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FAST QR ALGORITHMS BASED
ON BACKWARD PREDICTION
ERRORS: A NEW
IMPLEMENTATION AND ITS
FINITE PRECISION
PERFORMANCE™*

José Antonio Apolindrio Jr,' Marcio G. Siqueira,”
and Paulo S. R. Diniz?

Abstract. QR decomposition techniques are well known for their good numerical behavior
and low complexity. Fast QRD recursive Jeast squares adaptive algorithms benefit from
these characteristics to offer robust and fast adaptive filters. This paper examines two
different versions of the fast QR algorithm based on a priori backward prediction errors
as well as two other comresponding versions of the fast QR algorithm based on a poste-
riori backward prediction errors. The main matrix equations are presented with different
versions derived from two distinet deployments of a particular matrix equation. From this
study, a new algorithm is derived. The discussed algorithms are compared, and differences
in computational complexity and in finite-precision behavior are shown.
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1. Introduction

Fast recursive least-squares algorithms based on QR decomposition (FQR-RLS
algorithms) are widely used in adaptive filtering because of their numerical ro-
bustness and their regular structure, which can lead to efficient implementations.
Starting from the conventional (or O[N 1) QR decomposition method [5], a
number of fast algorithms (O[N ) were derived [4], [8], [6]. [9], [ 1]. It was shown
in [1] that these algorithms can be classified in terms of the type of triangulariza-
tion applied to the input data matrix_(upper or lower triangular) and type of error
vector (a posteriori or a priori) used in the updating process. It can be seen from
the Gram-Schmidt orthogonalization procedure that an upper triangularization (in
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Table 1, Classification of the fast QR algorithms

Error Prediction

Type Forward Backward

APosteriori FQRPOSF|4]  FQR POS_B [3]
APriori  FQRPRLF[1] FQRPRILB [6], [9]

the notation adopted in this work) updates the forward prediction errors, whereas,
lower triangularization updates backward prediction errors. Table 1 presents the
classification used in [1] and introduces how these algorithms will be designated
hereafter.

In this paper, we propose a general framework to classify backward prediction-
based algorithms, which leads to the derivation of a new algorithm. Our motiva-
tion is that from a number of algorithms of the QR family, the fast QR al gorithms
using backward prediction errors are known to be stable. Moreover, they prescnt
lower computational complexity compared to those based on forward prediction
errors and hence are worth investigating.

This paper is organized as follows. In Section 2, we present the matrix equa-
tions of the two basic FQR algorithms under investigation. Section 3 examines the
two different versions of each algorithm. Section 4 discusses the compultational
requirements. The simulation results are shown in Section 5, and the conclusions
are summarized in Section 6. A complete description of the new algorithm is
presented in the Appendix.

2. FQR algorithms based on backward prediction errors

We start by reviewing the basic concepts of the conventional QR algorithm. The
RLS algorithms minimize £(k) = ZL(J 320 = el (ek) =|| e(k) 2,
where each component of the vector e(k) is the a posteriori error at instant
weighted by A% /2 (3 being the forgetting factor). Vector e(k) is given by

elk) =di) — Xwk). (1)
In (1), d(k) is the weighted reference or desired signal vector, X (k) is the (k +
) x (N + 1) weighted input data matrix, and w(k) is the coefficient vector. These
vectors and matrices are defined as follows:
dik)

XY —

d(k)= (2)

22400y
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[ wek)
wi (k)
wik) = ; 3
L u.w. (k)
[ x" (k)
Nr = B
Xk = , _ (4)
}.*‘f'?i'f'm)

where N is the filter order (number of coefficients minus one), x (k) is the input
signal vector [x(k) x(k — 1) -+ x(k — M7, and the samples before instant
k = 0 arc assumed nulls.

The premultiplication of (1) by the orthonormal matrix Q(k), as can be seen in
the next equation, triangularizes X (k) without affecting the cost [unction:

oty | € ® T _[dy@ 1. 0 |
Qmam%m_[ﬂhm]_[de] [Um}wm‘ @

The weighted-square error is minimized by choosing w{k) such that do(k) —
Uk)w(k) is zero. Equation (5) can be written in 2 recursive form while avoiding
ever-inereasing order for the vectors and matrices involved [5],

eq (k) | dik)
i =8| pg,u -y | o
where Q (%) is a sequence of Givens rotations that annihilates the clements of
the input vector x (k) in

o _ x7 (k)
{ Uk }_ Q”(”C){ ARG G - 1) } &

The following relation is obtained in the conventional QR algorithm by post-
multiplying e:(fc) Q(k) by the pinning vector [1 0 --- 07

