � � � � � � � � � � � � � � � � � � � � � � 


��� The RLS algorithms� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Excess of MSE for parallel input signal vectors� � � � � � � � � � � � � ��

��� Excess of MSE for orthogonal input signal vectors� � � � � � � � � � � � ��

��� Excess of MSE for a modeled input signal vector� � � � � � � � � � � � ��

��� MSE for the NLMS� the NNDR�LMS� and the BNDR�LMS algorithms� ��

��� Excess of MSE for N � � as a function of �� � � � � � � � � � � � � � � ��

��� Excess of MSE for N � �� as a function of �� � � � � � � � � � � � � � ��

��� Excess of MSE for N � �� as a function of �� � � � � � � � � � � � � � ��

��� Excess of MSE for colored input signals� � � � � � � � � � � � � � � � � ��

��� Optimal ��k� sequences for the BNDR�LMS algorithm� � � � � � � � � ��

��� Optimal step�size sequence and two classes of approximation sequences� ��

��� Learning curves for the 	xed step�size� the optimal step�size and its

two approximations� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Comparing the learning curves for the case of colored input signal� � � ��

��� Learning curves of the constrained algorithms� � � � � � � � � � � � � � ��

��� The di�erent triangularizations of U�k�� �a� UPPER and �b� LOWER� � � ��

��� One stage of the FQR POS B lattice structure� � � � � � � � � � � � � ��

��� One stage of the FQR PRI B lattice structure� � � � � � � � � � � � � � ��

x



��� Performance of the algorithms in a 	nite�precision environment �vary�

ing B� the number of bits in the mantissa�� � � � � � � � � � � � � � � � ��

��� MSE in db for di�erent values of �� � � � � � � � � � � � � � � � � � � � ��

xi



List of Tables

��� The Binormalized Data�Reusing LMS algorithm � � � � � � � � � � � � ��

��� Excess of Mean�Square Error � � � � � � � � � � � � � � � � � � � � � � �


��� Comparison of computational complexity � � � � � � � � � � � � � � � � ��

��� Algorithm for computing the optimal step�size sequence� � � � � � � � ��

��� The conventional QR equations� � � � � � � � � � � � � � � � � � � � � � ��

��� The inverse QR equations� � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Classi	cation of the fast QR algorithms� � � � � � � � � � � � � � � � � ��

��� The FQR POS F equations� � � � � � � � � � � � � � � � � � � � � � � � ��

��� The FQR PRI F equations� � � � � � � � � � � � � � � � � � � � � � � � ��

��� The FQR POS B equations� � � � � � � � � � � � � � � � � � � � � � � � ��

��� The FQR PRI B equations� � � � � � � � � � � � � � � � � � � � � � � � �


��� Comparison of computational complexity� � � � � � � � � � � � � � � � � ��

��� Variables used in FQR POS B and FQR PRI B algorithms� � � � � � ��

��� The lattice version of the FQR POS B algorithm� � � � � � � � � � � � �


��� The lattice version of the FQR PRI B algorithm� � � � � � � � � � � � 
�

��� Comparison of Performance of the New Expressions� � � � � � � � � � � ���

��� Mean Squared Value of �e
�i�
fq�
�k�� � � � � � � � � � � � � � � � � � � � � ���

��� Mean Squared Value of �dfq�i�k�� � � � � � � � � � � � � � � � � � � � � ���

��� Mean Squared Value of �aux�� � � � � � � � � � � � � � � � � � � � � � ���

xii



List of Abbreviations

BNDR�LMS binormalized data�reusing LMS

DR�LMS data�reusing LMS

DS�CDMA direct sequence code�division multiple access

FIR 	nite�duration impulse response

FQR fast QR

FQR POS B fast QR updating a posteriori backward prediction errors

FQR POS F fast QR updating a posteriori forward prediction errors

FQR PRI B fast QR updating a priori backward prediction errors

FQR PRI F fast QR updating a priori forward prediction errors

FQR�L fast QR lattice

FTRLS fast transversal RLS

GSC general sidelobe canceler

IIR in	nite�duration impulse response

IQR inverse QR

LMS least mean�square

LRLS lattice RLS

LS least�squares

MSE mean�square error

NLMS normalized LMS

NNDR�LMS normalized new data�reusing LMS

QRD QR decomposition

RLS recursive least�squares

UNDR�LMS unnormalized new data�reusing LMS

xiii



Chapter �

Adaptive Filtering

��� Introduction

In the last decades� the 	eld of digital signal processing� and particularly adaptive

signal processing� has developed enormously due to the increasingly available tech�

nology for the implementation of the emerging algorithms� These algorithms have

been applied to an extensive number of problems including noise and echo cancel�

ing� channel equalization� signal prediction� adaptive arrays as well as many others�

A particular application exempli	ed in Chapter � is the adaptive multiuser detec�

tion at a mobile DS�CDMA receiver which shows the usefulness of adaptive 	ltering

techniques in mobile communication systems�

An adaptive 	lter may be de	ned as a self�modifying digital 	lter that adjusts

its coe�cients in order to minimize an error function� This error function or cost

function is obtained from the di�erence between the �reference� or �desired� signal

and the 	lter�s output� Adaptive 	ltering algorithms are in fact closely related to

classical optimization techniques although in the latter� all calculations are carried

out �o�ine�� Moreover� an adaptive 	lter is sometimes expected to track the opti�

mum 	lter �or Wiener 	lter as is called the optimum 	lter in the mean�square sense

for a stationary environment� in a slowly varying environment�

In order to compare the wide variety of algorithms available in the literature of

adaptive 	ltering� the following aspects must be taken into account ����



� Structure� The manner in which the algorithm is implemented may be basi�

cally divided in two types for the FIR �	nite impulse response� adaptive 	lters�

transversal 	lter �or tapped�delay line� and lattice structure� IIR �in	nite im�

pulse response� adaptive 	lters constitutes another 	eld in adaptive 	ltering

where we can 	nd a number of realizations�

� Rate of convergence� misadjustment and tracking� In a noiseless �no measure�
ment and
or modeling noise� situation� the coe�cients of an adaptive 	lter

can converge fast or slowly to the optimum solution� The coe�cients� in gen�

eral� will not reach the optimum values but will stay close to the optimum�

Misadjustment is a measure of how close these coe�cients �the estimated and

the optimum� are in steady�state� It can be taken as a general rule that for a

given algorithm the faster you make it converge the higher will be the misad�

justment� In nonstationary environments� the algorithm must be fast enough

to track the time�varying optimum coe�cients�

� Computational aspects� It can be included here the computational complexity
as well as the performance of the algorithm in a limited precision environment�

The e�ort in obtaining fast versions of more complex algorithms results from

the desire to reduce the computational requirements to a minimal number of

operations and to reduce the size of memory necessary to run these algorithms

in real time applications� On the other hand� a limited precision environ�

ment generates quantization errors which drive the attention of designers to

numerical stability� numerical accuracy and robustness of the algorithm�

��� Basic Concepts of Adaptive Filters

The de	nition of the cost function gives rise to the large number of alternative

adaptive 	ltering algorithms� The mean�squared error �MSE� is used in the least

mean�square �LMS� and LMS�based algorithms while the least squares leads to the

recursive least�squares �RLS� schemes� The RLS algorithms may be subdivided in

�



conventional� lattice� fast transversal and based on QR�decomposition�

The basic con	guration of an adaptive 	lter is illustrated in Figure ���� The

input signal is denoted by x�k� where k is the iteration number� The reference

signal d�k� may be seen �as in an FIR system identi	cation problem� as the desired

signal plus observation noise or xT �k�w� n�k� where w� is the optimum coe�cient

vector and x�k� is the vector �x�k� x�k��� � � � x�k�N��T � with N being the order of

the adaptive 	lter� The error signal is e�k� � d�k�� y�k�� where y�k� is the output

of the adaptive 	lter� This error will be used by the adaptation algorithm to update

the coe�cient vector w�k� of the adaptive 	lter�

Adaptive
filter

x(k) y(k)

d(k)

e(k)

+
- Σ

Figure ���� Basic con	guration of an adaptive 	lter

����� The Mean�Square Error and the

LMS�based Algorithms

The mean�square error �MSE� is de	ned as

��k� � E�e��k�� � E��d�k�� y�k���� �����

where y�k� �
PN

i��wi�k�x�k�i� � xT �k�w�k�� withw�k� � �w��k�w��k� � � �wN�k��
T

being the coe�cient vector�

The gradient vector of the MSE related to the tap�weighted coe�cients is

rw�k���k� � ��p  �pw�k� �����

�



where p � E�d�k�x�k�� is the cross�correlation vector between the desired and the

input signals� and R � E�x�k�xT �k�� is the input signal correlation matrix� The

Wiener solution is obtained by equating the gradient vector to zero and assuming

that R is nonsingular� and is given by

w� � R
��p �����

We can approach the Wiener solution by searching in the direction of the estimate

of the gradient vector �steepest�descent�based algorithm� using a step�size �� One

possible and very simple solution is obtained using instantaneous estimates of R

and p given by x�k�xT �k� and d�k�x�k�� The resulting gradient�based algorithm is

known as the least mean�square �LMS� algorithm�

The LMS algorithm is very popular and has been widely used due to its simplic�

ity� Its convergence speed� however� is highly dependent on the eigenvalue spread

�conditioning number� of the input�signal autocorrelation matrix ��� ��� Alternative

schemes which try to improve this performance at the cost of minimum additional

computational complexity have been proposed and extensively discussed in the past

���!����

One approach that has been successfully employed in situations where signal

statistics are unknown is the online calculation of the convergence factor which

takes part in updating the 	lter coe�cients ��� ��� The normalized LMS �NLMS�

algorithm can be included in this category ��� ��� Also belonging to this class of

algorithms are the data�reusing algorithms which will be later described in more

details�

����� The Least�Squares and the RLS Algorithms

Another objective function which is deterministic and convenient to be used in

stationary environment is the least squares �LS� given by �
k��

Pk
i�� e

��i�� The com�

putation of the least squares in a recursive form resulted in a family of algorithms

known as recursive least�squares �RLS�� The RLS algorithms are known to have a

fast rate of convergence which is independent of the eigenvalue spread of the input

�



correlation matrix� They are also very useful in applications where the environment

is slowly varying� The price of all the bene	ts of this algorithm is a considerable

increase in the computational complexity�

The objective function of this class of algorithm is given by

��k� �
kX
i��

�k�ie��i� �
kX
i��

�k�i�d�i�� xT �i�w�k��� �����

where e�i� is the a posteriori output error at instant i and � is the �forgetting factor��

The optimum solution in the least�squares sense is given after di�erentiating ��k�

with respect to w�k� and equating the result to zero� The result is given by the

following product of the inverse of a matrix by a vector�

w�k� � �
kX
i��

�k�ix�i�xT �i�����
kX
i��

�k�ix�i�d�i�� �����

The straightforward computation of the above equation results in an algorithm

with a computational complexity of the order of N	 multiplications or O�N	�� Nev�

ertheless� the computation of the inverse can be avoided by using the so�called

matrix inversion lemma ���� The resulting relation is used in the conventional RLS

algorithm whose computational complexity is of order N�� This computational com�

plexity can drop to O�N � when the input vector consists of delayed versions of the

same signal� A number of O�N � or fast algorithms are available in the literature

including di�erent versions of the lattice RLS �LRLS� algorithm ��� and the fast

transversal RLS �FTRLS� algorithm �
� which is considered the fastest �in the sense

that a minimal number of operations is necessary� although not stable�

��� LMS� NLMS and Data�Reusing Algorithms

As remarked before� the LMS algorithm uses estimates of both the input signal

correlation matrix and the cross�correlation vector based on the current desired and

input signals� The data�reusing LMS �DR�LMS� algorithm ��� uses current desired

and input signals repeatedly within each iteration in order to improve its convergence

speed� It can be easily shown that� in the limit of in	nite data reuses per iteration�

�



the DR�LMS and the normalized LMS �NLMS� algorithms would yield the same

solution ���� With the recently proposed normalized and unnormalized new data�

reusing LMS �NNDR�LMS and UNDR�LMS� algorithms ���� performance can be

further improved when data from previous iterations are also used�

In ����� a graphical description of NNDR�LMS and UNDR�LMS algorithms was

presented and it was shown that this new class of data�reusing algorithms has

prospective better performance than the NLMS algorithm in terms of convergence

speed� The graphical description also clari	ed why improvement is achieved when

the number of reuses is increased�

For the LMS algorithm� the coe�cient vector w is updated in the opposite

direction of the gradient vector �rw���� obtained from the instantaneous squared

output error ��� ���� i�e��

wLMS�k  �� � wLMS�k�� �

�
rw�e

��k�� �����

where

e�k� � d�k�� xT �k�wLMS�k� �����

is the output error� d�k� is the desired signal� x�k� is the input�signal vector con�

taining the N  � most recent input�signal samples� i�e��

x�k� � �x�k� x�k � �� � � � x�k �N��T �����

and � is the convergence factor� The coe�cient�updating equation is

wLMS�k  �� � wLMS�k�  �e�k�x�k� ���
�

The NLMS algorithm normalizes the step�size such that the relation

xT �k�wNLMS�k  �� � d�k� ������

is always satis	ed� i�e��

wNLMS�k  �� � wNLMS�k�  
e�k�

kx�k�k�  �
x�k� ������

�



where �� theoretically equal to zero do satisfy ������� is made in practical situations

a very small number used to avoid division by zero�

For the DR�LMS with L data reuses� the coe�cients are updated as

wi���k� � wi�k�  �ei�k�x�k� ������

for i � �� � � � � L� where

ei�k� � d�k�� xT �k�wi�k� ������

w��k� � wDR�LMS�k� ������

and

wDR�LMS�k  �� � wL���k� ������

Note that if L � � these equations correspond to the LMS algorithm�

For the NNDR�LMS algorithm with L data reuses� the coe�cients are updated

as

wi���k� � wi�k�  
ei�k�

kx�k � i�k�  �
x�k � i� ������

for i � �� � � � � L� where

ei�k� � d�k � i�� xT �k � i�wi�k� ������

w��k� � wNNDR�LMS�k� ������

and

wNNDR�LMS�k  �� � wL���k� ����
�

Figure ��� illustrates geometrically the updating of the coe�cient vector in a two�

dimensional problem for all algorithms discussed above� starting with an arbitrary

w�k�� Once we are interested in comparing algorithms of similar complexity� it was

considered the case of one reuse� i�e�� L � �� S�k� denotes the hyperplane which

�



contains all vectorsw such that xT �k�w � d�k�� In a noise�free exact�order modeling

situation� S�k� contains the optimal coe�cient vector� wo� It can be easily shown

that x�k� and� consequently� rw�e
��k�� are orthogonal to the hyperplane S�k��

The conventional LMS algorithm takes a single step towards S�k� yielding the
solutionwLMS�k ��� represented by point � in Figure ���� that is closer to S�k� than
wLMS�k�� The DR�LMS algorithm iteratively approaches S�k� by taking successive
steps in the direction given by x�k�� The solution wDR�LMS�k  �� is represented

by points � and � in Figure ���� It can be shown that wDR�LMS�k �� would reach

S�k� in the limit� as the number of data reuses approaches in	nity ����� The NLMS
algorithm performs a line search in the direction of x�k� to yield in a single step

the solution wNLMS�k  ��� represented by point � in Figure ���� which belongs to

S�k��
The algorithms presented in ���� use more than one hyperplane� i�e�� use previous

data pairs �x�k�i�� d�k�i��� i � �� in order to produce solutionswUNDR�LMS�k ��

and wNNDR�LMS�k �� that are closer to wo than the solution obtained with only

the current data pair �x�k�� d�k��� The solutions obtained with the UNDR�LMS

and the NNDR�LMS algorithms are represented by points � and � in Figure ����

respectively� Position � of Figure ��� corresponds to the new Binormalized Data�

Reusing LMS �BNDR�LMS� algorithm which will be derived and analyzed in the

next chapter�

For a noise�free exact�order modeling situation� wo is at the intersection of N �

hyperplanes constructed with linearly independent input�signal vectors� In this case�

the orthogonal�projections algorithm ���� yields the optimal solution wo in N  �

iterations� This algorithm may be viewed as a normalized data�reusing orthogonal

algorithm which utilizes N  � data pairs �x� d�� for it performs exact line searches

in �N �� orthogonal directions constructed from present and previous data pairs�

�
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Figure ���� Coe�cient vector update�

Position �� w�k��
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Position �� wBNDR�LMS�k 	 ���

��� Introducing the QR Decomposition

Another alternative method for the implementation of the recursive least�squares

�RLS� is the use of QR decomposition� In ������ the matrix which needs to be

inverted is usually called deterministic data correlation matrix RD � XT �k�X�k�

where X�k� is the input data matrix as will be de	ned later� The basic idea of this

QR family of algorithms is the triangularization of the input data matrix through

the use of QR decomposition techniques�

It is worth mentioning that the matrix X�k� is �k  ��� �N  �� which means

that it increases its order as the iterations progress� The QR�decomposition process

makes use of an orthonormal matrix Q�k� of order �k  �� � �k  �� in order to






reduce X�k� to a triangular matrix U�k� of order �N  ��� �N  �� such that

Q�k�X�k� �

�
� O

U�k�

�
� ������

where O is a matrix of order �k �N�� �N  �� with all elements null�

Matrix Q�k� represents the overall triangularization process and may be im�

plemented in di�erent manners� In this thesis� the numerically well conditioned

Givens rotations will be used although other techniques� such as the Householder

transformation ���� ���� are available� The main advantages obtained with the QR�

decomposition RLS �QRD�RLS� algorithms are the possibility of implementation

in systolic arrays and its improved numerical behavior in limited precision environ�

ment� The conventional QR�RLS algorithm has a computational requirement of

the order of N� multiplications or O�N��� A number of alternative algorithms such

as the inverse QR �IQR� algorithm ����� the so called fast� QR �FQR� algorithms

����!���� and the fast QR�Lattice �FQR�L� algorithms ���� ��� are also available in

the technical literature�

The RLS�based algorithms are summarized in Figure ���� These algorithms are

used whenever fast convergence is necessary for input signals with a high eigenvalue

spread and the increase in the computational load is tolerable� Except for the

FTRLS algorithm� which basic version is unstable� all other fast RLS algorithms

do not have the coe�cient vector of the direct form realization available in every

iteration�

Our goal here is the study of the fast recursive least�squares algorithms based on

QR decomposition which are among those adaptive algorithms with both the desired

characteristics of computational complexity of O�N � and the numerical robustness

associated with the use of Givens rotations� Although multichannel and complex

versions of most adaptive algorithms exist� this thesis will be concerned only with

the single channel with real input case�

��Fast� here means of O�N �

��



RLS Algorithms

O [N2] O[N]

FTRLS

LRLS

FQR

FQR-L

Conventional
RLS

Conventional
QRD-RLS

Inverse
QR

Figure ���� The RLS algorithms�

��� Original Contributions

Many of the algorithms presented and discussed in the previous sections are still

subject of research where simplicity� convergence speed� stability� and robustness

are the topics of main interest�

In the next chapter� the new BNDR�LMS algorithm will be described� This al�

gorithm combines data reusing� orthogonal projections of two consecutive gradient

directions� and normalization in order to achieve faster convergence when compared

to other LMS�like algorithms� On the other hand� the new algorithm is simpler

with respect to computational complexity and more robust than the orthogonal�

projection algorithm� At each iteration� the BNDR�LMS algorithm yields the so�

lution w�k  �� which is at the intersection of hyperplanes S�k� and S�k � �� and
at a minimum distance from w�k� �see � in Figure ����� The algorithm can also be

viewed as a simpli	ed version of the orthogonal�projection algorithm which utilizes

just two consecutive directions� In Chapter �� it is also addressed the analyses of

the 	rst and second moments of the coe�cient vector� respectively� and simulation

results�

In Chapter � an optimal step�size sequence is proposed and an application of

��



this algorithm is the 	eld of mobile communications is carried out�

The development of the new fast QR algorithm is done in Chapter � where a

uni	ed approach is used to classify the members of the fast QR family of algorithms�

In Chapter �� the lattice version of two of those fast QR algorithms are presented

and fully described according to the notation used in this work�

Chapter � addresses the analysis in a limited precision environment of the fast

QR algorithms using backward prediction errors updating�

The conclusions of the thesis as well as suggestions for further research are sum�

marized in Chapter ��

��



Chapter �

The BNDR�LMS Algorithm

The new binormalized data�reusing LMS �BNDR�LMS� algorithm ���� described in

this chapter and brie�y introduced in ���� and ���� employs normalization on two

orthogonal directions obtained from consecutive data pairs within each iteration�

In all simulations carried out with colored input signals� this algorithm presented

faster convergence than all other data�reusing algorithms for the case of two data

pairs� or� equivalently� one data reuse�

A thorough analysis of convergence in the mean and mean�square of the coe��

cient vector is provided and the stability limits for the convergence factor as well as

closed�form formulas for mean�square error �MSE� after convergence are obtained

from the analysis� The inadequacy of the independence assumption ���� for analy�

ses of data�reusing algorithms ���� is overcome by adopting a simpli	ed model for

the input�signal vector which is consistent with the 	rst two moments and renders a

tractable analysis ��� ���� This analysis can be readily extended to other data�reusing

algorithms �e�g�� NNDR�LMS and UNDR�LMS algorithms ������



��� Problem Statement and Algorithm Derivation

In order to state the problem� we note that the solution which belongs to S�k� and
S�k � �� at a minimum distance from w�k� is the one that solves

min
w�k���

kw�k  ���w�k�k� �����

subject to

xT �k�w�k  �� � d�k� �����

and

xT �k � ��w�k  �� � d�k � �� �����

The function to be minimized is� therefore�

f �w�k  ��� � kw�k  ���w�k�k�  ���d�k�� xT �k�w�k  ���
 ���d�k � ��� xT �k � ��w�k  ���

�����

which� for linearly independent input�signal vectors x�k� and x�k � ��� has the
unique solution

w�k  �� � w�k�  
��
�
x�k�  

��
�
x�k � �� �����

where

��

�
�

�d�k� � xT �k�w�k��kx�k � ��k� � �d�k � ��� xT �k � ��w�k��xT �k � ��x�k�

kx�k�k�kx�k � ��k� � �xT �k�x�k � ����

�����

and

��

�
�

�d�k � ��� xT �k � ��w�k��kx�k�k� � �d�k� � xT �k�w�k��xT �k � ��x�k�

kx�k�k�kx�k � ��k� � �xT �k�x�k � ����

�����

��



����� Simpli�ed Version

The derivation presented above is valid for any w�k�� which may or may not belong

to S�k���� However� if successive optimized steps are taken for w�k� for all k� then

xT �k � ��w�k� � d�k � �� �����

and a simpli	ed set of updating equations for the algorithm results�

w�k  �� � w�k�  
���
�
x�k�  

���
�
x�k � �� ���
�

where

���
�
�

�d�k�� xT �k�w�k��kx�k � ��k�
kx�k�k�kx�k � ��k� � �xT �k�x�k � ���� ������

and

���
�
�

��d�k�� xT �k�w�k��xT �k � ��x�k�
kx�k�k�kx�k � ��k� � �xT �k�x�k � ���� ������

����� Geometrical Derivation

The BNDR�LMS algorithm can be alternatively derived from a purely geometrical

reasoning� The 	rst step is to reach a preliminary solution� w��k�� which belongs to

S�k� and is at a minimum distance from w�k�� represented by point � in Figure ����

This is achieved by the NLMS algorithm starting from w�k�� i�e��

w��k� � w�k�  
e�k�

kx�k�k�x�k� ������

In the second step� w��k� is updated in a direction orthogonal to the previous one�

therefore belonging to S�k�� until the intersection with S�k � �� is reached� This is
achieved by the NLMS algorithm starting from w��k� and following the direction

x�� �k� which is the projection of x�k � �� onto S�k�� i�e��

w�k  �� � w��k�  
e��k�

kx�� T �k�k�
x�� �k� ������

where

x�� �k� �
�
I � x�k�xT �k�

kx�k�k�
�
x�k � �� ������

��



and

e��k� � d�k � ��� xT �k � ��w��k� ������

The use of x�� �k� obtained from x�k � �� assures that the minimum�distance path
is chosen� Note that the requirement of linear independence of consecutive input�

signal vectors x�k� and x�k � ��� necessary to ensure existence of the solution� is
also manifested here�

As will be shown in the analysis �c�f� Section ���� and will be veri	ed by simula�

tions �c�f� Table ����� the excess of the mean�square error �MSE� for the BNDR�LMS

algorithm as in �����!����� or in ���
�!������ is close to the variance of the obser�

vation noise when there is no modeling error� Such performance is expected from

normalized algorithms� Therefore� in order to control this excess of MSE a step�size

� may be introduced� Although maximum convergence rate is usually obtained with

� � �� the use of a smaller value for the step�size may be required in applications

where measurement error is too high� In this case� we must emphasize that the

solution w�k �� obtained at each iteration is not at the intersection of hyperplanes

S�k � �� and S�k� and� therefore� the simpli	ed version of the algorithm given by

���
�!������ should not be used�

If x�k� and x�k � �� are linearly dependent� then S�k� is parallel to S�k � ���
x�� �k� is the null vector and w�k  �� � w��k�� which corresponds to the NLMS

algorithm for any value of step�size� Particularly when � � �� it is also correct to

say that w�k� is already on the hyperplane S�k � ���
The BNDR�LMS algorithm is summarized in Table ����

��� Convergence Analysis of the

Coe	cient Vector

In this section� we assume that an unknown FIR 	lter with coe�cient vector given by

wo is to be identi	ed by an adaptive 	lter of same order employing the BNDR�LMS

��



Table ���� The Binormalized Data�Reusing LMS algorithm

BNDR�LMS
� � small positive value
for each k
f
	 � xT �k�x�k � ��

�k� � xT �k�x�k�
y� � x

T �k�w�k�
e� � d�k�� y�
den � 
�k�
�k � ��� 	�

if den � �
f
w�k  �� � w�k�  �e�x�k��
�k�
g
else
f
y� � x

T �k � ��w�k�
e� � d�k � ��� y�
��
�
� �e�
�k � ��� e�	��den

��
�
� �e�
�k�� e�	��den

w�k  �� � w�k�  ����
�
x�k�  ��

�
x�k � ���

g
g

algorithm� i�e�� d�k� can be modeled as

d�k� � xT �k�wo  n�k� ������

where n�k� is measurement noise� It is also assumed that input signal and measure�

ment noise are taken from independent and identically distributed zero�mean white

noise processes with variances ��
x and �

�
n� respectively�

We are interested in analyzing the convergence behavior of the coe�cient vector

in terms of a step�size �� Let

�w�k� � w�k��wo ������

be the error in the adaptive 	lter coe�cients as related to the ideal coe�cient vector�

��



For the BNDR�LMS algorithm as described in �����!������ �w�k  �� is given by

�w�k  �� � �w�k�  �

�
��
�
x�k�  

��
�
x�k � ��

�
������

From ������ and �����!������ we have

�w�k  �� � �I  �A��w�k�  �b ����
�

where

A �
x�k�xT �k�x�k � ��xT �k � ��  x�k � ��xT �k � ��x�k�xT �k�

kx�k�k�kx�k � ��k� � �xT �k�x�k � ����

� kx�k � ��k�x�k�xT �k�  kx�k�k�x�k � ��xT �k � ��
kx�k�k�kx�k � ��k� � �xT �k�x�k � ����

������

and

b �
n�k�kx�k � ��k� � n�k � ��xT �k�x�k � ��
kx�k�k�kx�k � ��k� � �xT �k�x�k � ���� x�k�

 
n�k � ��kx�k�k� � n�k�xT �k � ��x�k�
kx�k�k�kx�k � ��k� � �xT �k�x�k � ����x�k � ��

������

By taking the expected value on both sides of ����
�� for n�k� and x�k� samples

from independent zero�mean random processes� we have

E�b� � � ������

and

E��w�k  ��� � E��I  �A��w�k��

� E

��
I  �

�
x�k�xT �k�x�k � ��xT �k � ��

kx�k�k�kx�k � ��k� � �xT �k�x�k � ����

 
x�k � ��xT �k � ��x�k�xT �k�� kx�k � ��k�x�k�xT �k�

kx�k�k�kx�k � ��k� � �xT �k�x�k � ����

� kx�k�k�x�k � ��xT �k � ��
kx�k�k�kx�k � ��k� � �xT �k�x�k � ����

�	
�w�k�



������

Expression ������ can be further simpli	ed if the following assumptions are made�

�� �w�k� is statistically independent of x�k�xT �k� �independence assumption

������

��



�� E�num�den� � E�num��E�den�� where num and den are the elements in the

numerator and denominator of ������� respectively� which implies indepen�

dence between num and den as well as a 	rst�order approximation� in the

evaluation of E���den��

Moreover� the following relations can be easily veri	ed when the elements of x�k�

are samples of a white Gaussian process �see Appendix A��

��

Ef�xT �k�x�k � ����g � �N  �����
x�

� ������

��

E
�kx�k�k�kx�k � ��k� � �xT �k�x�k � ����� � N�N  �����

x�
� ������

��

fE�x�k � ��xT �k � ��x�k�xT �k��gij �


��
��
���

x�
�� i � j or i � j � �

�� otherwise

������

for ���ij the �i� j� element of matrix ����

��

E�kx�k � ��k�x�k�xT �k�� � �N  �����
x�

�I ������

��

xT �k � ���w�k� � ��� ��xT �k � ���w�k � ��  �n�k � �� ������

�For a more in�depth discussion on this approximation� see ��� ��	

�




Based on these assumptions and relations� ������ can be rewritten as

E��w�k  ��� � E

��
I  �

�
x�k � ��xT �k � ��x�k�xT �k�

N�N  �����
x�

�

�kx�k � ��k
�x�k�xT �k�

N�N  �����
x�

�

�	
�w�k�

 ���� ��

�
x�k�xT �k�x�k � ��xT �k � ��

N�N  �����
x�

�

�kx�k�k
�x�k � ��xT �k � ��
N�N  �����

x�
�

�
�w�k � ��




�
�
�� �

N

�
E ��w�k��� ���� ��

N
E ��w�k � ���

����
�

The last relation of ����
� was obtained by considering kx�k � ��k� statistically
independent of �w�k� and by making a 	rst order approximation in the calculation

of the numerators with the help of relations ������ to ������� From ����
�� it is clear

that convergence in the mean of the BNDR�LMS algorithm to an unbiased solution

is guaranteed for values of step size � such that all elements of E��w�k ��� in ����
�

go to zero as k � �� This is achieved if the poles of the second�order di�erence
equation are strictly inside the unit circle� i�e��

jz���j �
������
�� �

N
�
q�
�� �

N

�� � �������
N

�

������ � � ������

which is always true for N � � and � satisfying

� � � � � ������

��� Second�Order Statistic Analysis

����� White Input Signal

Although �w�k� converges in average to zero as k goes to in	nite� which character�

izes unbiasedness of the estimate� consistency of coe�cient estimates� which in other

words means negligible instantaneous errors on these coe�cients� is only achieved

in cases of very small �min or values of � close to zero� In general� an excess of MSE�

��



which depends on the second�order statistics of vector �w�k�� will be present� The

excess of MSE is de	ned as ��� ��

�exc � lim
k��

��k�� �min ������

where ��k� � E�e��k�� and �min is the minimummean�squared error due to nonexact�

modeling or presence of additive noise� or both ����

The di�erence ���k� � ��k� � �min is known as excess in the MSE ��� and can

be expressed as

���k� � Ef�n�k���wT �k�x�k���g � �min

� E��wT �k�R�w�k��

� trfR cov��w�k��g

������

It is necessary� therefore� to derive an expression for the coe�cient�error�vector

covariance matrix cov��w�k  ���� From ����
��

cov��w�k  ��� � E
�
�w�k  ���wT �k  ��

�
� E

�
�I  �A��w�k��wT �k��I  �A�

�
 E

�
��I  �A��w�k�bT

�
 E

�
�b�wT �k��I  �A�

�
 E

�
��bbT

�
������

Recalling ������ and ������� we can foresee the enormous complexity to evaluate

������ even with a number of assumptions� An interesting alternative is the use of

a simpli	ed model for the input�signal vector x�k� which can be consistent with the

	rst� and second�order statistics of a general input signal� but has a reduced and

countable number of possible directions of excitation� This model was introduced

in ���� and was successfully employed in ��� and ����� The input�signal vector for the

model is

x�k� � skrkV k ������

where�

��



� sk is �� with probability of occurrence ���"

� r�k has the same probability distribution function of kx�k�k�� or� for the case
of interest� is a sample of an independent process with 
�square distribution

of �N  �� degrees of freedom� E�r�k� � �N  ����
x"

� V k is equal to one of the N  � orthonormal eigenvectors of R� denoted Vi�
i � �� � � � � N  �� We will also assume that for a white Gaussian input signal

V k is uniformly distributed and� consequently� if P ��� denotes the probability
of occurrence of event ���� then

P �V k � Vi� � �

N  �
������

For the given input�signal model� we may express ���k  �� as

���k  �� � ���k  �� jx�k�kx�k��� �P �x�k� k x�k � ���
 ���k  �� jx�k��x�k��� �P �x�k� 	 x�k � ���

������

Conditions x�k� k x�k��� and x�k� 	 x�k��� in the adopted model are equivalent
to V k � V k�� and V k 
� V k��� respectively� such that V k and V k�� can only be

parallel or orthogonal to each other�

As remarked before� the BNDR�LMS algorithm behaves exactly like the NLMS

algorithm when the input signal vector at instants k and k � � are parallel� In this
case� the excess of MSE is given by ���

���k  ��k �
�
�  

���� ��
N  �

�
���k�  

��

�N  �� �x�
��
n ������

where �x � E�x��k����
x� is known as the kurtosis of the input signal� which varies

from � for a binary distribution to � for a Gaussian distribution to � for a Cauchy

distribution ��� �
�� It must be stressed� however� that ������ holds only for �x �
N  � ����

For the case where x�k� and x�k � �� are always orthogonal� from ������ and

������ we have� for R � ��
xI� i�e�� white�noise input signals �see Appendix B��

���k  ��� �
�
�  

���� ��
N  �

�
���k�  

���� ������ ��
N  �

���k � ��

 
����� ���
N  �� �x

��
n

����
�

��



A 	nal expression for the excess in the MSE may now be obtained from ������

and ����
� combined and weighted accordingly� as suggested in ������� For a white

input signal� the probabilities of V k � V k�� and V k 
� V k�� are equal to �
N��

and

N
N��

� respectively� The excess in the MSE is� therefore� given by

���k  �� �

�
�  

���� ��
N  �

�
���k�  

N���� ������ ��
�N  ���

���k � ��

 
�� ��  N��� ����
�N  ���N  �� �x�

��
n

������

Experiment �	 In order to confront the behavior of the BNDR�LMS algorithm

with ������ for di�erent values of � a simple experiment was carried out where

input�signal vectors at consecutive time instants are always parallel� A setup was

constructed where a ��th�order unknown plant is to be identi	ed by a ��th�order

adaptive 	lter when the input�signal vector is x�k� � skV with V a constant vector

equal to �� � � � � ��T � In this case� the kurtosis �x is � and the steady�state value of
���k�� �exc� is

�exc �
���

n

�� �
������

The results� depicted in Figure ���� show a comparison between simulations averaged

after �� runs and the theoretical values predicted by ������� From the analysis of

this experiment� it becomes clear that for the special case when the BNDR�LMS

algorithm behaves like the NLMS algorithm� ������ is in excellent agreement with

simulation results�

Experiment 
	 A second experiment was carried out where input�signal vectors

at consecutive time instants are always orthogonal� The setup was similar to that of

Experiment �� except that the input signal vector was chosen as x�k� � skV k with

V k always di�erent from V k�� and equal to one of the vectors forming the canonic

basis� The kurtosis of the input signal is also equal to �� Theoretical results and

the results from a ���trial simulation are depicted in Figure ���� The results show

that the expression in ����
� is accurate for the assumptions made�

��
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Figure ���� Excess of MSE for parallel input signal vectors�

Experiment �	 A third experiment was carried out where the input�signal vectors

were randomly chosen among the canonic basis� such that V k and V k�� could be

parallel or orthogonal with probabilities �
N��

and N
N��

� respectively� The results

from a ���trial simulation and those from ������ are depicted in Figure ��� which

shows accuracy of the analysis at least for the input�signal model used�

����� Colored Input Signal

Using the input�signal�vector model given in ������� we may now extend the analysis

to colored input signals� The angular distribution of x�k� need be changed in order

to incorporate di�erent probabilities for the directions given by the �N  �� eigen�

vectors of R� In other words� ������!����
� are maintained and only probabilities

P �x�k� k x�k � ��� and P �x�k� 	 x�k � ��� need be recalculated� Each eigenvector
of R� denoted as Vi� i � �� � � � � N  � will now have the following probability of
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Figure ���� Excess of MSE for orthogonal input signal vectors�

occurrence ���

P �V k � Vi� � �i
tr�R�

������

where �i is the eigenvalue associated to the eigenvector Vi� For an easy association
between P �x�k� k x�k � ��� and input�signal correlation� let us suppose the input
signal x�k� is correlated by an allpole 	lter as in

x�k� � �x�k � ��  ��� ����k�� � � � � � ������

where ��k� is a sample from an independent zero�mean process with variance given

by ��
� � The autocorrelation matrix for this input signal can be easily derived and is

��
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Figure ���� Excess of MSE for a modeled input signal vector�

expressed as

R �
�� �

�  �
��
�

�
�������

� � �� � � � �N

� � � � � � �N��

���
���

���
� � �

���

�N �N�� �N�� � � � �

�
�������

������

From ������ we have all necessary eigenvalues and eigenvectors such that we can

compute

P �x�k� k x�k � ��� � P �V k k V k���

� P
h
V k k V k�� jV k���V �

i
� P �V k�� � V ��  � � �

 P
h
V k k V k�� jV k���V N��

i
� P �V k�� � V N���

�
N��X
i��

�
�i

tr�R�


�

������

��



and

P �x�k� 	 x�k � ��� � �� P �x�k� k x�k � ��� ������

Equations ������ and ������ are in accordance with the white�input situation� for this

case corresponds to � � � and all eigenvalues will be equal to ��
x such that P �V k �

Vi� � �
N��

as already described� When the input signal is correlated through a

	rst�order allpole 	lter and modeled with ������ and ������� the excess of MSE

is given by ������!����
� with probabilities given by ������ and ������� Although

������!����
� have been obtained based on a white Gaussian model for the input

signal� simulations have shown that our reasoning is valid when the input signal

is generated according to ������ with probabilities given by ������ and �i obtained

from ������� Moreover� for � � � and a modeled input signal where only parallel or

perpendicular vectors may occur the BNDR�LMS algorithm degrades to the NLMS

algorithm and the steady�state MSE becomes independent of the radial distribution

of x�k� ���� This is perfectly described by ������!����
�� supporting the validity of

our reasoning�

��� Simulation Results

In order to test the BNDR�LMS algorithm for more practical situations� simula�

tions were carried out for several system identi	cation problems with input signals

not constrained to 	t a discrete angular distribution function as in the experiments

of the previous section� Initially� the system order was N � ��� the input signal

was a colored noise with a conditioning number around ���� and the input signal�

to�observation�noise ratio �SNR� was set to ��dB and ���dB� The learning curves

�MSE in dB� for the NLMS� the NNDR�LMS �one reuse� and the BNDR�LMS

algorithms are depicted in Figure ���� corresponding to an average of ��� realiza�

tions� In this 	rst experiment� the step�size � was set to � in order to achieve

the fastest convergence rate of the BNDR�LMS algorithm� The choice of one reuse

for the NNDR�LMS algorithm rendered similar computation complexities for the

algorithms tested�

��



In this example we can clearly verify the superior performance of the BNDR�

LMS algorithm in terms of speed of convergence when compared to the NLMS and

the NNDR�LMS algorithms �with one single reuse� for the case of a high signal�to�

noise ratio� This bene	t becomes more evident in cases where the input signal is

even more correlated� Simulations for the conventional LMS algorithm and for the

DR�LMS algorithm were also carried out for the same setup� but their performances

were� as expected� inferior to that of the NLMS algorithm and the results were

omitted from Figure ���� Concerning this example� it is worth mentioning that for

the NNDR�LMS algorithm� a similar performance would be obtained if we had used

at least four reuses �L � �� with the same two pairs of data �or about two reuses if

we increased the information with one extra pair of data�� It means that more than

double of the computational e�ort of the BNDR�LMS algorithm would be necessary

for the NNDR�LMS algorithm� in the case of the same amount of memory� to have

a similar convergence rate�
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Figure ���� MSE for the NLMS� the NNDR�LMS� and the BNDR�LMS algorithms�

In a second experiment� yet with � � � and N � ��� the excess of MSE ��exc

in dB� was measured in order to test the behavior of the BNDR�LMS algorithm in

terms of mean�squared error after convergence� �min� in this case the variance of the

��



measurement noise� was set to ���
 while the input signal was made a zero�mean

white Gaussian noise process� The results are summarized in Table ��� where we can

also observe the excess of MSE in dB for a nonstationary environment� In this case�

the observation noise was set to zero and the system �plant� coe�cients were varied

according to a generalized random�walk model� w�k� � w�k � ��  v� where v was
a random vector with elements of zero�mean and variance equal to ���
� As we can

see from Table ���� in both stationary and nonstationary environments� the BNDR�

LMS algorithm performed closely to the NLMS and the NNDR�LMS algorithms�

Once more the step�size � was set to one in this experiment�

Table ���� Excess of Mean�Square Error

Algorithm ��exc�dB

Type Stationary Nonstationary

NLMS ��
��
 ��
���

NNDR�LMS ��
��� ��
���

BNDR�LMS ������ ��
���

Other experiments were carried out in order to test theoretical results obtained

from the convergence analysis� The input signal in this case was white noise and

the excess of MSE was measured for di�erent values of the step�size �� varying from