N
a(k) = e, (k) ncos Oi (k) = e, (k)y k), (8)
i=0
where y (k) is the first element of the first row of O,(k).
In the development of the fast QR algorithms, the way matrix U (k) is trian-
gularized, upper or lower triangular, determines the type of the prediction error
updated. In both types, matrix @, (k) can be partitioned as

o | YR —yka (k)
Q”m{ﬂm E(k) } e

where, using (9) in (7) and recalling that 0, (k) is orthonormal, it is possible to
prove that f(k) = [U(k)] Tx(k) is the normalized a posteriori forward (upper
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triangularization) or backward (lower triangularization) prediction error vector
[6]. Furthermore, a(k) = U-Tk— l)x(k)/ﬁ is the normalized a priori forward
(upper triangularization) or backward (lower triangularization) prediction error
vector [6], and E(k) = A2 U T UK — 1.

In fast QR algorithms, the QR decomposition is applied to the forward and
backward prediction problems whese prediction errors are respectively defined as
follows:

X(k—1) 0
ep(ky=| dplk 10
1) fale o ]i —w (R } (10
N k
en(k) = [X () df,,(m[ b A } (an
where the reference or desired forward vector is defined by d ¢ (k) = [x(k) A ey
(k—1y -+ 22 x()]" and the reference or desired backward vector corrfzqunds
todp(k) = [x(k — N — 1) 2 2xk—N—2) ... a%=N=-D2cq) o 7.

N+
Note that the partitioned matrices in the last two equations correspond to

XWNH2 (k) the weighted input data matrix of order N + 1—X (k) without
superscript corresponds to an order N matrix or X! (k). Qur aim is to
triangularize X ™2 (k) to obtain Q¥+ (k) such that

i 0
OV () XN (k) = [ U2 gy } : (12)

In the backward prediction problem, the lower triangular UiN+ (k) is obtained
through the use of Q”\’ iy = O, (k) Q(k), where @, (k) is a sct of Givens
rotations applied to generate || ep(k) [|. The resulting Cholesky lactor is

W [ O lep®) |
v (k) N 1: U U") dbqg(k) ] ’ (13)

In the forward prediction problem, the lower triangular of ¥ V% (k) is imple-
k-1 0

0" I }

where @ (k) and Q} (k) are two scts of Givens rotations generating || e s (k) |

and || e[;-”(k) ||, respectively. The resulting expression is

o dig (k) Ulk—1) 0 R(k)
rINA2Y ) = )l’ i faz s - - .
U (k) = @yl )[ e sk | of } [ i ef;.”(k) | 2T

mented by premultiplying e (k) by the product Q', (k) 0 (k) [

(14)
where [R” (k) z(k)]" is the right part of U'¥ 2 (k).
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The inverse of the last two expressions yields the following resulis:
i |

[UUV"'E]{I()]"I . —D.—l%{}%}ﬂ U_';I(k)

Te T .

[ Z7wR'w
= el e | . (15)
R (k) 0

With the results obtained in (1 3), we can express the vectors F D4 1) and
a2 (k1) in terms of the partitions UI"[ J'("V"'E)(k -+ I')]_'J and [UfN "23(:{')]_ i \
respectively. If we update f(k), the resulting algorithm will be the FQR_POS_B,
whereas, updating a(k) leads o the FQR_PRI_B algorithm.

2.1. The FOR_PRI_B algorithm

This algorithm is obtained by expressing vector '™ 2 (k 4 1) = [gIN+2) (k)31=7
x4 1) /R in terms of the matrices in (15) and premultiplying the one that
comes from the forward prediction problem by Qg,f- (k) Q’,;f (k). The updating
equation is

_I_{'_;}E-{"I' 1] a(kj
Vilesl = Qe tk) | tn . g
a(k+1) ' Vileswl

It is important to mention that. during the derivation of the previous cquation,
it was observed that the last element of a(k+ 1) in (16) is known in advance and

is equal to —&ED e magrix equations for the FQR_PRI_B algorithm are
VAT &

shown in Table 2.

2.2, The FQR_POS_B algorithm

Expressing fY "2k + 1y = (¥ Rl + DI Tx ™42 4 [) in terms of
the matrices in (15) and premultiplying the one that comes from the forward
prediction problem by Q,\f”-(k + I)Q":.rjr (k + 1) yields

Tw,u--m k)
o+ Dl [ =@y (k+1)|  erwsn |- (17)
Flke+1) E e, G+
During the derivation of (17), it was observed that the last element of f(k + 1)
jg kD) ¢plk41)

8~ —- The term — """ can be calculated as (k)sind¢(k 4+ 1), where
e -1y € r (k4177 I f
k1) :
i epg k1), y . 7 . .
smbéetk+1) = ﬂé:lT-::l}_;l 15 the sine of the angle of rotation matrix Qf-(k +1).