��� to ��
�� Once it was shown that the 	lter order N has a great in�uence on the

theoretical results� the experiment was repeated for N � �� N � ��� and N � ���

The results are depicted in Figures ���� ���� and ��� respectively� where we can see

that the theoretical curve is closer to the experimental curve as N is increased�

Furthermore� as N is increased the probability of occurring V k � V k�� becomes

less likely and the curves approach the one obtained in Experiment � of the previous

section�

A last experiment was designed to test the in�uence of colored signals on the

excess of MSE and the accuracy of the expressions derived in the analysis� Four

situations were contemplated corresponding to input signals having di�erent charac�

�
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Figure ���� Excess of MSE for N � � as a function of ��

teristics �all of them with N � ���� In the 	rst two situations� signals were obtained

from zero�mean white�Gaussian sequences 	ltered by 	rst�order allpole IIR 	lters

with poles at ��� and ��
� yielding autocorrelation matrices with eigenvalue ratios of

����� and ������� respectively� In the other two situations� input�signal vectors were

generated with discrete radial probability distributions and autocorrelation matri�

ces with eigenvalue spreads also equal to ����� and ������� respectively� The excess

of MSE in dB for these simulations are depicted in Figure ��� where simulation re�

sults and theoretical curves are confronted� Theoretical values were calculated using

������!����
� with probabilities given by ������ and ������� The analysis for colored

input�signals presented very good agreement with the simulations carried out for

input�signal vectors presenting discrete angular probability distributions� For the

signals obtained by 	ltering white�Gaussian sequences with 	rst�order allpole IIR

	lters� only a reasonably accurate qualitative description of the evolution of the ex�

��
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Figure ���� Excess of MSE for N � �� as a function of ��

cess of MSE with respect to the step�size could be observed� This can be explained

by the fact that the expressions were derived for a white signal situation� Moreover�

in the range of interest �� � � � �� the di�erence between the simulated and the

theoretical curves is less than � dB� The range of values of � from � to � is not

used in practical situation since such value would worsen the performance of the

algorithm by increasing the misadjustment without improving the convergence rate

which is maximum for � � ��

In terms of computational complexity� Table ��� shows the comparisons among

the three normalized algorithms mentioned before� Note that p � N  � is the num�

ber of coe�cients� By observing this table� we can conclude that the computational

load of the BNDR�LMS algorithm is slightly higher than the computational load of

the NNDR�LMS algorithm �which is equal to L � � � times the complexity of the

NLMS algorithm�� We stress the fact that this table is relative to one only re�use

��
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Figure ���� Excess of MSE for N � �� as a function of ��

�L � �� and that� in the case of the 	rst experiment� for the same performance of

the NNDR�LMS algorithm as compared to the BNDR�LMS algorithm� a complexity

L � � � times the complexity of the NLMS algorithm would be required�

Table ���� Comparison of computational complexity

ALG� ADD MULT� DIV�

NLMS �p�� �p �

NNDR�LMS �p�� �p �

BNDR�LMS �p � �p � �

��
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Figure ���� Excess of MSE for colored input signals�

��� Conclusions

This chapter presented the BNDR�LMS algorithm along with its analyses of conver�

gence and mean�square error� A geometric interpretation of the algorithm was also

provided showing that the coe�cients are updated in two normalized steps following

orthogonal directions� The relationship between the BNDR�LMS algorithm and the

orthogonal�projection algorithm was clari	ed�

Simulations carried out in a system identi	cation application showed that the

BNDR�LMS algorithm compares favorably with other LMS�like algorithms in terms

of speed of convergence� Moreover� the more correlated is the input signal� the better

is the performance of the new algorithm when compared with other LMS�like algo�

rithms� This improvement is more clearly observed in cases of small measurement

noise�

Analyses in the mean and the covariance were carried out being the latter based

��



on a simpli	ed model for the input signal which rendered tractable expressions for

the complex problem of analyzing data�reusing algorithms� Consistency with the

	rst two moments of the input signal are maintained by the model� For white

input signals� analysis of mean�square error� which is in excellent agreement with

simulations� was carried out� Limits for convergence in the mean and the covariance

of the coe�cient vector were also established� Moreover� a closed�form expression

for the excess of MSE as a function of the step�size was derived for the case of

white input signals� The applicability of this expression for the case of colored input

signals was also addressed� The model and the analyses can be readily extended

to other data�reusing algorithms that have not been considered in the past due to

exceeding complexity�
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Chapter �

A Practical Application of the

BNDR�LMS Algorithm

��� Introduction

In order to illustrate a practical application of the BNDR�LMS algorithm� this chap�

ter presents a constrained version of this algorithm as well as proposes an optimal

step�size sequence which allows fast convergence and minimum misadjustment� The

new algorithm is applied to a direct�sequence code�division multiple access �DS�

CDMA� mobile receiver and the results has shown a considerable speed up of the

convergence rate compared to the traditional approach using the LMS algorithm�

A constrained adaptive 	lter has several 	elds of applications such as antenna

array processing and interference cancellation in DS�CDMA mobile communication

systems� The two traditional methods used in these applications are the so called

Frost ���� approach and the general sidelobe canceler �GSC� ���� approach� The

GSC approach converts the constrained problem into an unconstrained problem�

The Frost scheme is probably the most widely used technique due to the simplicity

of the LMS algorithm� Nevertheless� the main drawback of the LMS algorithm

is also present in Frost scheme" that is� its performance is strongly dependent on

the eigenvalue spread of the input�signal autocorrelation matrix� An alternative

approach is the use of fast least�squares techniques as proposed in ����� Since the



Frost algorithm turns out to be the projection of the conventional LMS result onto

a constrained hyperplane� a natural step would be to use the traditional normalized

LMS�like algorithms ��� ��� followed by a projection just like in the LMS Frost case�

This approach results in a superior convergence rate compared to the LMS Frost

algorithm when the input signals are strongly correlated� This intuitive approach�

however� lacks an optimization criterion and performs worse than the corresponding

GSC structure in some cases�

It was observed in our experiments that the constrained LMS algorithm in both

implementations� Frost and GSC schemes� give identical results ���� when applied

to the same set of data� Our goal in this chapter is the derivation of the constrained

BNDR�LMS algorithm� Frost�like structure� such that it presents identical results

when compared to the results obtained by employing the BNDR�LMS algorithm in

the GSC structure�

This chapter is organized as follows� Section ��� presents an alternative deriva�

tion of the conventional NLMS and BNDR�LMS algorithms� In Section ��� the

constrained normalized algorithms are derived based on the approach used in Sec�

tion ���� In Section ��� the optimal step�sized sequence is derived� Section ��� shows

some simulation results in the typical 	eld of application proposed here� followed by

conclusions�

��� Re�Derivation of the NLMS and the

BNDR�LMS Algorithms

In this section we show an alternative way of deriving the NLMS and the BNDR�LMS

algorithms� Let us start with the normalized LMS� Suppose we have an LMS�like

algorithm that updates the coe�cient vector according to the following expression�

w�k  �� � w�k�  �kx�k� �����

where w�k� is the coe�cient vector �of size �N  ��� � where N is the order of the

adaptive 	lter� at instant k� x�k� is the input signal vector and �k is the variable step�

��



size �or convergence factor� which must be chosen with the objective of achieving

faster convergence� The strategy used here is to reduce the instantaneous squared

error as much as possible since this is a good and simple estimate of the mean squared

error �MSE� ���� Since the instantaneous error is given by e�k� � d�k��xT �k�w�k��
the instantaneous squared error at instant k after the updating of the coe�cient

vector can be written as

e���k� � �d�k�� xT �k�w�k  ����

� �d�k�� xT �k��w�k�  �kx�k���
� �����

where the star ��� indicates the a posteriori error� In order to increase the conver�

gence rate by choosing an appropriate step�size� we take the partial derivative of

e���k� with respect to �k and make it equal to zero� obtaining

�k �
d�k�� xT �k�w�k�

xT �k�x�k�
�����

which corresponds� as expected� to the traditional normalized LMS algorithm�

In the BNDR�LMS algorithm� we update the coe�cient vector by adding the

input�signal vectors x�k� and x�k � �� weighted by two step�sizes� ��k and ��k�

respectively�

w�k  �� � w�k�  ��kx�k�  ��kx�k � �� �����

In this case� we minimize the cost function F �k� which corresponds to the instanta�

neous squared error at instant k plus the instantaneous squared error at instant k��
calculated with the coe�cient vector of instant k or F �k� � �d�k� � xT �k�w�k��� 	

�d�k����xT �k���w�k���� We next de	ne F ��k� as F �k� calculated with the updated

coe�cient vector�

F ��k� � �d�k� � xT �k��w�k� 	 ��kx�k� 	 ��kx�k � �����

	�d�k � ��� xT �k � ���w�k� 	 ��kx�k� 	 ��kx�k � ����� ���
�

In the next step� we take the partial derivatives of F ��k� with respect to ��k and

��



��k and make them equal to zero� After some algebraic manipulations we obtain

e� � d�k� � xT �k�w�k�

e� � d�k � ��� xT �k � ��w�k�

den � xT �k�x�k�xT �k � ��x�k � ��� �xT �k � ��x�k���

��k �
e�x

T �k � ��x�k � ��� e�x
T �k � ��x�k�

den

��k �
e�x

T �k�x�k�� e�x
T �k � ��x�k�

den
�����

which together with ����� correspond to the binormalized data�reusing LMS �BNDR�

LMS� algorithm�

��� The Constrained Algorithm

In linearly constrained adaptive 	ltering� the J constraints are represented by the

following linear system�

CTw�k� � f �����

where C is a �N  ���J matrix containing the constraint vectors� and f is a vector

of J elements containing the constraint values �one single constraint means that C

is a vector and f is a scalar��

In the LMS case �Frost structure�� the resulting algorithm is given by the pro�

jection of the coe�cient vector � w�k  �� unconstrained � onto the hyperplane

de	ned by ������ The constrained coe�cient vector is obtained by 	rst projecting

the unconstrained solution onto the homogeneous hyperplane CTw�k� � � with the

help of the projection matrix P � I �C�CTC���CT � Finally� the resulting vector

is moved back to the constraint hyperplane by adding the vector F � C�CTC���f �

w�k  �� � PwLMS�k  ��  F

� P �w�k�  �e�k�x�k��  F �����

where e�k� � d�k�� xT �k�w�k��

��



Our approach here for both the NLMS and the BNDR�LMS algorithms is the

projection of the unconstrained solution followed by the optimization of the step�

size�s� similar to what was done in the previous section� Let us start with the NLMS

algorithm by taking wNLMS�k  �� as in ��� where �k is the variable step size we

wish to obtain�

w�k  �� � PwNLMS�k  ��  F

� P �w�k�  �kx�k��  F ���
�

If we remember that w�k� was forced to satisfy the constraint in ����� which means

that Pw�k�  F � w�k�� it follows that ���
� can be written as

w�k  �� � w�k�  �kPx�k� ������

If we now compare ����� and ������ we can see that they are the same problem if we

substitute the input vector by a rotated version x��k� � Px�k�� Moreover� recalling

that P � � P � it follows from the same approach used in the previous section that

e�k� � d�k�� xT �k�w�k�
w�k  �� � P

�
w�k�  

e�k�x�k�

xT �k�Px�k�

�
 F ������

which correspond to the constrained NLMS algorithm �����

The same approach can be applied to the BNDR�LMS if we make

w�k  �� � PwBNDR�LMS�k  ��  F

� P �w�k�  ��kx�k�  ��kx�k � ���  F
� w�k�  ��kPx�k�  ��kPx�k � �� ������

and compare with ������ The equations of the constrained BNDR�LMS algorithm

�




are obtained as

e� � d�k�� xT �k�w�k�

e� � d�k � ��� xT �k � ��w�k�

P � I �C�CTC���CT

F � C�CTC���f

den � xT �k�Px�k�xT �k � ��Px�k � ��� �xT �k � ��Px�k���

��k �
e�x

T �k � ��Px�k � ��� e�x
T �k � ��Px�k�

den

��k �
e�x

T �k�Px�k�� e�x
T �k � ��Px�k�

den

w�k 	 �� � P �w�k� 	 ��kx�k� 	 ��kx�k � ��� 	 F ������

It is worth mentioning that these two constrained algorithms present identical

results when compared to the NLMS and BNDR�LMS algorithms used in the GSC

structure� It is also interesting to remark that ������ and ������ can be simpli	ed

by admitting that Pw�k�  F � w�k�� This simpli	cation� however� can produce

round�o� error accumulation when the algorithm is implemented in 	nite�precision

environment�

��� Step�Size Optimization of the

BNDR�LMS Algorithm

We have seen that the BNDR�LMS algorithm o�ers faster convergence than a num�

ber of other normalized LMS algorithms for a highly correlated input signals at the

cost of a small additional complexity� The MSE after convergence for this algorithm

is controlled by a step�size parameter �� For � � �� we have the fastest convergence

and also the highest steady�state MSE when compared to the cases where the val�

ues of the step�size are closer to zero� In the previous chapter� it was shown that

the BNDR�LMS algorithm convergences if the step�size is in the range from zero to

two� For practical reasons� the value of � is kept between zero and one since it was

��



observed that the steady�state MSE was higher and the convergence slower when

the step�size was set to a value between one and two�

In this section� the expression for the MSE developed in Chapter � is used to

propose an optimal step�size sequence which allows fast convergence and minimum

misadjustment� The 	nal expression for the convergence behavior of the BNDR�

LMS algorithm is rewritten here in terms of the excess in the MSE�

���k  �� �

�
�  

���� ��
N  �

�
���k�

 
N���� ������ ��

�N  ���
���k � ��

 
��  N��� ������

�N  ���N  �� �x�
��
n ������

From the expression of ���k  �� above� we will follow an approach similar to

that used in ��� and we start by rewriting ������ assuming that up to instant k we

have the optimal sequence ����� to ���k� �� already available and also the optimal
quantities ����k� and ����k � ���

���k  �� �

�
�  

��k����k�� ��
N  �

�
����k�

 
N��k���� ��k������k�� ��

�N  ���
����k � ��

 
��  N���k�� ������k��

�N  ���
��
n ������

If we now compute the derivative of ���k �� with respect to ��k� and make it

equal to zero� we obtain after some algebraic manipulation

���k� � ��
s
�� ��

��k�  ����k � ��
������k � ��  ��

n�

� ��
s
�� ���k�  ���k � ��� ���

n

����k � �� ������

It is worth mentioning that ������ is in accordance with the situation corresponding

to when the convergence is reached" in that case we have ���k� � ���k � �� � ��
n

and therefore we have ���k� � � as expected� Moreover� if we have ��
n � � the

value of ���k� will be close to one �admitting that ����k� � ����k� ��� even after

��



convergence� which means that we should have maximum speed of convergence with

minimum misadjustment if the noise is zero�

For the normalized LMS �NLMS� algorithm� a recursive formula for ���k� in

terms if ���k � �� and the order N was obtained in ���� In the case of the BNDR�

LMS algorithm� a simple recursive expression was not obtained and a small algorithm

was used to produce the optimal step�size sequence� This algorithm is presented in

Table ��� � and has one important initialization parameter with a strong in�uence

on the behavior of ���k�� This parameter is the ratio ��d
��n
where the numerator is the

variance of the reference signal�

Table ���� Algorithm for computing the optimal step�size sequence�

��k� of the BNDR�LMS algorithm

����� � ������ � ��
d

��
n � noise variance

N � adaptive 	lter order

���� � �

for each k

f ��k� � ��
q
�� ���k�����k���

�����k������n�

aa �
h
�  ��k����k����

N��

i
bb � N��k������k������k����

�N����

cc � ���N���k��������k��
�N����

��
n

���k  �� � aa���k�  bb���k � ��  cc

g

We next present in Figure ��� the curves of ��k� for di�erent values of what

should be called in this case �desired� signal to noise ratio or SNR � ��log
��d
��n
from

� to �� dB� Note that for ��
n � � �noiseless case�� the SNR approaches in	nity

whereas the step�size remains 	xed at unity�

�Note that the asterisk 
�� was dropped from the optimal values for simplicity only	

��
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Figure ���� Optimal ��k� sequences for the BNDR�LMS algorithm�

In a practical implementation the optimal sequence can be computed a priori

and stored in memory or computed on the �y� For this last option� since a recursive

and compact formula is not available� an approximation of the curve is of great

interest� We will use here two classes of sequences also proposed in ���� They were

chosen due to their simplicity and� as will be seen later� lead to good results� The

	rst class is the optimal sequence for the NLMS algorithm� It is given by

��k� � ��k � �� ��
��k���
N��

�� ���k���
N��

������

For the NLMS algorithm� the correct initialization for this sequence is given by

���� � �� ��n
��d
� However� in our case we can choose an initial value for the step�size

such that the two sequences are close� as will be seen�

The second class of sequences �referred to hereafter as the ��k approximation�

is quite simple and was also used in ���� This sequence is given by

��k� �


�
�

� if � � k � c�N  ��

maxf�min�
�

��c� k
N��

g if k � c�N  ��
������

��



The parameter c will be related to the SNR of the optimal sequence� A minimum

step�size was introduced here �it can be used in all sequences as well� in order to

provide a tracking capability to the algorithm�

The results of a few experiments will demonstrate the superior performance

obtained with the proposed adaptive step�size scheme� For the 	rst simulation�

we used a white noise input signal in a system identi	cation setup with N � ���

��
n � ���� and SNR � ��dB� Figure ��� shows the optimal step�size sequence

obtained with the algorithm described in Table ��� and other curves from the two

classes of approximations used�

optimal sequence                  
NLMS approximation (0.9, 0.93, and 0.95)
1/k approximation (c=1, 2, and 3)   
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Figure ���� Optimal step�size sequence and two classes of approximation sequences�

From Figure ���� we can conjecture which curve to use� If we use the least norm

of the di�erence between the optimal and the approximation sequences as a criterion

to decide which curve to implement� the chosen parameters for this example would

be ���� � ��
� and c � ��

With these parameters we have run a simulation with a 	xed step�size� an optimal

step�size and the two approximations� The learning curves �average of ���� runs�

are depicted in Figure ��� where we can see that the same fast convergence and

��



the same small steady�state MSE are shared by the three time�varying step�size

sequences used� The 	xed step�size was set to one and� as expected� has the highest

misadjustment�

fixed step−size   
optimal step−size 
NLMS approximation
1/k approximation 
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Figure ���� Learning curves for the 	xed step�size� the optimal step�size and its two

approximations�

A second experiment was carried out in order to evaluate the performance of this

optimal sequence in case where the input signal is correlated� The same setup was

used but with an input signal having a condition number �ratio between the largest

and the smallest eigenvalue of the input signal autocorrelation matrix� around ����

Figure ��� shows us that� even for a correlated input signal� the proposed step�size

sequence has a good performance� We observe on this same 	gure that� in this given

example� the BNDR�LMS algorithm using optimal step�size sequence has better

performance than the NLMS algorithm also using its optimal step�size sequence�

A 	nal remark is the possibility to use an estimator for ��k� instead of calculating

���k� using ������ as described in the algorithm of Table ���� We have also made

��
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an experiment using the following estimator�

��k  �� � ���k�  ��� ��e��k� ����
�

This experiment has shown us that a reasonable value for � is around ��
�� The

advantage of this alternative approach is the possibility of fast tracking of sudden

and strong changes in the environment� In this case� the instantaneous error becomes

high and the estimated ��k �� is increased such that the value of � approaches the

unity again and a fast re�adaptation starts�

When using this approach� it is worth remembering that� since equation ������

is of the type � � p
�� x� the step�size ��k� can be written as x

��
p
��x which is a

numerically less sensitive expression� Equation ������ shows this expression�

��k� �

��k����k�������n
���k���

�  
q
�� ��k����k�������n

���k���

������

��



��� Simulation Results

In this section� we apply the constrained adaptive algorithms to the case of a DS�

CDMA downlink transmission system� The received signal for a system with K

simultaneous users can be written as

x�k� �
KX
i��

Aibi�k�si  n�k� ������

where Ai is the signal amplitude of user i� si is the signature sequence of the ith

user� and bi�k� 
 f��g is the transmitted bit of the ith user� At the mobile receiver
we are only interested in detecting one user �here assumed to be i � ��� One way

of constructing the receiver coe�cients is to minimize its output energy under the

constraint that the desired user�s code sequence can pass with unity response� The

problem is then to 	nd a coe�cient vector w�k� such that solves

min
w�k�

kxT �k�w�k�k� subject to sT�w�k� � � ������

where� using the notation of the previous section� we see that the reference signal

d�k� � �� C � s� and f � �� The system used in our experiment consists of K � �

users whose spreading sequences were Gold codes of length � ����� The signal�to�

noise ratio �SNR� for the desired user was set to �dB and the interfering users power

was set to �� times stronger than the desired user power �Ai �
p
�� for i 
� ��� In

the simulation� we have used the optimal step�size sequence ���� described in the

previous section�

Figure ��� shows the learning curves for the LMS� NLMS� and BNDR�LMS al�

gorithms �average of ��� runs�� The step�size for the LMS algorithm was chosen to

be � � ������ such that its misadjustment is comparable with the other normalized

algorithms using optimal sequences� As can be seen from the 	gure� the perfor�

mance of the normalized algorithms are superior to the LMS algorithm in terms of

convergence rate� Probably due to the input signal which in this example is not

correlated enough� the BNDR�LMS algorithm could not have the best performance

and the NLMS algorithm is suggested in these cases� This assertion is supported by

the fact that even the RLS algorithm have not shown a much better performance

��



than the NLMS algorithm in this particular example� It is worth mentioning that

the general sidelobe canceler �GSC� structure using the NLMS and the BNDR�LMS

algorithms was also simulated and presented identical learning curves�
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Figure ���� Learning curves of the constrained algorithms�

��
 Conclusions

This chapter introduced the constrained version of the BNDR�LMS algorithm using

the structure developed by Frost �����

A straightforward method of obtaining the normalized �NLMS and BNDR�LMS�

algorithms was presented and it was shown that this method is also valid for the

constrained versions of these algorithms� The resulting constrained BNDR�LMS al�

gorithm using the Frost structure presented identical results then the unconstrained

counterpart using the GSC structure� An optimal step�size sequence for the BNDR�

LMS was also obtained� The algorithm was applied to CDMA mobile reception and

the simulation results showed faster convergence rate as well as a small misadjust�

ment when the optimal time�varying step�size is used�

��



Chapter �

Fast QR Algorithms� a Uni�ed

Approach

��� Introduction

This section deals with the basic concepts used in the RLS algorithms employing

conventional and inverse QR decomposition� The methods of triangularizing the

input data matrix and the meaning of the internal variables of these algorithms

are emphasized in order to establish the notation used in this work as well as to

introduce the most important relations used hereafter�

����� The Conventional QR Algorithm

As in the conventional RLS algorithm� we are interested in minimizing the following

cost function

��k� �
kX
i��

�k�ie��i� � eT �k�e�k� �k e�k� k� �����

where each component of the vector e�k� is the a posteriori error at instant i weighted

by ��k�i��� �� is the forgetting factor and i varies from � to k�� The vector e�k� is

given by

e�k� � d�k��X�k�w�k� �����



In the above equation� the weighted desired signal vector d�k�� the coe�cient

vector w�k�� and the input data matrix X�k� are de	ned by

d�k� �

�
�������

d�k�

����d�k � ��
���

�k��d���

�
�������

�����

w�k� �

�
�������

w��k�

w��k�
���

wN�k�

�
�������

�����

X�k� �

�
�������

xT �k�

����xT �k � ��
���

�k��xT ���

�
�������

�����

where N is the 	lter order �number of coe�cients minus one�� x�k� is the input

signal vector �x�k� x�k � �� � � � x�k � N��T and the samples before instant k � �

are considered zeros�

The optimal solution to the least�squares problem at a given instant k can be

found by di�erentiating the cost function with respect to w�k� and equating to zero�

resulting in

w�k� � R��
D �k�pD�k� �����

where RD�k� � XT �k�X�k� is the deterministic data correlation matrix and

pD�k� � XT �k�d�k� is the deterministic cross�correlation vector between the in�

put and the desired signal�

Expression ����� is used in the conventional RLS approach� The inverse ofRD�k�

can become ill�conditioned� e�g�� due to loss of persistence of excitation of the input

signal or due to quantization e�ects ���� In order to avoid possible inaccurate solu�

��



tions� the QR decomposition approach triangularizes the input data matrix through

the use of Givens rotation matrices�

The premultiplication of ����� byQ�k� �matrix which represents the overall trian�

gularization process via elementary Givens rotations matrices� triangularizes X�k�

and since Q�k� is orthogonal �actually orthonormal�� it will not a�ect the cost func�

tion�

Q�k�e�k� �

�
� eq��k�

eq��k�

�
� �

�
� dq��k�

dq��k�

�
��

�
� O

U�k�

�
�w�k� �����

where U�k� is the Cholesky factor of XT �k�X�k� �i�e� UT �k�U�k� �XT �k�X�k��

and the subscripts � and � indicate the 	rst k �N and the last N  � components

of the vector� respectively�

The weighted�square error �or cost function� can be minimized by choosing w�k�

such that the term dq��k��U�k�w�k� is zero� The tap�weight coe�cients are then
calculated using a backsubstitution procedure �see ��� ��� for more details��

Using once more the fact that Q�k� is orthonormal and the de	nition in ������

we can write the product Q�k�X�k� as

Q�k�

�
� � �T

� QT �k � ��

�
�
�
� � �T

� Q�k � ��

�
�
�
� xT �k�

����X�k � ��

�
� �

�
� O

U�k�

�
�
�����

In the above equation� if we call #Q�k� the product of the 	rst two matrices on

the left and execute the multiplication of the remaining two matrices� we have

#Q�k�

�
����

xT �k�

O

����U �k � ��

�
���� �

�
� O

U�k�

�
� ���
�

From ���
� we see that #Q�k� is a product of Givens rotations matrices that

annihilates the current input vector� Moreover� the recursive nature of Q�k� may

be expressed by

��



Q�k� � #Q�k�

�
� � �T

� Q�k � ��

�
� ������

Once #Q�k� is responsible for zeroing xT �k� as shown in ���
�� its structure in�

cludes a submatrix Ik�N��� Fortunately� we can avoid the ever increasing order

characteristic by deleting this section of #Q�k� and rewriting ���
� as

�
� �T �k�

U �k�

�
� � Q	�k�

�
� xT �k�

����U�k � ��

�
� ������

whereQ	�k� is #Q�k� after removing the Ik�N�� section along with the corresponding

rows and columns�

Recalling ������ we see that eq��k� � dq��k� and the product Q�k�d�k� can be

written as �
� eq��k�

dq��k�

�
� � #Q�k�

�
� � �T

� Q�k � ��

�
�
�
� d�k�

����d�k � ��

�
�

� #Q�k�

�
����

d�k�

����eq��k � ��
����dq��k � ��

�
����

�

�
����

eq��k�

����eq��k � ��
dq��k�

�
���� ������

where the last multiplication can be easily understood if we note in ���
� that #Q�k�

will alter only the 	rst and the last N  � components of a vector�

From ������� it is also possible to remove the increasing section of #Q�k� resulting

in the following expression�

�
� eq��k�

dq��k�

�
� � Q	�k�

�
� d�k�

����dq��k � ��

�
� ������

��



where eq��k� is the 	rst element of the rotated error signal and dq��k� is a vector

with the last N  � elements of the rotated desired signal vector�

At this point� it is important to emphasize the structure ofQ	�k� as a product of

Givens rotation matrices given by
Q�

i�N Q	i
�k�� This structure will depend on the

type of triangularization of U�k�� upper or lower triangular matrix� This choice� as

will be seen later� will also determine two classes of fast algorithms� The way by

which matrix U�k� is triangularized is depicted in Fig� ��� with the corresponding

Q	i�k� being given by

UPPER � Q	i
�k� �

�
�������

cos�i�k� �T �sin�i�k� �T

� Ii � � � � ��
sin�i�k� �T cos�i�k� �T

� � � � �� � IN�i

�
�������

������

LOWER � Q	i�k� �

�
�������

cos�i�k� �T �sin�i�k� �T

� IN�i � � � � ��
sin�i�k� �T cos�i�k� �T

� � � � �� � Ii

�
�������

������

It is important to remark that the angles �i�k� in ������ and ������ are not the

same although written in the same way for the sake of simplicity� It is also relevant

to mention that the two possibilities for a upper triangular matrix �zeros triangle on

the lower right side as in the 	gure or zeros triangles on the lower left side� as well

as the two possibilities for a lower triangular matrix �zeros triangle on the upper left

side as in the 	gure or zeros triangle on the upper right side� lead to the identical

algorithms�

As an example� the structures of Q	�k� for upper and lower triangularizations

of U�k� with N � � are given by

��
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Figure ���� The di�erent triangularizations of U �k�� �a� UPPER and �b� LOWER�

UPPER � Q	�k� �

�
�������

c��c��c�� �c��c��s�� �c��s�� �s��
s�� c�� � �

s��c�� �s��s�� c�� �

s��c��c�� �s��c��s�� �s��s�� c��

�
�������
������

LOWER � Q	�k� �

�
�������

c��c��c�� �s�� �c��s�� �c��c��s��
s��c��c�� c�� �s��s�� �s��c��s��
s��c�� � c�� �s��s��
s�� � � c��

�
�������
������

where c�i � cos�i�k� and s�i � sin�i�k��

The last two equations suggest that Q	�k� in both cases can be partitioned as

Q	�k� �

�
� ��k� gT �k�

f�k� E�k�

�
� ������

where ��k� �
QN

i�� cos�i�k� and the elements of f�k�� g�k� and E�k� depend on the

type of triangularization�

In order to have all equations of the traditional �O�N��� QR algorithm� let us

postmultiply the transposed vector eTq �k�Q�k� by the pinning vector �� � � � � ��T �

eTq �k�Q�k�

�
�������

�

�
���

�

�
�������
� eT �k�QT �k�Q�k�

�
�������

�

�
���

�

�
�������
� e�k� ����
�

��



On the other hand� from equations ������ and ������ and the fact that Q	�k� is

#Q�k� after removing the k � N � � increasing columns and rows� we can conclude
that Q�k��� � � � � ��T � ���k� � � � � � fT �k��T � Once eq��k� is a null vector �keep
in mind that w�k� in ����� was chosen in order to make it zero�� it is easy to show

that

e�k� � eq��k���k� ������

This last equation is particularly useful in applications where the coe�cients of

the adaptive 	lter are not necessary since we can obtain e�k� without calculating

w�k��

The equations of the conventional QR algorithm are presented in Table ���� It is

worth mentioning that in this case the type of triangularization used has no in�uence

on the performance of the algorithm and also that if the tap�weight coe�cients are

required� they can be calculated using the backsubstitution procedure ����

Table ���� The conventional QR equations�

QR

for each k

f Obtaining Q	�k� and updating U�k���
� �T

U�k�

�
� � Q	�k�

�
� xT �k�

����U�k � ��

�
�

Obtaining ��k��

��k� �
QN

i�� cos�i�k�

Obtaining eq��k� and updating dq��k���
� eq��k�

dq��k�

�
� � Q	�k�

�
� d�k�

����dq��k � ��

�
�

Obtaining e�k��

e�k� � eq��k���k�

g

��



����� Interpreting the Internal Variables

Examining the structure of Q	�k� as expressed in ������ and recalling ������ and

the fact that this matrix is orthonormal� we can write the next two equations�

�
� ��k� gT �k�

f�k� E�k�

�
�
�
� xT �k�

����U�k � ��

�
� �

�
� �T

U�k�

�
� ������

IN�� � Q	�k�Q
T
	 �k� �

�
� ��k� gT �k�

f�k� E�k�

�
�
�
� ��k� fT �k�

g�k� ET �k�

�
�

� QT
	 �k�Q	�k� �

�
� ��k� fT �k�

g�k� ET �k�

�
�
�
� ��k� g�k�T

f�k� E�k�

�
� ������

From ������ and ������� a number of relations� which are common to both trian�

gularization methods� can be derived� Let us highlight the following two relations

f�k�xT �k�  ����E�k�U�k � �� � U�k� ������

��k�f�k�  E�k�g�k� � � ������

Now� if we multiply the transpose of ������ by itself� we obtain

UT �k�U�k� � x�k�xT �k�  �UT �k � ��U�k � �� ������

Premultiplying ������ by UT �k� and comparing to ������ we 	nd that

f�k� � U�T �k�x�k� ������

E�k� � ����U�T �k�UT �k � �� ������

By substituting ������ and ������ in ������� it follows that

g�k� � ���k�U�T �k � ��x�k��
p
� ������

We will see that ������� ������ and ������ are key relations for the comprehension

of other algorithms of the QR family� In order to understand the meaning of these

��



variables� which depend on the triangularization method� it is necessary to introduce

the application of the QR decomposition to the forward and backward prediction

problems as well as to compare the QRmethod discussed so far to the Gram�Schmidt

Orthogonalization procedure�

The Backward Prediction Problem

In the backward prediction problem� we try to obtain an estimate of a past sample

of a given input sequence using the currently available information of the sequence�

The signal x�K �N � �� is the desired signal and the prediction is based on x�k��
The weighted backward error vector is

eb�k� � db�k��X�k�wb�k� �

�
����������

x�k �N � ��
����x�k �N � ��

���

��k�N�����x���

�N��

�
����������
�X�k�wb�k� ����
�

where wb�k� is the backward prediction coe�cient vector�

The last equation can be rewritten in terms ofX�N����k�� the input data matrix

of order N  ��

eb�k� � �X�k� db�k��

�
� �wb�k�

�

�
� �X�N����k�

�
� �wb�k�

�

�
� ������

The rotated weighted backward error vector is de	ned below and it will be used

later in the derivation of the fast QR algorithms�

ebq�k� � Q�k�eb�k� �

�
� O ebq� �k�

U�k� dbq� �k�

�
�
�
� �wb�k�

�

�
� ������

��



The Forward Prediction Problem

In the forward prediction problem� the desired signal is x�k� and the prediction will

be carried out with x�k � ��� In terms of weighted vectors� we have

ef �k� � df �k��

�
� X�k � ��

�
T

�
�wf �k� �

�
�������

x�k�

����x�k � ��
���

�k��x���

�
�������
�

�
� X�k � ��

�
T

�
�wf �k�

������

where wf�k� is the forward prediction coe�cient vector�

The last equation can also be rewritten in terms of X�N����k�� the input data

matrix of order N  ��

ef�k� �

�
�df �k� X�k � ��

�T

�
�
�
� �

�wf�k�

�
� �X�N����k�

�
� �

�wf�k�

�
� ������

The rotated weighted forward error vector is de	ned as

efq�k� �

�
� Q�k � �� �

�T �

�
� ef�k� �

�
����
efq� �k� O

dfq� �k� U�k � ��
�k��x��� �T

�
����
�
� �

�wf�k�

�
�

������

It is worth mentioning that all variables of the backward and forward predictors

are related to order N predictors �N  � prediction coe�cients�� As such eb�k� �

e
�N���
b �k� and ef �k� � e

�N���
f �k��

Gram�Schmidt Orthogonalization for Lower Triangular U�k�

The Gram�Schmidt technique searches a set of orthogonal vectors fe�� e�� � � � � eNg
spanning the same space as another set of vectors fx��x�� � � � �xNg which are not

��



mutually orthogonal� This is usually accomplished by making e� � x�� e� � x�� $x�

�where $x� is the projection of x� in e�� and so on� such that ei � xi � $xi� $xi �Pi��
j�� kjiej with kji � eTj xi� k ej k�� j � i� After 	nding eN � the orthonormality

is forced by replacing ei by ei� k ei k� This procedure triangularizes a matrix
consisting of vectors xi as its columns� The result is an upper triangular matrix�

We will choose another set of orthogonal vectors such that matrixX�k� �rewrit�

ten below� is correctly triangularized�

X�k� � �x� x� � � �xN � �

�
�������

xT �k�

����xT �k � ��
���

�k��xT ���

�
�������

�

�
�������������

x�k� x�k � �� � � � x�k �N�

����x�k � �� ����x�k � ��
���

��k�N���x���
���

��� �

��k�����x��� ��k�����x���
���

�k��x��� � � � � �

�
�������������

������

By making eN � x�� eN�� � x�� $x�� � � � � e� � xN� $xN � we have x� � eN �x� �

eN��  kN�eN � � � � �xN � e�  k�Ne�  � � � kNNeN � which means that

X�k� � �e� e� � � �eN �

�
�������

� � � � � �
��� k�N

�
���

� kN� � � � kNN

�
�������
� G�k�K�k� ������

De	ning D��k� � GT �k�G�k� and being this product a diagonal matrix whose

elements are k ei k�� D�k� is a diagonal matrix whose elements are k ei k� We can�
then� write

�




UT �k�U �k� �XT �k�X�k� �KT �k�GT �k�G�k�K�k� � �D�k�K�k��T �D�k�K�k��

������

Once U �k� � D�k�K�k� ���� and using ������� ������� ������ and ������� we have

the following expression for Q	�k�

Q	�k� �

�
� ��k� ���k������

�
D���k � ��K�T �k � ��x�k�

�T

D���k�K�T �k�x�k� ����D���k�K�T �k�KT �k � ��DT �k � ��

�
�

������

It is possible to 	nd a physical meaning to the expression K�T �k�x�k� if ������

is 	rst rewritten as

GT �k� �K�T �k�XT �k� �K�T �k�
�
x�k� ����x�k � �� � � � � �

�
�������

eT�

eT�
���

eTN

�
�������
����
�

From the backward prediction problem ����
�� we know that

e
�i�
b �k� � d

�i�
b �k��X �i��k�w

�i�
b �k� ������

where d
�i�
b �k� is the weighted backward desired signal vector of order i � � or�

x�k � i� ����x�k � i� �� � � � ��k�i���x��� �Ti
�T
�

By di�erentiating e
�i�
b

T
�k�e

�i�
b �k� with respect to w

�i�
b �k�� it is straightforward to

show that the optimum backward prediction coe�cients vector is given by

w
�i�
b �k� �

h
X �i�T �k�X�i��k�

i��
X�i�T �k�d

�i�
b �k� ������

��



If we recognize d
�i�
b �k� from ����
� as xi in ������ and substitute 	rst ������ in

������ and then X�i��k� by G�i��k�K�i��k� �of order i � ��� we obtain� after some
manipulations� the expression

e
�i�
b �k� � xi �

i��X
j��

eje
T
j xi

k ej k� ������

which corresponds to eN�i � xi� $xi� i�e�� one of the vectors of the new base shown
in �������

Once we know that ei is equal to e
�N�i�
b �k�� these values can be used in ����
�

and it follows that

K�T �k�x�k� �

�
�������

e
�N�
b �k�

e
�N���
b �k�
���

e
���
b �k�

�
�������

������

where the above product is the a posteriori backward prediction error �with di�erent

number of coe�cients� vector at instant k�

It is worth mentioning that ������ brings an interpretation of the non�zero el�

ements of the rows of K�T �k� as the coe�cients of backward prediction 	lters of

di�erent orders� If we now recall that the elements of the diagonal matrix D�k� are

given by k ei�k� k�k e�N�i�b �k� k� the vector f�k� of ������ as seen in ������ is given
by

f�k� �

�
�������

e
�N�
b �k�� k e�N�

b �k� k
e
�N���
b �k�� k e�N���b �k� k

���

e���b �k�� k e���b �k� k

�
�������

������

and will be referred as the normalized a posteriori backward prediction error vector

at instant k�

��



Moreover� using the same interpretation of D�k��� andK�T �k���� the vector
g�k� of ������ can be shown to correspond to

g�k� � ���k�a�k� � ���k������

�
�������

e��N�
b �k�� k e�N�

b �k � �� k
e��N���b �k�� k e�N���b �k � �� k

���

e����b �k�� k e���b �k � �� k

�
�������

������

where a�k� is the a priori backward prediction error vector at instant k normalized

by the a posteriori backward error energies at instant k � � and weighted by ������
The expression for E�k� given in ������� however� does not lead to a relevant

physical interpretation and ������ remains the best representation forE�k�� Another

alternative representation to E�k� �yet with no physical meaning� is A�T �k� where

A�k� is the Cholesky factor of I  a�k�aT �k� �����

Gram�Schmidt Orthogonalization for Upper Triangular U�k�

The informations given in ������ and ������ are exclusively valid for the lower

triangularization of U �k�� For the upper triangularization of matrix U�k� we

shall choose a di�erent set of orthogonal vectors fe�� e�� � � � � eNg such that e� �
xN � e� � xN�� � $xN��� � � � � eN � x� � $x�� In this case� we have xN � e��xN�� �

e�  k� N��e�� � � � �x� � eN  k��e�  k��e�  � � � kN�� �eN��� which means that

X�k� � �e� e� � � �eN �

�
�������

k�� � � � k� N�� �
��� �

kN�� �
���

� � � � �

�
�������
� G�k�K�k� ������

Equations ������ to ����
� still hold in this upper triangularization case� From

the forward prediction problem ������� we have

e
�i�
f �k� � d

�i�
f �k��

�
� X�i��k � ��

�T

�
�w�i�

f �k� ������

��



where d
�i�
f �k � i� � df �k � i� and df�k � i� � xi from �������

By di�erentiating �e
�i�
f �k��

Te
�i�
f �k� with respect to w

�i�
f �k� and equating the result

to zero� we 	nd the optimum forward prediction coe�cient vector of order �i � ��
and at instant k which is given by

w
�i�
f �k� �

n
�X�i��k � ���TX�i��k � ��

o�� �� X�i��k � ��
�T

�
�
T

d
�i�
f �k� ������

By substituting this equation in ������ and making X�i��k � �� � G�i��k �
��K�i��k � ��� we have

e
�i�
f �k� � d

�i�
f �k��

�
� Pi��

j�� e
�i�
j �k � ���e�i�j �k � ���T �

�T �

�
�d�i�f �k� ����
�

from which it is possible to obtain the vectors of G�k� in ������ which are given by

ei �

�
� e

�i�
f �k �N  i�

�N�i

�
� ������

This expression for ei can then be used in ����
� for the upper triangularization

case and it follows that

K�T �k�x�k� �

�
�������

e
���
f �k �N�

e
���
f �k �N  ��

���

e
�N�
f �k�

�
�������

������

where the above product is the a posteriori forward prediction errors �with di�erent

orders and at distinct instants of time� vector�

It is also worth mentioning that ������ brings an interpretation of the non�zero

elements of the rows of K�T �k� as the coe�cients of forward prediction 	lters of

di�erent orders at distinct instants of time� Recalling that the elements of the

��



diagonal matrixD�k� are given by k ei�k� k�k e�i�f �k�N  i� k� vector f�k� is now
given by

f�k� �

�
�������

e
���
f �k �N�� k e���f �k �N� k

e
���
f �k �N  ��� k e���f �k �N  �� k

���

e
�N�
f �k�� k e�N�

f �k� k

�
�������

������

and will be referred as the normalized a posteriori forward prediction error vector�

By using the same interpretation of D�k � �� and K�T �k � ��� the vector g�k�
corresponds in the upper triangularization case to

g�k� � ���k�a�k� � ���k������

�
�������

e����f �k �N�� k e���f �k �N � �� k
e����f �k �N  ��� k e���f �k �N� k

���

e��N�
f �k�� k e�N�

f �k � �� k

�
�������
������

where a�k� in this case is the a priori forward prediction error vector normalized by

the a posteriori forward error energies and weighted by ������

We saw that in the case of upper triangularization� the normalized errors present

inQ	�k� are of di�erent orders at distinct instants of time �order and time updating�

and this fact seems to be the cause of the extra computational e�ort of the fast

algorithms derived by using this type of triangularization�

����� The Inverse QR Algorithm

An alternative approach based on the update of the inverse Cholesky factor was

presented in ����� This algorithm known as inverse QR �IQR� allows the calculation

of the weight vector without backsubstitution and some of its relations will be used

later in this work�

��



Starting from ����� and using
�
x�k� ����XT �k � ���T instead of X�k� on the

de	nition of RD�k� and pD�k�� after some manipulations� we can show that

w�k� � w�k � ��  U���k�U�T �k�x�k�e��k� ������

where e��k� is the a priori error or d�k�� xT �k�w�k � �� and the term multiplying

this variable is known as the Kalman Gain�

The product U���k�U�T �k� in ������ can be found from previous quantities if we

invert ������ and use the so called matrix inversion lemma ���� After some algebraic

operations� the result is

U���k�U�T �k� � ���U���k � ��U�T �k � ���
�������k�U���k � ��a�k�aT �k�U�T �k � �� ������

De	ning the vector u�k� as

u�k� � ��������k�U���k � ��a�k� ������

we can rewrite ������ and ������ as

U���k�U�T �k�  u�k�uT �k� � ���U���k � ��U�T �k � �� ������

w�k� � w�k � ��� ��k�u�k�e��k� ������

where the Kalman vector is now expressed as ���k�u�k��
It was noted in ���� that ������ implies the existence of an orthogonal matrix

QI�k� such that

QI�k�

�
� �T

�����U�T �k � ��

�
� �

�
� uT �k�

U�T �k�

�
� ����
�

��



This can be veri	ed by taking the transpose of ����
� and multiplying by itself�

resulting in equation ������� Fortunately� QI�k� is already known� By admitting a

partition of QI�k� similar to the one used in ������ and imposing orthonormality�

we can see that ����
� yields QI�k� � Q	�k��

Since we know that Q	�k� is orthonormal� if we postmultiply this matrix by its

	rst row transposed� we shall have

Q	�k�

�
� ��k�

���k�a�k�

�
� �

�
� �
�

�
� ������

By combining ����
� �withQI�k� � Q	�k�� and ������ �after dividing both terms

by ��k�� in one only equation� we have

�
� ����k� uT �k�

� U�T �k�

�
� � Q	�k�

�
� � �T

�a�k� �����U�T �k � ��

�
� ������

Equation ������ is a key relation to the inverse QR algorithm� In order to have

all the necessary equations� let us now analyze the relation between the a posteriori

and the a priori errors� Replacing Q	�k� by its partition �given in ������� �������

������ and ������� in ������� it follows that

e�k� � ��k�eq��k� � ���k�e��k� ������

By following similar procedures in the backward and forward prediction prob�

lems� it is possible to show that

eb�k� � ��k�ebq� �k� � ���k�e�b�k� ������

ef�k� � ��k � ��efq� �k� � ���k � ��e�f�k� ������

The equations of the inverse QR are presented in Table ��� while the detailed

algorithm description can be found in �����

��



Table ���� The inverse QR equations�

IQR

for each k

f Obtaining a�k��

a�k� � �����U�T �k � ��x�k�
Obtaining Q	�k� and ��k���
� ����k�

�

�
� � Q	�k�

�
� �

�a�k�

�
�

Obtaining u�k� and updating U�T �k���
� uT �k�

U�T �k�

�
� � Q	�k�

�
� �T

�����U�T �k � ��

�
�

Obtaining e�k��

e�k� �
�
d�k�� xT �k�w�k � ��� ���k�

Updating the coe�cient vector�

w�k� � w�k � ��� u�k�e�k�
g

��� Classi�cation of the Fast QR Algorithms

From the conventional �O�N��� QR decomposition method ��� �� a number of fast

algorithms �O�N �� were derived ����!��
�� These algorithms can be classi	ed in

terms of the type of triangularization applied to the input data matrix �upper or

lower triangular� and type of error vector �a posteriori or a priori� involved in the

updating process� It was clear from the Gram�Schmidt orthogonalization procedure

that an upper triangularization �in the notation adopted in this work� involves the

updating of forward prediction errors while a lower triangularization involves the

updating of backward prediction errors� This section presents the equations of these

algorithms as well as a new one� referred as FQR PRI F� which is a fast QR using

upper triangularization �of the Cholesky factor of the data correlation matrix� and

��



updating a priori forward errors �vector a�k��� Table ��� presents the classi	cation

and introduces how these algorithms will be designated hereafter�

Table ���� Classi	cation of the fast QR algorithms�

Error Prediction

Type Forward Backward

A Posteriori FQR POS F ���� FQR POS B ����

A Priori FQR PRI F new ���� FQR PRI B ��
� ���

It is worth mentioning that the FQR PRI B algorithm was independently devel�

oped in ���� and ��
� using di�erent approaches� The approach which will be used

here was derived ��
� from concepts used in the inverse QR algorithm ����� The same

algorithm was also derived in ��
� as a lattice extension of the inverse QR algorithm

�����

In the derivation of fast QR algorithms� we start by applying the QR decomposi�

tion to the backward and forward prediction problems whose prediction errors were

de	ned in ����
� and ������� Our aim is to triangularize X �N����k� from equations

������ and ������ in order to obtain Q�N����k� such that

Q�N����k�X�N����k� �

�
� O

U �N����k�

�
� ������

��� Upper Triangularization Algorithms

�Updating Forward Prediction Errors


We will derive here the FQR POS F algorithm ���� and the new FQR PRI F al�

gorithm� Initially� if we premultiply the backward weighted desired vector db�k�

de	ned in ����
� by Q�k� and use ������� two important relations will follow

��



k eb�k� k� � e�bq��k�  � k eb�k � �� k� �������
� ebq��k�

dbq��k�

�
� � Q	�k�

�
� db�k�

����dbq��k � ��

�
� ������

where db�k� � x�k �N � ���
In the backward prediction problem� the triangularization as seen in ������ is

achieved using three matrices� Q�N����k� � Q�
b�k�Qb�k�Q�k�� where Qb�k� and

Q�
b�k� are two sets of Givens rotations applied to generate� respectively� k eb�k� k

and k e���b �k� k� As a result we have

U �N����k� � Q�
	b�k�

�
� �T k eb�k� k
U�k� dbq��k�

�
�

�

�
� zT �k� k e���b �k� k
R�k� �

�
� ������

whereQ�
	b�k� is a submatrix ofQ

�
b�k�� �z�k�R

T �k��T is the left part of U �N����k� and

k e���b �k� k is the norm of the backward error of a zero�coe�cient predictor�
In the forward prediction problem� the premultiplication of the forward weighted

desired vector� df�k� as de	ned in ������� by

�
� Q�k � �� �

�T �

�
� and the use of ������

will lead to two other important relations given by

k ef�k� k� � e�fq��k�  � k ef �k � �� k� ����
��
� efq��k�

dfq��k�

�
� � Q	�k � ��

�
� df�k�

����dfq��k � ��

�
� ������

where df �k� � x�k��

The upper triangularization of U �N����k� in the forward prediction problem

is implemented by premultiplying ef�k� by the product Qf�k�

�
� Q�k � �� �

�T �

�
��

�




where Qf�k� is a set of Givens rotations generating k ef�k� k by eliminating the
	rst k � N elements of the rotated desired vector of the forward predictor� The

result is

U �N����k� �

�
� dfq��k� U�k � ��
k ef�k� k �T

�
� ������

Working with nonincreasing dimensions� it is easy to show that ���

Q
�N���
	 �k� � Q	f�k�

�
� Q	�k � �� �

�T �

�
� ������

where Q	f�k� is a single Given rotation generating k ef�k� k as in ����
��
If we take the inverses of ������ and ������� the results are

�U �N����k���� �

�
� � R���k�

�

ke���
b �k�k

�zT �k�R��
�k�

ke���
b �k�k

�
�

�

�
� �T �

kef �k�k

U���k � �� �U��
�k���dfq� �k�
kef �k�k

�
� ������

We can use the expressions of �U �N����k���� given in ������ to obtain the vectors

f �N����k �� and a�N����k ��� The choice of one of these vectors will determine the

algorithm� updating f�k� �a posteriori forward errors� will lead to the FQR POS F

algorithm ���� and updating a�k� �a priori forward errors� will lead to the new

FQR PRI F algorithm �����

����� The FQR POS F Algorithm

In the FQR POS F algorithm� the vector f �N����k �� � �U �N����k ����Tx�N����k 

�� is expressed in terms of the relations obtained in the forward and backward

prediction problems� We shall 	rst use the expression for �U �N����k���� in ������

that comes from the backward prediction evaluated at instant k  � to calculate

��



f �N����k  ��� In this case we replace x�N����k  �� by �xT �k  �� x�k � N��T

and then premultiply the result by Q�T
	b�k  ��� The 	nal outcome after some al�

gebraic manipulation �using equation ������ to help with the simpli	cation of the

expression� is

f �N����k  �� � Q�
	b�k  ��

�
� eb�k���

keb�k���k

f�k  ��

�
� ������

Using the other expression for �U �N����k���� �from the forward prediction� at

instant k  � and replacing x�N����k  �� by �x�k  �� xT �k��T � we have

f �N����k  �� �

�
� f�k�

ef �k���

kef �k���k

�
� ������

By combining ������ and ������� we have an expression to update f�k� given by

�
� eb�k���

keb�k���k

f�k  ���

�
� � Q�

	b
T
�k  ��

�
� f�k�

ef �k���

kef �k���k

�
� ������

Once we have f�k  ��� we can 	nd the angles of Q	�k  �� by postmultiplying

this matrix by the pinning vector �� � � � � ��T � From ������� we can see that the

result is

Q	�k  ��

�
� �
�

�
� �

�
� ��k  ��

f�k  ��

�
� ������

However� the quantities required to compute the angles of Q�
	b
�k  �� are not

available at instant k� and a special strategy is required� The updated Q�
	b
�k �� is

obtained ��� ��� with the use of the vector c�k  �� de	ned as

c�k  �� � $Q
�N���

	 �k  ��Q�
	b�k�

�
� �
�

�
�

� Q�
	b�k  ��

�
� b

�

�
� ������

��



The submatrix $Q
�N���

	 �k  �� consisting of the last �N  ��� �N  �� elements

of Q
�N���
	 �k  �� is available from ������ �forward prediction� and b does not need

to be explicitly calculated in order to obtain the angles ��bi �

Finally� the joint process estimation is calculated with ������ and ������� and the

FQR POS F equations are presented in Table ���� A detailed description of this

algorithm is found in Appendix C�

����� The New FQR PRI F Algorithm

Expressing a�N����k  �� � �U �N����k���Tx�N����k  ���
p
� in terms of the matri�

ces in ������ and premultiplying the one that comes from the backward prediction

problem by Q�
	b�k�Q

�T
	b�k� yields

�
� e�b�k���p

�keb�k�k

a�k  ��

�
� � Q�

	b
T
�k�

�
� a�k�

e�f �k���p
�kef �k�k

�
� ����
�

Once we have a�k  ��� the angles of Q	�k  �� are found through the following

relation obtained by postmultiplying QT
	 �k  �� by the pinning vector�

�
� ����k  ��

�

�
� � Q	�k  ��

�
� �

�a�k  ��

�
� ������

Since the angles of Q�
	b
�k  �� can be updated with the same procedure used

in the FQR POS F algorithm� we already have all the necessary equations of the

new fast QR�RLS algorithm presented in Table ���� The detailed description of this

algorithm is found in Appendix C�

��� Lower Triangularization Algorithms

�Updating Backward Prediction Errors


Following similar steps as in the upper triangularization� it is possible to obtain

the lower triangular matrix U �N����k� from the forward and backward prediction

��



problems�

In the backward prediction problem� the lower triangular U �N����k� is obtained

through the use of Q�N����k� � Qb�k�Q�k�� where Qb�k� is a set of Givens rotations

applied to generate k eb�k� k� The resulting Cholesky factor is

U �N����k� �

�
� �T k eb�k� k
U�k� dbq��k�

�
� ������

On the other hand� in the forward prediction problem� the lower triangular of

U �N����k� is implemented by premultiplying ef �k� by the product

Q�
f �k�Qf�k�

�
� Q�k � �� �

�T �

�
�� where Qf �k� and Q

�
f�k� are two sets of Givens ro�

tations generating k ef �k� k and k e���f �k� k� respectively� The resulting expression
is

U �N����k� � Q�
	f�k�

�
� dfq��k� U�k � ��
k ef�k� k �T

�
� �

�
� � R�k�

k e���f �k� k zT �k�

�
�
������

where �RT �k� z�k��T is the right part of U �N����k�� Keeping in mind that �������

������� ����
� and ������ hold� k ef �k� k can be recursively computed using ����
��
Taking the inverse of ������ and ������ we have the following results

�U �N����k���� �

�
� �U��

�k�dbq� �k�
keb�k�k U���k�

�
keb�k�k �T

�
�

�

�
� �zT �k�R��

�k�

ke���
f �k�k

�

ke���
f �k�k

R���k� �

�
� ������

With the results obtained in ������� we can once more express the vectors

f �N����k  �� and a�N����k  �� in terms of the partitions of
h
U �N����k  ��

i��
�

If we update f�k�� the resulting algorithm will be the FQR POS B while updating

a�k� we will have the FQR PRI B algorithm�

��



����� The FQR POS B Algorithm

Expressing f �N����k �� � �U �N����k ����Tx�N����k �� in terms of the matrices in

������ and premultiplying the one that comes from the forward prediction problem

by Q�
	f�k  ��Q

�T
	f�k  �� yields

�
� eb�k���

keb�k���k

f�k  ��

�
� � Q�

	f
�k  ��

�
� f�k�

ef �k���

kef �k���k

�
� ������

During the derivation of ������� it was observed that the last element of f�k  �� is

x�k���

ke���
f �k���k � The term

ef �k���

kef �k���k can be calculated as ��k�sin�f �k �� where sin�f �k 

�� �
efq��k���

kef �k���k is the sine of the angle of rotation matrix Qf �k  ���

Once we have f�k  ��� we 	nd Q	�k  �� with the same relation used in the

upper triangularization algorithms� ������� Moreover� the joint process estimation

is carried out in the same way and the FQR POS B equations are presented in Ta�

ble ���� The detailed descriptions of two slightly di�erent versions of this algorithm

is found in Appendix C�

����� The FQR PRI B Algorithm

This last algorithm of this family is obtained by expressing the vector a�N����k  

��� � �U �N����k���Tx�N����k ���
p
� in terms of the matrices in ������ and premul�

tiplying the one that comes from the forward prediction problem by Q�
	f�k�Q

�T
	f�k��

The updating equation is

�
� e�b�k���p

�keb�k�k

a�k  ��

�
� � Q�

	f�k�

�
� a�k�

e�f �k���p
�kef �k�k

�
� ������

It is again important to mention that� during the derivation� it was observed that

the last element of a�k  �� in ������ is already known to be equal to x�k���p
�ke���

f �k�k �

This fact leads to two slightly di�erent versions of the same algorithm�

Once more� if we have a�k  ��� we can 	nd Q	�k  �� using ������ and the

joint process estimation is carried out with ������ and ������� The FQR PRI B

��



equations are presented in Table ���� The detailed descriptions of two versions of

this algorithm is found in Appendix C�

��� Conclusions

This chapter derived a new algorithm named FQR PRI F or fast QR decomposition

RLS algorithm using a priori forward errors �based on an upper�triangularization

of the input data matrix according to the notation used here� and its relations

with other members of the fast QR algorithms family� A comprehensive framework

was used to classify the four fast QR algorithms of this family� Their derivations

in simple �only matrices equations� and detailed algorithmic descriptions were also

provided�

In terms of computational complexity� Table ��� shows the comparisons among

the four fast QR algorithms according to the algorithms detailed in Appendix C�

Note that p � N  � is the number of coe�cients�

Finally� it is important to remark that the fast QR algorithms with lower trian�

gularization of the input data matrix or� equivalently� updating backward prediction

errors are of minimal complexity and backward stable under persistent excitation

���� ����

��



Table ���� The FQR POS F equations�

FQR POS F

for each k

f Obtaining k ef�k  �� k��
� efq��k  ��

dfq��k  ��

�
� � Q	�k�

�
� x�k  ��

����dfq��k�

�
�

k ef�k  �� k�
q
e�fq��k  ��  � k ef�k� k�

Obtaining Q	f�k  ���

cos�f �k  �� � ���� k ef �k� k � k ef�k  �� k
sin�f �k  �� � efq��k  ��� k ef �k  �� k
Obtaining c�k  ���

Q
�N���
	 �k  �� � Q	f�k  ��

�
� Q	�k� �

�T �

�
�

$Q
�N���

	 �k  �� � last �N  ��� �N  �� elements of Q�N���
	 �k  ��

c�k  �� � $Q
�N���

	 �k  ��Q�
	b�k�

�
� �
�

�
�

Obtaining Q�
	b�k  ����

� b

�

�
� � Q�

	b
T
�k  ��c�k  ��

Obtaining f�k  ����
� eb�k���

keb�k���k

f�k  ��

�
� � Q�

	b
T
�k  ��

�
� f�k�

ef �k���

kef �k���k

�
�

Obtaining Q	�k  ����
� �
�

�
� � QT

	 �k  ��

�
� ��k  ��

f�k  ��

�
�

Joint Process Estimation��
� eq��k  ��

dq��k  ��

�
� � Q	�k  ��

�
� d�k  ��

����dq��k�

�
�

e�k  �� � eq��k  ����k  ��

g
��



Table ���� The FQR PRI F equations�

FQR PRI F

for each k

f Obtaining e�f �k  ����
� efq��k  ��

dfq��k  ��

�
� � Q	�k�

�
� x�k  ��

����dfq��k�

�
�

e�f �k  �� � efq��k  �����k�

Obtaining a�k  ����
� e�b�k���p

�keb�k�k

a�k  ��

�
� � Q�

	b
T
�k�

�
� a�k�

e�f �k���p
�kef �k�k

�
�

Obtaining Q	f�k  ���

k ef�k  �� k�
q
e�fq��k  ��  � k ef�k� k�

cos�f �k  �� � ���� k ef �k� k � k ef�k  �� k
sin�f �k  �� � efq��k  ��� k ef �k  �� k
Obtaining c�k  ���

Q
�N���
	 �k  �� � Q	f�k  ��

�
� Q	�k� �

�T �

�
�

$Q
�N���

	 �k  �� � last �N  ��� �N  �� elements of Q
�N���
	 �k  ��

c�k  �� � $Q
�N���

	 �k  ��Q�
	b�k�

�
� �
�

�
�

Obtaining Q�
	b�k  ����

� b

�

�
� � Q�

	b
T
�k  ��c�k  ��

Obtaining Q	�k  ����
� ����k  ��

�

�
� � Q	�k  ��

�
� �

�a�k  ��

�
�

Joint Process Estimation��
� eq��k  ��

dq��k  ��

�
� � Q	�k  ��

�
� d�k  ��

����dq��k�

�
�

e�k  �� � eq��k  ����k  ��

g ��



Table ���� The FQR POS B equations�

FQR POS B

for each k

f Obtaining dfq��k  ����
� efq��k  ��

dfq��k  ��

�
� � Q	�k�

�
� x�k  ��

����dfq��k�

�
�

Obtaining k ef �k  �� k�
k ef�k  �� k�

q
e�fq��k  ��  � k ef�k� k�

Obtaining Q�
	f�k  ����

� �

k e���f �k  �� k

�
� � Q�

	f �k  ��

�
� dfq��k  ��

k ef�k  �� k

�
�

Obtaining f�k  ����
� eb�k���

keb�k���k

f�k  ��

�
� � Q�

	f�k  ��

�
� f�k�

ef �k���

kef �k���k

�
�

Obtaining Q	�k  ����
� �
�

�
� � QT

	 �k  ��

�
� ��k  ��

f�k  ��

�
�

Joint Process Estimation��
� eq��k  ��

dq��k  ��

�
� � Q	�k  ��

�
� d�k  ��

����dq��k�

�
�

e�k  �� � eq��k  ����k  ��

g

��



Table ���� The FQR PRI B equations�

FQR PRI B

for each k

f Obtaining dfq��k  ����
� efq��k  ��

dfq��k  ��

�
� � Q	�k�

�
� x�k  ��

����dfq��k�

�
�

Obtaining a�k  ����
� e�b�k���p

�keb�k�k

a�k  ��

�
� � Q�

	f �k�

�
� a�k�

e�f �k���p
�kef �k�k

�
�

Obtaining k ef �k  �� k�
k ef�k  �� k�

q
e�fq��k  ��  � k ef�k� k�

Obtaining Q�
	f�k  ����

� �

k e���f �k  �� k

�
� � Q�

	f �k  ��

�
� dfq��k  ��

k ef�k  �� k

�
�

Obtaining Q	�k  ����
� ����k  ��

�

�
� � Q	�k  ��

�
� �

�a�k  ��

�
�

Joint Process Estimation��
� eq��k  ��

dq��k  ��

�
� � Q	�k  ��

�
� d�k  ��

����dq��k�

�
�

e�k  �� � eq��k  ����k  ��

g

�




Table ���� Comparison of computational complexity�

ALGORITHM ADD MULT� DIV� SQRT

FQR POS F ��p � ��p �� �p � �p �

FQR PRI F ��p � ��p �� �p � �p �

FQR POS B �VERSION �� �p � �
p � �p � �p �

FQR POS B �VERSION �� �p � ��p � �p � �p �

FQR PRI B �VERSION �� �p�� �
p � �p � �p �

FQR PRI B �VERSION �� �p � ��p � �p � �p �

��



Chapter �

The Lattice Versions of the Fast

QR Algorithms

��� Introduction

The fast QR algorithms employing lower triangularization of the input data matrix

are known as �hybrid QR�lattice least squares algorithms�� It was clear from the

previous chapter that these algorithms may update the a posteriori or the a priori

backward prediction errors� Moreover� they are known for their robust numerical

behavior and minimal complexity but lack the pipelining property of the lattice

algorithms�

The main goal of this chapter is the presentation of the lattice versions of the

fast QR algorithms using a posteriori and a priori backward errors or FQR POS B

and FQR PRI B algorithms according to our classi	cation� The equations of these

algorithms are combined in an order recursive manner such that they may be rep�

resented as increasing order single loop lattice algorithms� These lattice versions

can then be implemented with a modular structure which utilizes a unique type of

lattice stage for each algorithm�

Before the derivation of these lattice versions� let us specify on Table ��� the

meaning of each variable used in both algorithms�

It is worth mentioning here that a variable with no superscript implies in an



N�th order quantity or� equivalently� is related to a N  � coe�cients 	ltering� Let

us take as an example the norm of the forward energy� k ef �k� k�k e�N���
f �k� k�

Table ���� Variables used in FQR POS B and FQR PRI B algorithms�

dfq�k� � rotated forward desired vector

dfq��k� � last N � elements of dfq�k�

ef�k� � forward error vector

k ef �k� k � norm of ef �k�

efq�k� � rotated ef�k�

efq��k� � 	rst element of efq�k�

Q	�k� � Givens matrix �updates the Cholesky factor�

x�k� � input signal

� � forgetting factor

Q�
	f�k  �� � Givens matrix �annihilates dfq��k  �� in �E���

k e���f �k� k � norm of ef �k� in a � coe�cient case

f�k� � a posteriori normalized errors

a�k� � a priori normalized errors

eb�k� � backward prediction error

k eb�k� k � norm of eb�k�

ef �k� � a posteriori forward prediction error

e�f �k� � a priori forward prediction error

eb�k� � a posteriori backward prediction error

e�b�k� � a priori backward prediction error

��k� � product of cosines of the angles of Q	�k�

eq�k� � rotated error vector

��



�Continuation of Table ����

eq��k� � 	rst element of eq�k�

dq�k� � rotated desired vector

dq��k� � last N � elements of dq�k�

d�k� � desired signal

e�k� � output error

��� Deriving the Lattice Versions

The internal variables found in fast QR algorithms are closely related to those found

in conventional lattice algorithms� This was indeed the approach used in ���� ��� to

develop these algorithms originally and the implications are well explained in those

two references� As pointed out in ����� within this framework the solution to the

parameter identi	cation problem was 	rst addressed using fast QR algorithms� The

work of ���� stresses the fact that sin��fi�k� and sin�
�
fi
�k��� represent the re�ection

coe�cients of the normalized lattice RLS algorithms �a priori and a posteriori��

On the other hand� the main idea behind the generation of a lattice �or fully

lattice� version of the fast QR algorithms is the merging of their equations using or�

der updating instead of 	xed order variables� This can be done when partial results

possess this order updating property� This is indeed the case of the lower triangu�

larization type algorithms since the internal variables are synchronized at instant k

or k � � �only order updating�� The same facility in obtaining lattice versions is
not observed in those algorithms employing upper triangularization �FQR POS F

and FQR PRI F� since since the normalized errors present in the orthogonal ma�

trix Q	�k� are of di�erent orders at distinct instants of time �order and time

updating��

We next show how to combine the equations of FQR POS B in order to obtain

its lattice version� Starting from ������� we rewrite this equation evaluated at k ��

��



with an explicit form of Q	�k� in terms of a product of N  � Givens rotations

Q	i
�k� � see ������ � and with e

���
fq�
�k  �� � x�k  ���

�
�������

efq��k  ��

dfq���k  ��
���

dfq�N��
�k  ��

�
�������
�

�
����
cos�N �k� �sin�N �k� �T

sin�N �k� cos�N�k� �T

� � IN

�
���� � � �

� � �

�
����
cos���k� �T �sin���k�

� IN �

sin���k� �T cos���k�

�
����

�
�������

e���fq�
�k  ��

����dfq���k�
���

����dfq�N��
�k�

�
�������

�����

The product of the 	rst two terms� from right to left� results

�
����������

cos���k�e
���
fq�
�k  ��� sin���

���dfq�N��
�k�

����dfq���k�
���

����dfq�N �k�

sin���k�e
���
fq�
�k  ��  cos���k��

���dfq�N��
�k�

�
����������

�����

The 	rst and last terms of the above equation are� respectively� e
���
fq�
�k  �� and

dfq�N��
�k  ��� If the other products are computed� one can reach the following

relations�

e
�i�
fq�
�k  �� � cos�i���k�e

�i���
fq�

�k  ��� sin�i���k��
���dfq�N���i

�k� �����

dfq�N���i
�k  �� � sin�i���k�e

�i���
fq�

�k  ��  cos�i���k�����dfq�N���i
�k� �����

where i belongs to the closed interval between � and N  ��

If we use a similar procedure with the equation

�
� �

k e���f �k  �� k

�
� �

Q�
	f�k  ��

�
� dfq��k  ��

k ef�k  �� k

�
� �part of ������ used in the FQR POS B algorithm��

we will 	nd

��



cos��fi��
�k  �� �

k e�i�f �k  �� k
k e�i���f �k  �� k

�����

sin��fi��
�k  �� �

dfq�N���i
�k  ��

k e�i���f �k  �� k
�����

In the last equation� i varies from � to N  � and the updating of the forward

error energy is done by the following generalization of ����
�

k e�i�f �k  �� k�
q
� k e�i�f �k� k�  �e�i�fq��k  ���� �����

All other equations are joined in a single loop by computing partial results from

the partial results of the previous equations� The resulting algorithm is shown in

Table ��� and� although not identical� is similar to the one presented in ����� A

stage of its lattice structure is depicted in Figure ��� where the rotation and angle

processors can be easily understood from the algorithmic description�

dfq2N+2-i(k+1),efq1(k+1)
(i)

efq1(k+1)
(i-1)

efq1(k+1)
(i)

eq1(k+1)
(i-1)

eq1(k+1)
(i)

θi-1(k+1)

γ (k+1)
(i-1)

γ (k+1)
(i)

||ef(k+1)||
(i-1)

||ef(k+1)||
(i)

θ’fi-1(k+1)

fN+2-i(k+1) fN+1-i(k+1)
auxi-1 auxi

z-1

z-1

θi-1(k+1)

θi-1(k)

Figure ���� One stage of the FQR POS B lattice structure�

��



Finally� the lattice version of the FQR PRI B algorithm is obtained in a way

which is very similar to the one used to derive the lattice version of the FQR POS B

algorithm ��
�� The algorithm is shown in Table ��� and Figure ��� depicts one stage

of the lattice structure for this algorithm�

z-1

z-1

z-1

dfq2N+2-i(k+1),efq1(k+1)
(i)

efq1(k+1)
(i-1)

efq1(k+1)
(i)

eq1(k+1)
(i-1)

eq1(k+1)
(i)

θi-1(k+1)

1/γ (k+1)
(i-1)

1/γ (k+1)
(i)

||ef(k+1)||
(i-1)

||ef(k+1)||
(i)

θ’fi-1(k+1)

θ’fi-1(k)

aN+2-i(k+1) aN+1-i(k+1)
auxi-1 auxi

θi-1(k+1)

θi-1(k)

Figure ���� One stage of the FQR PRI B lattice structure�

��� Simulation Results

This section presents some simulation results to test the fast QR algorithms in a

	nite�precision environment� The setup is a system identi	cation problem with a

system order of N � ��� The input signal was a colored noise whose eigenvalue

spread of its autocorrelation matrix is around ��� and SNR � ��dB� The mean�

square error �MSE� in dB was measured running the algorithm with a �oating�point

arithmetic with quantization applied to the mantissa in all operations� The mantissa

was rounded excluding the sign bit and assuming the exponent wordlength was

su�cient to represent all dynamic ranges� In all algorithms� the constraint of passive

rotations �sin� �  cos� � � �� was imposed� In the 	rst experiment� the mantissa

wordlength was varied �� to �� bits excluding the sign bit� while keeping 	xed the

��



value of the forgetting factor �� � ��
��� Next� the lambda was varied ���
� to

���� for a 	xed mantissa wordlength ��� bits�� The results� which correspond to the

average of ten independent runs� can be observed in Figure ��� and Figure ���� The

	gures show that the latice version of the FQR PR B algorithm has a performance

in 	nite�precision which is close to the other fast QR algorithms specially when �

is not too close to one� It is also interesting to note that� although the a priori

algorithms seem to show worse performance� these algorithms do not require the

constraint of passive rotations to have the backward consistency guaranteed� It is

also claimed in ���� that they have better performance for small mantissa wordlength

and � not too close to ��

FQR_POS_B original
FQR_POS_B lattice 
FQR_PRI_B original
FQR_PRI_B lattice 
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Figure ���� Performance of the algorithms in a 	nite�precision environment �varying

B� the number of bits in the mantissa��

��� Conclusions

This chapter presented the fully lattice versions of the fast QR algorithms that

update a posteriori and a priori backward errors� The results from the Gram�

Schmidt orthogonalization used in Chapter � were used to conjecture the reason

why only the fast QR algorithms using lower triangularization would have their

lattice versions easily implementable�

��



FQR_POS_B original
FQR_POS_B lattice 
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FQR_PRI_B lattice 

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
−50

−45

−40

−35

−30

−25

−20

−15

lambda

M
S

E
dB

Figure ���� MSE in db for di�erent values of ��

The detailed description of the lattice versions of the FQR POS B and FQR PRI B

algorithms were presented�

The simulation results showed that the performance of the lattice versions in a

	nite�precision implementation is comparable with the original algorithms� The lat�

tice versions have the same complexity of their original algorithms �FQR POS B and

FQR PRI B� and a lower complexity than the fast QR lattices algorithms previously

proposed in �����

��



Table ���� The lattice version of the FQR POS B algorithm�

LATTICE FQR POS B

Soft�constrained initialization�

� � small positive value"

for i � � � N  �

f k e�i�f �k� k� �"

g
dfq��k� � zeros�N  �� ��"

dq��k� � zeros�N  �� ��"

cos��k� � ones�N  �� ��"

sin��k� � zeros�N  �� ��"

f�k� � zeros�N  �� ��"

for each k

f e
���
fq�
�k  �� � x�k  ��"

k e���f �k  �� k�
q
�e

���
fq�
�k  ����  � k e���f �k� k�"

aux� �
x�k���

ke���
f �k���k "

fN���k  �� � aux�"

�����k  �� � �"

e
���
q� �k  �� � d�k  ��"

for i � � � N  �

f dfq�N���i
�k  �� � sin�i���k�e

�i���
fq�

�k  �� 

cos�i���k�����dfq�N���i
�k�"

e
�i�
fq�
�k  �� � cos�i���k�e

�i���
fq�

�k  ���
sin�i���k�����dfq�N���i

�k�"

�




�Continuation of Table ����

k e�i�f �k  �� k�
q
�e

�i�
fq�
�k  ����  � k e�i�f �k� k�"

cos��fi��
�k  �� �k e�i�f �k  �� k � k e�i���f �k  �� k"

sin��fi��
�k  �� � dfq�N���i

�k  ��� k e�i���f �k  �� k"
fN���i�k  �� �

fN���i�k��sin	�fi��
�k���auxi��

cos	�fi��
�k���

"

auxi � �sin��fi��
�k  ��fN���i�k  ��  cos��fi��

�k  ��auxi��"

��i��k  �� �
p
���i����k  ���� � �fN���i�k  ����"

cos�i���k  �� �

�i��k���


�i����k���
"

sin�i���k  �� �
fN���i�k���


�i����k���
"

dq�N���i�k  �� � sin�i���k  ��e
�i���
q� �k  �� 

cos�i���k  ������dq�N���i
�k�"

e
�i�
q� �k  �� � cos�i���k  ��e

�i���
q� �k  ���

sin�i���k  ������dq�N���i
�k�"

g
e�k  �� � e

�N���
q� �k  ����N����k  ��"

g


�



Table ���� The lattice version of the FQR PRI B algorithm�

LATTICE FQR PRI B

Soft�constrained initialization�

� � small positive value"

for i � � � N  �

f k e�i�f �k� k� �"

g
dfq��k� � zeros�N  �� ��"

dq��k� � zeros�N  �� ��"

cos��k� � ones�N  �� ��"

cos��f�k� � ones�N  �� ��"

sin��k� � zeros�N  �� ��"

sin��f �k� � zeros�N  �� ��"

a�k� � zeros�N  �� ��"

for each k

f aux� �
x�k���p
�ke���

f �k�k "

aN���k  �� � aux�"

e���fq�
�k  �� � x�k  ��"

k e���f �k  �� k�
q
�e

���
fq�
�k  ����  � k e���f �k� k�"

�������k  �� � �"

e
���
q� �k  �� � d�k  ��"


�



�Continuation of Table ����

for i � � � N  �

f aN���i�k  �� �
aN���i�k��sin	�fi��

�k�auxi��

cos	�fi��
�k�

"

auxi � �sin��fi��
�k�aN���i�k  ��  cos��fi��

�k�auxi��"

dfq�N���i
�k  �� � sin�i���k�e

�i���
fq�

�k  �� 

cos�i���k�����dfq�N���i
�k�"

e
�i�
fq�
�k  �� � cos�i���k�e

�i���
fq�

�k  ���
sin�i���k�����dfq�N���i

�k�"

k e�i�f �k  �� k�
q
�e

�i�
fq�
�k  ����  � k e�i�f �k� k�"

cos��fi��
�k  �� �k e�i�f �k  �� k � k e�i���f �k  �� k"

sin��fi��
�k  �� � dfq�N���i

�k  ��� k e�i���f �k  �� k"
����i��k  �� �

p
�����i����k  ����  �aN���i�k  ����"

cos�i���k  �� �
��
�i����k���

��
�i��k���
"

sin�i���k  �� �
aN���i�k���

��
�i��k���
"

dq�N���i�k  �� � sin�i���k  ��e
�i���
q� �k  �� 

cos�i���k  ������dq�N���i
�k�"

e
�i�
q� �k  �� � cos�i���k  ��e

�i���
q� �k  ���

sin�i���k  ������dq�N���i
�k�"

g
e�k  �� � e

�N���
q� �k  ��������N����k  ���"

g
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Chapter 	

Contributions to the

Finite�Precision Analysis of the

Fast QR Algorithms


�� Introduction

In chapter �� it was remarked that the fast QR algorithms with lower triangular�

ization �according to the notation used in this work� of the input data matrix are

minimal in a system theory sense and backward stable ����� It was also shown that

they have lower computational load when compared to the fast QR algorithms us�

ing upper triangularization� Moreover� it was observed in ���� that the FQR PRI B

algorithm performs better for forgetting factors not too close to one due to the fact

that passive rotations are not necessary�

These facts turn these algorithms natural candidates for practical implementa�

tion and the 	nite�precision e�ect is then a topic of major concern� This chapter

deals with the determination of the steady�state quantization error of the inter�

nal variables of both FQR POS B and FQR PRI B algorithms� A complete 	nite�

precision analysis of both algorithms are beyond the scope of this chapter but the

process of obtaining the mean�squared value of accumulated quantization errors of



some variables are presented as a contribution towards the solution of this prob�

lem� The validation of the expressions obtained are carried out through computer

simulations�


�� In�nite�Precision Analysis

This section reviews the dynamic range of the internal quantities of the FQR POS B

and FQR PRI B algorithms� Most of the results presented in this section are avail�

able in the technical literature but are reviewed here� for they are required in the

	nite�precision analysis�

����� In�nite�Precision Results for the

FQR POS B Algorithm

All variables have the same notation used in Appendix C� Note that the version �

of the FQR POS B algorithm will be used hereafter�

Mean Squared Values of cos�i�k� and sin�i�k�

The following results can be found in �����

E�cos��i�k�� � � �����

E�sin��i�k�� � �� � �����

Mean Squared Value of e
�i�
fq�
�k�

The following result can be found in �����

E
n
�e

�i�
fq�
�k���

o
� ��

x

�
��

�  �


i

�����


�



Mean Squared Value of dfq�i�k�

The following result can be found in �����

E
�
�dfq�i�k��

�
� � ��

x

�  �

�
��

�  �


N���i
�����

Mean Squared Value of k e�i�f �k� k

The following result can be found in �����

E�k e�i�f �k� k�� �
��
x

�� �

�
��

�  �


i

�����

Mean Squared Values of cos��fi�k� and sin��fi�k�

The following results can be found in �����

E�cos���fi�k�� �
��

�  �
�����

E�sin���fi�k�� �
�� �

�  �
�����

Mean Squared Value of ��i��k�

If we recall from Chapter � that ��k� �
QN

i�� cos�i�k�� use ����� and ������ and

assume independence between cos�i�k� and cos�j�k�� i 
� j� it is easy to 	nd the

next expression also obtained in ���� using a di�erent approach�

E
�
���i��k���

� � �i �����

Mean Squared Value of fi�k�

If we take the square of ��i��k  �� from version � of the FQR POS B algorithm

in Appendix C and substitute cos��i���k  �� and then sin��i���k  �� for the

expressions also found there� we obtain

���i��k  ���� � ���i����k  ���� � f �
N���i�k  �� ���
�


�



By taking the expected value of ���
� and the approximation of ������ we 	nd the

following expression also available in �����

E�f �
i �k�� � �N���i��� �� ������

If we take from Appendix C the expressions for fi���k �� and auxi� and use them to

calculate E�f �
i���k�� E�aux

�
i �� it is straightforward to obtain E�aux

�
i � E�f

�
i���k�� �

E�aux�i��� E�f
�
i �k��� Seeing that fN���k �� � auxN��� it is easy to 	gure out that

E�aux�i � � E�f �
i �k�� and� therefore� ������ can also be used as a good approximation

for E�aux�i ��

Mean Squared Value of dq�i�k�

The following results can be found in �����

E�d�q�N���i
�k�� �

�
��

�  �

�i �
��
x

�� �
w�
��i  

��
x

�  �

NX
j�i��

w�
��j

�
������

where w�
��i � E�w�

i �k��� Observe that although w��i is not available� a rough estimate

of ��
xw

�
��i can be obtained based on the power of the reference signal �����

Mean Squared Value of e
�i�
q� �k�

From the Joint Process Estimation part of the FQR POS B algorithm we take the

expressions of e
�i�
q� �k  �� and dq�N���i

�k  ��� and use them to derive the expected

value of �e
�i�
q� �k  ���

�  �dq�N���i
�k  ����� By assuming stationarity� we 	nd the

following relation�

E
�
�e�i�q� �k��

�
�
� E

�
�e�i���q�

�k���
�� ��� ��E�d�q�N���i

�k�� ������

where E
n
�e

���
q� �k��

�
o
� ��

d � ��
x

PN
i��w

�
o�i  ��

n is the variance of the reference

signal and ��
n is the variance of the measurement noise �it is assumed here that the

algorithm is applied in a su�cient�order identi	cation problem� i�e�� the unknown