The matrix equations for the FQR_POS_B algorithm are shown in Table 3.
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Table 2. The FQR_PRI_B equations

for each k
{ 1. Obtaining d_;--qg (k—+1):
e lk=1) ] L 'r.(k + 1)
[ drgtk+1y | TU®| 2q, )
. Obtaining a(k + 1):

2
ey (k1) a(k)
[ Silepol | = Q) [ kD) ]
alk+1) ) Ve p ik

3. Obtaining || e__,--(a’c + 13 I:

ept+ 1) ll= \feF, (+ D+ e 12
4. Oblaining Q_;J,J..(!\' + 1k

5. Obtaining Qg ik -+ L)

b yk+1 ] : 1
5. 0 ]—Q’*”‘*”[ —a(k 1) ]

| 6. Joint Process Estimation:
i eqpk+1) | Ty

L dq’g”"‘"” —QH( + 1)

7. Updating the output error:

elk+1) =eq (k+ Dyt +1}

dlk + 1)
A2, (k)

0 dg, k= 1)
g g Fan
M?w+nl]_Q”“'U[Hw&+UH

]

Table 3. The FQR_POS_B equations

| for each k

{ 1. Obtaining d yg, (k + 1):
epg li+1) ] g [ (k1) ]
l: d_{'r,:z(k + 1) o Qf}( ) l"szj'r,rz(k)
2. Obtaining || elf{k + 1y
A . B o o (112
leptk+ 1) |I= VErm (k1) 4+ | epled |l
3. Ohtaining Q;U.(k + 1)
(o ) = Qo k + ”[
el (k1) or
. Obtaining ik + 1):
epik+1) Fik)
fepti el | = Q;”.(f( +1) eplh+l)
Jk--D ' e s (T
5. Obtaining (& + 1):

| k4 1)
- ggarof 1420 ]

dljr'{ﬂ(k + 1)
| epik+1)|

1

flk+1)
. Joint Process Estimation:
e (k+1) | o 1 d.{k + 1)
| dyytk+ 1 | Cpk-+1) w12, (k)
7. Updating the output error:
el + 1) =eq th+ Dyt + 1)

1o T

}
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3. The different versions

The different versions presented in this section are based on the implementation
of a particular matrix equation. For both the FQR_POS B and FQR_PRI_B algo-
rithms, equations (17) and (16) can be generically written as

' v
2]-a(;)

where ¢ and § are scalars, matrix Q;j},- consists of a set of Givens rotations, and u
may be computed as follows: '

o
i I_.-'V 0 0
=1 07 cos By —sinéy
0" sindy  costy
By
e U]
cosfy 0 —singy )
0 Iy 0 : (19)
sinfly 07 cos O i""\;"

Note that vector v is updated to u without usin & « and with no prior knowledge
of any element of u. On the other hand, using the fact that the inverse of matrix
();”- corresponds to Q’;;f, it is also possible to derive the following implementa-
tion:

U
cosfy 07  sin Hy
ez 0 l‘,\r 0
Ui+l —sinfy 07 cosoy
B
Iy 0 0 )
0" cosfy sinfy . (20)
(}T — sin @(] cos 9(]
Uy

and the updating process from v to u can be carried out if we know u N1 In
advance.

3.1. The FQR_PRI_B: Versions I and 2

As mentioned before in the equation corresponding to the second step of this
algorithm, the last element of a(k + 1} is known before the updating process of
this vector. This fact leads to the two different versions of this algorithm.
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Table 4. The FQR_PRI.B equations Version 1

2. Obtaining a(k + 1):
) xle+1) |
auxy = —= :
0= T |!ezf.”(k; |
apg k4 1) = auxy;
fori=1:N

u,\.'+g_;(k)—ﬁin9jrr_ I{k}uu.a',‘ 7

cos G}f—l (k) 1

Uaypritk+1) =

aux; = —sin H.}}—| (Bapyo_iltk+1)
-+ cos H’:ﬂ (Baux;_;

Table 5. FQR_PRI_B: Version 2

2. Obtaining a(k + 1):

ey b1y
YR e p k]
fori=1:N+1
[ aj(k+1)=cosf J r_{,Fc).:r,- (I

Xy =

S
—sinH}.VH (lyawx; |
o