FIR system has the same order of the adaptive 	lter��

Finally� from the last equation of the algorithm� we have E�e��k�� � �N��E�e�q��k���

Since from ������ and ������ we have that E�e�q��k�� � ��
n� the following expression


�



results�

E�e��k�� � �N����
n ������

����� In�nite�Precision Results for the

FQR PRI B Algorithm

The FQR PRI B algorithm is similar to the FQR POS B algorithm in a sense that

	ve of its seven equations are identical �three of them are matrix equations� as can

be seen from Tables ��� and ���� It means that except ���
� and ������ all other

equations presented in this chapter remain valid and only the expression for the mean

squared value of ai�k� is left for the in	nite�precision analysis of this algorithm� It

is worth mentioning that only version � of the FQR PRI B algorithm� as described

in Appendix C� is under investigation here�

Mean Squared Value of ai�k�

From the implementation of ������ described in version � of the FQR PRI B algo�

rithm �step �Obtaining Q	�k  ���� we have �see Appendix C�

a�N���i�k  �� � ��
�i��k  ����� � ���i����k  ����� ������

By taking the expected value of ������� using the approximation of ������ and em�

ploying the averaging principle ���� ���� it follows the next expression also available

in �����

E�a�i �k�� � ���N���i���� �� ������

If we take from Appendix C the expressions for ai���k  �� and auxi� and use

them to calculate E�a�i���k��  E�aux�i �� it is straightforward to obtain E�aux�i �  

E�a�i���k�� � E�aux�i���  E�a�i �k��� Since aN���k  �� � auxN��� it is easy to 	gure

out that E�aux�i � � E�a�i �k�� and ������ can also be used as a good approximation

for E�aux�i ��


�




�� Contribution to the Finite�Precision Analysis

This section 	rst presents the 	xed�point quantization error model to be used in

the rest of the chapter� The 	rst matrix equation of the FQR PRI B algorithm

is then analyzed as an example of the method used� The results of this analysis

are very good as will be seen in the next section� On the other hand� the analysis

expression for the initialization of the second matrix equation of the same algorithm

presented poor result when the so called averaging principle was used� An alternative

to the averaging principle is then derived and applied to develop a more accurate

approximation�

����� Fixed�Point Quantization Error Model

A number of assumptions are made here in order to have a simple model of the

quantization error� We assume that no over�ow due to additions and subtractions

occurs� Two�s complement arithmetic is used for numeric representations of the

internal variables which are assumed properly scaled to avoid over�ow� It is as�

sumed that the operation � �multiplication� division or exponentiation� introduces
the following quantization error�

���a� b� � a � b�Q�a � b� ������

where a and b are scalars and it is assumed that the instantaneous quantizations are

performed by rounding such that the quantization error is a white noise with zero

mean and variance ���B

��
� B being the number of bits excluding the sign bit�

The accumulated quantization error is de	ned as the di�erence between the

in	nite�precision implementation and the 	nite�precision implementation of a vari�

able� If r�k� is a variable� its accumulated quantization error is given by

�r�k� � r�k�� rQ�k� ������

and we are interested here in 	nding the mean squared value of this quantity�


�



����� The FQR PRI B Algorithm	

Mean Squared Value of �e

i�
fq�

�k� and �dfq
i
k�

Let us start by analyzing ������ in 	nite�precision� Note that the analysis expressions

that will be obtained from this matrix equation is valid for both FQR POS B and

FQR PRI B algorithms �and are expected to be quite similar to the FQR POS F

and FQR PRI F counterparts� since the following expression is common for all the

four FQR algorithms studied��
� efq��k  ��

dfq��k  ��

�
� � Q	�k�

�
� x�k  ��

����dfq��k�

�
� ������

where x�k �� is assumed to be already quantized as well as all other external signals

and constants� The previous equation is implemented as

e
�i�
fq�
�k  �� � cos�i���k�e

�i���
fq�

�k  ��

�sin�i���k�����dfq�N���i
�k� ����
�

dfq�N���i
�k  �� � sin�i���k�e

�i���
fq�

�k  ��

 cos�i���k�����dfq�N���i
�k� ������

where i � � � N  � and e���fq�
�k  �� � x�k  ��� Equations ����
� and ������ above

implemented in 	nite�precision are given by

e
�i�
fq��Q

�k  �� � cos�i���Q�k�e
�i���
fq��Q

�k  ��

�sin�i���Q�k�����dfq�N���i�Q�k�� ���k� ������

dfq�N���i�Q�k  �� � sin�i���Q�k�e
�i���
fq��Q

�k  ��

 cos�i���Q�k�����dfq�N���i�Q�k�� ���k� ������

where ���k� � �M�cos�i���Q�k�� e
�i���
fq��Q

�k ���� �M�sin�i���Q�k�� ����� dfq�N���i�Q�k��

and ���k� � �M�sin�i���Q�k�� e
�i���
fq��Q

�k  ���  �M�cos�i���Q�k�� ����� dfq�N���i�Q�k��

are the quantization errors introduced by the multiplications�

From ����
� and ������� we derive the expression for the accumulated quantiza�







tion error of e
�i�
fq�
�k  �� as follows�

�e
�i�
fq�
�k  �� � e

�i�
fq�
�k  ��� e

�i�
fq��Q

�k  ��

� cos�i���k�e
�i���
fq�

�k  ��

�sin�i���k�����dfq�N���i
�k�

�cos�i���Q�k�e�i���fq��Q
�k  ��

 sin�i���Q�k�����dfq�N���i�Q�k�  ���k� ������

In ������ by replacing the four quantized values by the in	nite�precision value

minus the accumulated quantization error �as in rQ�k� � r�k���r�k�� and admit�
ting that the absolute values of the cross products of the accumulated quantization

errors are much smaller than the absolute values of the other terms� we 	nd

�e
�i�
fq�
�k  �� � cos�i���k��e

�i���
fq�

�k  ��  �cos�i���k�e
�i���
fq�

�k  ��

�sin�i���k������dfq�N���i
�k�

��sin�i���k�����dfq�N���i
�k�  ���k� ������

If we now assume that ���k� and the accumulated quantization errors are zero

mean and have a very small cross�correlation between each other� the following

expression can be easily obtained�

E
n
��e

�i�
fq�
�k  ����

o
� E

n
�cos�i���k��e

�i���
fq�

�k  ����
o

 E
n
��cos�i���k�e

�i���
fq�

�k  ����
o

 �E
�
�sin�i���k��dfq�N���i

�k���
�

 �
�
��sin�i���k�dfq�N���i

�k���
�
 E�����k�� ������

The 	nal expression for the mean squared value of �e
�i�
fq�
�k  �� is obtained

by assuming stationarity� by assuming that the variables are uncorrelated with the

accumulated quantization errors� and by using the results from the in	nite�precision

���



analysis� That is

E
n
��e

�i�
fq�
�k���

o
� �E

n
��e

�i���
fq�

�k���
o

 ��
x

�
��

�  �


�

i� ���E ���cos�i���k����
 ���� ��E

�
��dfq�N���i

�k���
�

 �
��
x

�  �

�
��

�  �


�
��sin�i���k��

�
�
 E�����k�� ������

where E�����k�� � �
���B

��
�

The accumulated quantization error of dfq�N���i
�k �� will be next derived from

������ and �������

�dfq�N���i
�k  �� � dfq�N���i

�k  ��� dfq�N���i�Q�k  ��

� sin�i���k�e
�i���
fq�

�k  ��

 cos�i���k�����dfq�N���i
�k�

�sin�i���Q�k�e�i���fq��Q
�k  ��

�cos�i���Q�k�����dfq�N���i�Q�k�  ���k� ������

By using the same approach and assumptions used for obtaining E
n
��e

�i�
fq�
�k���

o
we 	nd the mean squared value of the accumulated quantization error of dfq�N���i

�k 

�� given by

E
�
��dfq�N���i

�k���
� � ��

x

����� ��

�
��

�  �


i

E f� �sin�i���k���g

 
�

�  �
E
n
��e

�i���
fq�

�k���
o

 
��
x

���� ���

�
��

�  �


i

E
�
��cos�i���k���

�
 
E�����k��

�� ��
������

where E�����k�� � �
���B

��
�
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����� The FQR PRI B Algorithm	

Mean Squared Value of �aux�

In the former section� we have given as an example of 	nite�precision analysis� the

expressions for the mean squared values of the accumulated quantization errors of

the 	rst matrix equation of the FQR PRI B algorithm� The next matrix equation

of this algorithm has an initialization �parameter aux�� given by

aux� �
efq��k  ��

��k����� k ef�k� k ����
�

In a 	nite�precision environment� the previous equation is implemented as

aux��Q �
efq��Q�k  ��

�Q�k����� k ef�k� kQ ��	�k� � ���k� ������

where �	�k� and ���k� are the quantization errors due to the multiplication and

division� respectively�

From ����
� and ������� we write the accumulated quantization error of aux� as

�aux� � aux� � aux��Q

�
efq��k  ��

��k����� k ef�k� k
� efq��Q�k  ��

�Q�k����� k ef�k� kQ ��	�k�  ���k�

�
efq��k  ��

r
� efq��Q�k  ��

r ��r  ���k� ������

where r � ��k����� k ef�k� k�
If we use the approximation �

r��r � �
r

�
�  �r

r

�
in ������ and substitute efq��Q�k 

�� by efq��k  ����efq��k  �� we obtain

�aux� � �efq��k  ��

r
� �efq��k  ����efq��k  ����r

r�
 ���k� ������

By substituting the expressions of r and �r in ������ and assuming that the

term with the product of the two accumulated errors is much smaller in absolute

value than the other terms� we obtain

�aux� � �efq��k  ��

������k� k ef �k� k �
efq��k  ��� k ef�k� k
������k� k ef�k� k�

� efq��k  �����k�

�������k� k ef�k� k �
efq��k  ���	�k�

����k� k ef �k� k�  ���k� ������

���



If we now assume that the instantaneous errors ��	�k� and ���k�� and the accu�

mulated errors ��efq��k  ��� � k ef�k� k� and ���k�� are zero mean with small
cross�correlation between each other� the mean squared quantization error of auxo

results�

E
�
��aux��

�
� � �

�
E
�
��efq��k��

�
�
E

�
�

���k�

�
E

�
�

k ef�k� k�
�

 
E�e�fq��k��

�
E
�
�� k ef �k� k��

�
E

�
�

���k�

�
E

�
�

k ef�k� k�
�

 
E�e�fq��k��

�
E
�
����k���

�
E

�
�

���k�

�
E

�
�

k ef�k� k�
�

 
E�e�fq��k��E��

�
	�k��

��
E

�
�

���k�

�
E

�
�

k ef�k� k�
�

 E�����k�� ������

From the in	nite�precision analysis� we have E�e�fq��k��� E����k��� and

E�k ef �k� k��� If we use the averaging principle and approximate E���x�� and

E���x�� by ��E�x�� and ��E�x��� respectively� and substitute the results from the

in	nite�precision analysis� we 	nd

E
�
��aux��

�
� � ��� ��

�N����
x

�
�  �

��


N��

E
�
��efq��k��

�
�

 
��� ���

�N����
x

�
�  �

��


N��

E
�
�� k ef �k� k��

�
 
�� �

��N�	
E
�
����k���

�
 
��� ���

��N�	��
x

�
�  �

��


N��

E���	�k��

 E�����k�� ������

where E���	�k�� � E�����k�� �
���B

��
�

As will be seen from the simulations� ������ presents a value in dB which defers

more than one dB from the simulated result� Nevertheless� we still claim that ������

is a reasonable approximation for E f��aux���g� Let us see in the next subsection
how to validate �������

���



����� Re�ning the approximations of E���x
� and E���x��

The so�called averaging principle ���� has been widely used in the derivation of

relations used in in	nite and 	nite�precision analysis and is stated as

E

�
f �x�k��

g�y�k��

	
� Eff �x�k��g

Efg�y�k��g ������

which in the present case is valid for large k and forgetting factor close to unity �����

One reason of the poor result of ������ is due to the approximation of E���x��k��

by ��E�x��k�� and E���x��k�� by ��E��x��k��� The purpose of this subsection is to

derive more reliable approximations for these expressions in order to validate �������

We started to search an alternative solution to this problem by taking the Gaus�

sian Moment Factoring Theorem ��� for four samples of a zero�mean� real Gaussian

process� and admitting they are all equal to x�k�� The resulting expression is

E�x��k�� � �E	�x��k�� ������

If we now admit that x�k� has a mean value di�erent from zero �E�x�k�� � %x� and

model it as x�k� � x��k�  %x with x��k� being zero�mean real Gaussian� we have

E�x��k�� � E��x��k�  %x���

� �E��x���k��  �E�x���k��%x�  %x�

� �E��x��k��� �%x� ������

By using the same approach of ��� and equation ������ we will derive an expression

�E�z�z�z�z�� � E�z�z��E�z�z�� �E�z�z��E�z�z�� �E�z�z��E�z�z��

���



for E���x��k���

E

�
�

x��k�

�
�

�

E�x��k��
E

�
� �

��
�
�� x��k�

E
x��k��

�
�
�

�
�

E�x��k��
E

� �X
i��

�
�� x��k�

E�x��k��


i
�

�
�

E�x��k��

�
�  �  

E�x��k��� E��x��k��

E��x��k��
 � � �




�
�

E�x��k��

�
E�x��k��

E��x��k��
 � � �




� �E��x��k��� �%x�
E	�x��k��

����
�

Finally� we can 	nd an approximation for E���x��k�� if we use an auxiliary

variable y � x��k� and ����
�� It is easy to see that E�y� � E�x��k�� and that

E�y�� � E�x��k�� is available from �������

E

�
�

x��k�

�
� � f�E��x��k��� �%x�g� � � fE�x��k��g�

f�E��x��k��� �%x�g	 ������

where %x � E�x�k���

It is worth mentioning that the above approximations are valid whenever the

series expansion used in the derivation is valid� The critical case happens when x�k�

tends to zero �division by zero� and the best results come when the %x��x is not

so low� A small simulation was carried out to check the results of the expressions

derived here� In this simulation� x�k� was a Gaussian random variable with variance

��
x � ���	 and mean value set to ���� ���� ���� and ���� The following Table ���

displays the results of a ������ samples simulation and it is clear from there that

these new expressions outperform old approximations for di�erent values of %x��x�

Also note that for case of the smallest mean value �%x � ����� the variable crosses

the zero several times and this is the reason for the large values of E
h

�
x��k�

i
�

By using equations ������� ����
�� and ������� we can obtain the following ex�

pressions to be used in ������ whose results� as will be seen from the simulations� are

more accurate than the results obtained with ������� Note that the new relations

obtained here were used speci	cally with the purpose of validating ������ since we

do not have E���k�� and E�k ef�k� k� available from the in	nite�precision analysis�

���



Table ���� Comparison of Performance of the New Expressions�

EXPRESSION %x � ��� %x � ��� %x � ��� %x � ���

E�x��k�� ������ ���� ������ ������ ������

E��x��k�� ������ ���� ������ ������ ������

������ ������ ���� ������ ������ ������

E� �
x��k�

� �����
 ��� ������� ����
� ������

�
E
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�
� ��
��� ��
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�
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��

������ ������ ��� �������� ����
�
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�
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E	����k��

E
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�
� �f�E�����k��� �E����k��g� � �E�����k��

f�E�����k��� �E����k��g	

E

�
�

k ef �k� k�
�

� �E��k ef �k� k��� �E��k ef�k� k�
E	�k ef�k� k��

E

�
�

k ef �k� k�
�

� �f�E��k ef�k� k��� �E��k ef�k� k�g� � �E��k ef�k� k��
f�E��k ef �k� k��� �E��k ef �k� k�g	

������


�� Simulation Results

In order to verify the accuracy of the formulae presented in this chapter� a computer

simulation of the FQR PRI B algorithm running in a 	xed�point arithmetic envi�

ronment was carried out� The experiment consisted of a system identi	cation set

up with input signal and measurement noise with normal distribution� zero�mean

and variances ��
x � ��

�	 and ��
n � ��

��� respectively� The unknown FIR system has

���



order N � � and the forgetting factor was chosen equal to � � ��
�� In the ��� in�

dependent runs� the FQR PRI B algorithm was simulated with ���� iterations and

the last ��� were averaged to obtain the results presented here� Two�s complement

rounding was used with B � �� bits �excluding the sign bit� while in	nite�precision

was implemented with �� bits �oating�point�

All theoretical results of the accumulated quantization errors shown in the follow�

ing tables were obtained from the analysis relations where the �unknown� quantities

� variables not analyzed � were taken from the simulations with the purpose of

verifying the expression� Moreover� the column DIFFERENCE was obtained as the

absolute value of the di�erence of the simulated value in dB minus the theoretical

value in dB�

Table ��� below shows the results of �������

Table ���� Mean Squared Value of �e
�i�
fq�
�k��

EXPRESSION SIMULATED THEORETICAL DIFFERENCE

E
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f q��k��

�
o

������ ���� ������ ���� ������

E
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��e

���
f q��k��

�
o

����
� ���� ������ ���� ����
�

E
n
��e

�	�
f q��k��

�
o

������ ���� ���
�� ���� ������

E
n
��e

���
f q��k��

�
o

�����
 ���� ������ ���� ������

E
n
��e

���
f q��k��

�
o

������ ���� ������ ���� ������

Following� Table ��� shows the results of �������

Table ��� displays the results of E f��aux���g with the help of di�erent relations�
Note the improvement of the results with the re	ned expression� It is important to

mention that E���k�� and E�k ef�k� k� in ������ were not taken from the simulation
results but calculated from E����k��� E�k ef�k� k�� and the variances of ��k� and
k ef�k� k� These variances were actually obtained from the simulations� This

procedure was used in order to guarantee that E�x�� � E��x� for E�x�� � ��
x E��x��

���



Table ���� Mean Squared Value of �dfq�i�k��

EXPRESSION SIMULATED THEORETICAL DIFFERENCE

E f��dfq���k���g ������ ���� ������ ���� ������

E f��dfq���k���g ������ ���� ������ ���� ������

E f��dfq�	�k���g ���
�� ���� ������ ���� ������

E f��dfq���k���g ������ ���� ���
�� ���� �����


E f��dfq�
�k���g ������ ���� ������ ���� ������

Table ���� Mean Squared Value of �aux��

TYPE OF RESULT E f��aux���g
SIMULATED �����
 ����

EQUATION ������ ���
�� ����

DIFFERENCE ������

EQUATIONS ������ AND ������ ������ ����

DIFFERENCE ����
�

EQUATIONS ������ AND ������ IMPROVED� ������ ����

DIFFERENCE ������


�� Conclusions

This chapter aimed an introduction to the topic 	nite�precision analysis of the

fast QR algorithms based on the backward prediction errors �FQR POS B and

FQR PRI B algorithms�� A survey on the in	nite�precision analysis for both al�

gorithms were presented and� although not mentioned before� every expression was

checked with computer simulations and validated for a mean squared value of all

variables within one dB� The 	xed�point quantization analysis was carried out

for a matrix equation which is common for both algorithms and it was tested for

�Using results of simulations instead of its corresponding theoretical values	

���



the FQR PRI B algorithm with excellent results� Another expression was analyzed

showing a possible problem typically found in the analysis procedure� An expression

for this analysis was developed using the averaging principle and an alternative ap�

proximation was derived to improve the results if the 	rst�order statistics �mean� of

some variables are known� In the present case the approximations derived here were

only useful to validate part of the analysis since the means of some variables are not

available� A simulation was carried out to evaluate the partial analysis presented

and the results show that the theoretical formulae agree well with those obtained

in the experiment� The author intends to complete the analysis starting from the

contribution given here as well as investigate its extension to the �oating�point case�

��




Chapter 


Conclusions and Suggestions

This chapter summarizes the results of the thesis and highlights a variety of worth

investigating problems for possible future research� The work focused on two fam�

ilies of adaptive 	lters and two new algorithms have been introduced in this the�

sis� the BiNormalized Data�Reusing Least Mean�Squares �BNDR�LMS� algorithm

and the Fast QR based on the updating of the a PRIori Forward prediction errors

�FQR PRI F� algorithm� The investigation of these algorithms led to the study

of a number of relevant research results such as mean�square error analysis� con�

strained version of the BNDR�LMS algorithm and its application� lattice QR based

version� and 	nite precision analysis of the fast QR algorithms" all of them addressed

throughout the thesis�

��� Conclusions

The 	rst chapter of the thesis presented a brief review of the adaptive 	ltering basic

theory with special attention to the LMS�like and QR decomposition algorithms�

Chapter � presented the BNDR�LMS algorithm and it was veri	ed through com�

puter simulations that this algorithm compares favorably with other normalized

LMS�like algorithms when the input signal is correlated� For this algorithm� con�

vergence analysis in the mean�squared was presented for white input signals as well

as its extension to the case of colored input signal� A simple model for the input�



signal vector which imparts simplicity and tractability to the analysis of second�order

statistics is employed� The simulation results validated the analysis and the ensu�

ing assumptions� It can be concluded that the proposed algorithm �BNDR�LMS�

presents higher convergence speed for colored input signals than other LMS based

algorithms employing data�reusing with similar computational complexity and that

this higher e�ciency is better observed in low noise level environment�

In Chapter �� a constrained version of the BNDR�LMS algorithm was derived in

order to apply this algorithm to the 	eld of mobile communications� In particular�

an example using this algorithm in a direct�sequence code�division multiple access

�DS�CDMA� mobile receiver scenario was carried out� and a step�size optimization

was proposed to accomplish the requirements of fast convergence and minimum

MSE� We conclude that� in environments where the �observation or modeling� noise

level is too high� the use of a variable step�size is necessary�

In chapter �� the QR decomposition algorithms using Givens rotations were

presented in a tutorial form with the special objective of classifying the existing al�

gorithms in a comprehensive framework� This chapter derived the new FQR PRI F

algorithm and its relations with other members of the fast QR algorithms family�

The previously proposed algorithms were also rederived using the same notation�

The equations for the four fast QR algorithms classi	ed in this chapter were also

provided along with their detailed algorithmic descriptions in appendix� According

to what was studied� the conclusion is that the FQR PRI B algorithm presents the

best performance �in terms of computational load and numerical behavior� among

the fast QR algorithms classi	ed�

Chapter � presented the fully lattice versions of the FQR POS B and FQR PRI B

algorithms� The simulation results showed that the performance of the lattice ver�

sions in a 	nite�precision implementation is comparable with the original algorithms�

Finally� Chapter � addresses the 	nite precision analysis of the fast QR algo�

rithms using backward prediction errors �a priori and a posteriori�� The 	nite pre�

cision analysis results already available from previous works are summarized with

the same uniform notation used throughout the thesis as well as a contribution to the

���



	xed point error analysis is given with the study of the behavior of some expressions

in this 	nite precision environment�

��� Suggestions for Future Research

This section gives some suggestions for further research�

Concerning the BNDR�LMS algorithm� it seems to be interesting the investiga�

tion of the link between this algorithm and its extensions �i�normalized DR�LMS�

to the orthogonal�projection algorithm in addition to their relationships with the

RLS algorithm�

Another promising 	eld of interest is the 	nite precision performance and analysis

of this algorithm�

From Chapter �� it was clear that the model and the analyses used there can be

readily extended to other data�reusing algorithms that have not been considered in

the past due to exceeding complexity in the analysis expressions� This is another

contribution of this work that can be subject of future research�

Another suggestion is the possible improvement of the performance of the adap�

tive step�size if the colored input signal is considered in the derivation of the optimal

sequence�

Last� but not least� a few suggestions for further investigation concerning the

fast QR algorithms are pointed out� The completion of the 	nite precision analysis

is a topic of major interest�

Also the same notation and framework used in Chapter � could be extended to

derive the QR lattices ���� ��� ��� and verify their relationship with the Lattice RLS

algorithms�

Some variants of the FQR algorithms �some of them already developed and

available in the technical literature� also require some attention such as multichannel

versions and constrained versions with their applications�

���
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Appendix A

�� Equation �������

E
�
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For stationary Gaussian�distributed signals� using the fourth�moment factoring

theorem we have E�x��k�� � ����
x�

� ��
� and� therefore�

E
n
kx�k�k�kx�k � ��k� � �xT �k�x�k � ����o � N�N  �����
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�� Equation �������

Let ���ij be the �i� j� element of matrix ���� then

E
n�
x�k � ��xT �k � ��x�k�xT �k��
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For Gaussian�distributed signals we may use the fourth�moment factoring the�

orem to obtain
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Once again� using the fact that for stationary Gaussian�distributed signals
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�� we have
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Appendix B

�� Equation ����
��

In the derivation of ����
� x�k� and x�k � �� were replaced by skrkVk and

sk��rk��Vk��� respectively� with Vk 	 Vk��� Therefore� xT �k�x�k � �� � ��

Furthermore� a second�order approximation for E���r�k� was used ���� i�e��
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where �x is the kurtosis of the input signal�

For R � ��
xI� using ������ and ������ the expression for ���k� may be rewrit�

ten as
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Evaluating each of these terms separately we obtain
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Recalling that tr�AB� � tr�BA� for any square matrices A and B� we 	nd

that
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Appendix C

�� The FQR POS F Algorithm�

FQR POS F

Initialization�
k ef �k� k� � � small positive value"
dfq��k� � dq��k� � zeros�N  �� ��"
cos��k� � cos��b�k� � ones�N  �� ��"
sin��k� � sin��b�k� � zeros�N  �� ��"
��k� � �"
f�k� � zeros�N  �� ��"
for k � �� �� � � �

f e
���
fq�
�k  �� � x�k  ��"

for i � � � N  �

f e
�i�
fq�
�k  �� � cos�i���k�e

�i���
fq�

�k�� sin�i���k�����dfq�i�k�"

dfq�i�k  �� � sin�i���k�e
�i���
fq�

�k�  cos�i���k�����dfq�i�k�"
g
efq��k  �� � e

�N���
fq�

�k  ��"

k ef�k  �� k�
q
e�fq��k  ��  � k ef�k� k�"

cos�f �k  �� � ���� k ef �k� k � k ef�k  �� k"
sin�f �k  �� � efq��k  ��� k ef �k  �� k"
c�k  �� � ��" zeros�N  �� ���"
for i � � � N  �
f cN�	�i � �sin��bN���i

�k�c�"

c� � cos��bN���i
�k�c�"

g
caux � ��" c�k  ���"
for i � � � N  �
f oldvalue � cauxi��

"
cauxi��

� sin�i���k�caux�  cos�i���k�cauxi��
"

caux� � cos�i���k�caux� � sin�i���k�oldvalue"
g
oldvalue � caux� "

���



�Continuation of the FQR POS F Algorithm�

caux� � cos�f �k  ��caux� � sin�f �k  ��cauxN�	
"

cauxN�	
� sin�f �k  ��oldvalue cos�f �k  ��cauxN�	

"
c�k  �� � caux�� � N  ��"
for i � � � N  �
f oldvalue � c�"

c� �
p
c��  c�i��"

cos��bi��
�k  �� � oldvalue�c�"

sin��bi��
�k  �� � �ci���c�"

g
f �N����k  �� � �f�k�" sin�f �k  ����k��"

aux� � f
�N���
� �k  ��"

for i � � � N  �

f auxi � cos��bi��
�k  ��auxi�� � sin��bi��

�k  ��f
�N���
i�� �k  ��"

fi�k  �� � sin��bi��
�k  ��auxi��  cos��bi��

�k  ��f
�N���
i�� �k  ��"

g
�����k  �� � �"
for i � � � N  �
f sin�i���k  �� � fi�k  ����

�i����k  ��"
cos�i���k  �� �

p
�� sin��i���k  ��"

��i��k  �� � cos�i���k  ����i����k  ��"
g
��k  �� � ��N����k  ��"

e
���
q� �k  �� � d�k  ��"
for i � � � N  �

f e
�i�
q� �k  �� � cos�i���k  ��e

�i���
q� �k  ��� sin�i���k  ������dq�i�k�"

dq�i�k  �� � sin�i���k  ��e
�i���
q� �k  ��  cos�i���k  ������dq�i�k�"

g
eq��k  �� � e

�N���
q� �k  ��"

e�k  �� � eq��k  ����k  ��"
g

���



�� The FQR PRI F Algorithm�

FQR PRI F

Initialization�
k ef �k� k� � � small positive value"
dfq��k� � dq��k� � zeros�N  �� ��"
cos��k� � cos��b�k� � ones�N  �� ��"
sin��k� � sin��b�k� � zeros�N  �� ��"
����k� � �"
a�k� � zeros�N  �� ��"
for k � �� �� � � �

f e
���
fq�
�k  �� � x�k  ��"

for i � � � N  �

f e
�i�
fq�
�k  �� � cos�i���k�e

�i���
fq�

�k�� sin�i���k�����dfq�i�k�"

dfq�i�k  �� � sin�i���k�e
�i���
fq�

�k�  cos�i���k�����dfq�i�k�"
g
efq��k  �� � e

�N���
fq�

�k  ��"
e�f �k  �� � efq��k  �������k��"

a�N����k  �� � �a�k�"
e�f �k���

����kef �k�k �"

aux� � a
�N���
� �k  ��"

for i � � � N  �

f auxi � cos��bi��
�k�auxi�� � sin��bi��

�k�a
�N���
i�� �k  ��"

ai�k  �� � sin��bi��
�k�auxi��  cos��bi��

�k�a
�N���
i�� �k  ��"

g
k ef�k  �� k�

q
e�fq��k  ��  � k ef�k� k�"

cos�f �k  �� � ���� k ef �k� k � k ef�k  �� k"
sin�f �k  �� � efq��k  ��� k ef �k  �� k
c�k  �� � ��" zeros�N  �� ���"
for i � � � N  �
f cN�	�i � �sin��bN���i

�k�c�"

c� � cos��bN���i
�k�c�"

g

���



�Continuation of the FQR PRI F Algorithm�

caux � ��" c�k  ���"
for i � � � N  �
f oldvalue � cauxi��

"
cauxi��

� sin�i���k�caux�  cos�i���k�cauxi��
"

caux� � cos�i���k�caux� � sin�i���k�oldvalue"
g
oldvalue � caux� "
caux� � cos�f �k  ��caux� � sin�f �k  ��cauxN�	

"
cauxN�	

� sin�f �k  ��oldvalue cos�f �k  ��cauxN�	
"

c�k  �� � caux�� � N  ��"
for i � � � N  �
f oldvalue � c�"

c� �
p
c��  c�i��"

cos��bi��
�k  �� � oldvalue�c�"

sin��bi��
�k  �� � �ci���c�"

g
�������k  �� � �"
for i � � � N  �

f ����i��k  �� �
p
�����i����k  ����  a�i �k  ��"

cos�i���k  �� �
��
�i����k���

��
�i��k���
"

sin�i���k  �� �
ai�k���

��
�i��k���
"

g
��k  �� � �������N����k  ���"

e���q� �k  �� � d�k  ��"
for i � � � N  �

f e
�i�
q� �k  �� � cos�i���k  ��e

�i���
q� �k  ��� sin�i���k  ������dq�i�k�"

dq�i�k  �� � sin�i���k  ��e
�i���
q� �k  ��  cos�i���k  ������dq�i�k�"

g
eq��k  �� � e

�N���
q� �k  ��"

e�k  �� � eq��k  ����k  ��"
g

���



�� The FQR POS B Algorithm�
The 	rst version of this algorithm is based on the fact that the last element of

f�k �� �or fN���k �� �
x�k���

ke���
f �k���k� is known in advance or prior to its calculation�

FQR POS B � Version �

Initialization�
� � small positive value"
k ef �k� k� �"
dfq��k� � zeros�N  �� ��"
dq��k� � zeros�N  �� ��"
cos��k� � ones�N  �� ��"
sin��k� � zeros�N  �� ��"
f�k� � zeros�N  �� ��"
for k � �� �� � � �

f e
���
fq�
�k  �� � x�k  ��"

for i � � � N  �

f e
�i�
fq�
�k  �� � cos�i���k�e

�i���
fq�

�k  ��� sin�i���k�����dfq�N���i
�k�"

dfq�N���i
�k  �� � sin�i���k�e

�i���
fq�

�k  ��  cos�i���k�����dfq�N���i
�k�"

g
efq��k  �� � e

�N���
fq�

�k  ��"

k ef�k  �� k�
q
e�fq��k  ��  � k ef�k� k�"

k e�N���
f �k  �� k�k ef�k  �� k"

for i � � � N  �

f k e�N���i�
f �k  �� k�

q
k e�N���i�

f �k  �� k�  d�fq�i�k  ��"
cos��fN���i

�k  �� �k e�N���i�
f �k  �� k � k e�N���i�

f �k  �� k"
sin��fN���i

�k  �� � dfq�i�k  ��� k e�N���i�
f �k  �� k"

g

���



�Continuation of the FQR POS B Algorithm � Version ��

aux� � x�k  ��� k e���f �k  �� k"
fN���k  �� � aux�"
for i � � � N

f fN���i�k  �� �
fN���i�k��sin	�fi��

�k���auxi��

cos	�fi��
�k���

"

auxi � �sin��fi��
�k  ��fN���i�k�  cos��fi��

�k  ��auxi��"
g
�����k  �� � �"
for i � � � N  �
f sin�i���k  �� � fN���i�k  �����i����k  ��"
cos�i���k  �� �

p
�� sin��i���k  ��"

��i��k  �� � cos�i���k  ����i����k  ��"
g
��k  �� � ��N����k  ��"

e���q� �k  �� � d�k  ��"
for i � � � N  �

f e
�i�
q� �k  �� � cos�i���k  ��e

�i���
q� �k  ��� sin�i���k  ������dq�N���i

�k�"

dq�N���i
�k  �� � sin�i���k  ��e

�i���
q� �k  ��  cos�i���k  ������dq�N���i

�k�"
g
eq��k  �� � e

�N���
q� �k  ��"

e�k  �� � eq��k  ����k  ��"
g

��




The second version of the FQR POS B algorithm is based on the straightforward

computation of f�k �� according to ������ and requires the calculation of
ef �k���

kef �k���k �

FQR POS B � Version 


Initialization�
� � small positive value"
k ef �k� k� �"
dfq��k� � zeros�N  �� ��"
dq��k� � zeros�N  �� ��"
cos��k� � ones�N  �� ��"
sin��k� � zeros�N  �� ��"
f�k� � zeros�N  �� ��"
for k � �� �� � � �

f e
���
fq�
�k  �� � x�k  ��"

for i � � � N  �

f e
�i�
fq�
�k  �� � cos�i���k�e

�i���
fq�

�k  ��� sin�i���k�����dfq�N���i
�k�"

dfq�N���i
�k  �� � sin�i���k�e

�i���
fq�

�k  ��  cos�i���k�����dfq�N���i
�k�"

g
efq��k  �� � e

�N���
fq�

�k  ��"

k ef�k  �� k�
q
e�fq��k  ��  � k ef�k� k�"

k e�N���
f �k  �� k�k ef�k  �� k"

for i � � � N  �

f k e�N���i�
f �k  �� k�

q
k e�N���i�

f �k  �� k�  d�fq�i�k  ��"
cos��fN���i

�k  �� �k e�N���i�
f �k  �� k � k e�N���i�

f �k  �� k"
sin��fN���i

�k  �� � dfq�i�k  ��� k e�N���i�
f �k  �� k"

g

���



�Continuation of the FQR POS B Algorithm � Version ��

aux� �

�k�efq� �k���

kef �k���k "
for i � � � N  �
f fi���k  �� � cos��fN���i

�k  ��fi�k�� sin��fN���i
�k  ��auxi��"

auxi � sin��fN���i
�k  ��fi�k�  cos��fN���i

�k  ��auxi��"
g
eb�k���
keb�k���k � f��k  ��"

fN���k  �� � auxN��"
�����k  �� � �"
for i � � � N  �
f sin�i���k  �� � fN���i�k  �����i����k  ��"
cos�i���k  �� �

p
�� sin��i���k  ��"

��i��k  �� � cos�i���k  ����i����k  ��"
g
��k  �� � ��N����k  ��"

e
���
q� �k  �� � d�k  ��"
for i � � � N  �

f e
�i�
q� �k  �� � cos�i���k  ��e

�i���
q� �k  ��� sin�i���k  ������dq�N���i

�k�"

dq�N���i
�k  �� � sin�i���k  ��e

�i���
q� �k  ��  cos�i���k  ������dq�N���i

�k�"
g
eq��k  �� � e

�N���
q� �k  ��"

e�k  �� � eq��k  ����k  ��"
g

���



�� The FQR PRI B Algorithm�
The 	rst version of this algorithm is based on the fact that the last element of

a�k �� �or aN���k �� �
x�k���p
�ke���

f �k�k� is known in advance or prior to its calculation�

This version was presented in ��
��

FQR PRI B � Version �

Initialization�
� � small positive value"

k e���f �k� k� �"
k ef �k� k� �"
dfq��k� � zeros�N  �� ��"
dq��k� � zeros�N  �� ��"
cos��k� � ones�N  �� ��"
cos��f�k� � ones�N  �� ��"
sin��k� � zeros�N  �� ��"
sin��f �k� � zeros�N  �� ��"
a�k� � zeros�N  �� ��"
for k � �� �� � � �

f e
���
fq�
�k  �� � x�k  ��"

for i � � � N  �

f e
�i�
fq�
�k  �� � cos�i���k�e

�i���
fq�

�k  ��� sin�i���k�����dfq�N���i
�k�"

dfq�N���i
�k  �� � sin�i���k�e

�i���
fq�

�k  ��  cos�i���k�����dfq�N���i
�k�"

g
efq��k  �� � e

�N���
fq�

�k  ��"

aux� �
x�k���

����ke���
f �k�k "

aN���k  �� � aux�"
for i � � � N

f aN���i�k  �� �
aN���i�k��sin	�fi��

�k�auxi��

cos	�fi��
�k�

"

auxi � �sin��fi��
�k�aN���i�k  ��  cos��fi��

�k�auxi��"
g
k ef�k  �� k�

q
e�fq��k  ��  � k ef�k� k�"

���



�Continuation of the FQR PRI B Algorithm � Version ��

k e�N���
f �k  �� k�k ef�k  �� k"

for i � � � N  �

f k e�N���i�
f �k  �� k�

q
k e�N���i�

f �k  �� k�  d�fq�i�k  ��"
cos��fN���i

�k  �� �k e�N���i�
f �k  �� k � k e�N���i�

f �k  �� k"
sin��fN���i

�k  �� � dfq�i�k  ��� k e�N���i�
f �k  �� k"

g
�������k  �� � �"
for i � � � N  �

f ����i��k  �� �
q
�����i����k  ����  a�N���i�k  ��"

cos�i���k  �� �
��
�i����k���

��
�i��k���
"

sin�i���k  �� �
aN���i�k���

��
�i��k���
"

g
��k  �� � �������N����k  ���"

e
���
q� �k  �� � d�k  ��"
for i � � � N  �

f e�i�q� �k  �� � cos�i���k  ��e
�i���
q� �k  ��� sin�i���k  ������dq�N���i

�k�"

dq�N���i
�k  �� � sin�i���k  ��e

�i���
q� �k  ��  cos�i���k  ������dq�N���i

�k�"
g
eq��k  �� � e�N���

q� �k  ��"
e�k  �� � eq��k  ����k  ��"

g

���



The second version of the FQR PRI B algorithm is based on the straightforward

computation of a�k �� according to ������ and requires the calculation of
e�f �k���p
�kef �k�k �

This version was presented in �����

FQR PRI B � Version 


Inicialization�
� � small positive value"

k e���f �k� k� �"
k ef �k� k� �"
dfq��k� � zeros�N  �� ��"
dq��k� � zeros�N  �� ��"
cos��k� � ones�N  �� ��"
cos��f�k� � ones�N  �� ��"
sin��k� � zeros�N  �� ��"
sin��f �k� � zeros�N  �� ��"
a�k� � zeros�N  �� ��"
for k � �� �� � � �

f e
���
fq�
�k  �� � x�k  ��"

for i � � � N  �

f e
�i�
fq�
�k  �� � cos�i���k�e

�i���
fq�

�k  ��� sin�i���k�����dfq�N���i
�k�"

dfq�N���i
�k  �� � sin�i���k�e

�i���
fq�

�k  ��  cos�i���k�����dfq�N���i
�k�"

g
efq��k  �� � e

�N���
fq�

�k  ��"

aux� �
efq��k���


�k�����kef �k�k "

for i � � � N  �
f ai���k  �� � cos��fN���i

�k�ai�k�� sin��fN���i
�k�auxi��"

auxi � sin��fN���i
�k�ai�k�  cos��fN���i

�k�auxi��"
g

e�b�k���

����keb�k�k � a��k  ��"

aN���k  �� � auxN��"

k ef�k  �� k�
q
e�fq��k  ��  � k ef�k� k�"

���



�Continuation of the FQR PRI B Algorithm � Version ��

k e�N���
f �k  �� k�k ef�k  �� k"

for i � � � N  �

f k e�N���i�
f �k  �� k�

q
k e�N���i�

f �k  �� k�  d�fq�i�k  ��"
cos��fN���i

�k  �� �k e�N���i�
f �k  �� k � k e�N���i�

f �k  �� k"
sin��fN���i

�k  �� � dfq�i�k  ��� k e�N���i�
f �k  �� k"

g
�������k  �� � �"
for i � � � N  �

f ����i��k  �� �
q
�����i����k  ����  a�N���i�k  ��"

cos�i���k  �� �
��
�i����k���

��
�i��k���
"

sin�i���k  �� �
aN���i�k���

��
�i��k���
"

g
��k  �� � �������N����k  ���"

e
���
q� �k  �� � d�k  ��"
for i � � � N  �

f e�i�q� �k  �� � cos�i���k  ��e
�i���
q� �k  ��� sin�i���k  ������dq�N���i

�k�"

dq�N���i
�k  �� � sin�i���k  ��e

�i���
q� �k  ��  cos�i���k  ������dq�N���i

�k�"
g
eq��k  �� � e�N���

q� �k  ��"
e�k  �� � eq��k  ����k  ��"

g

���


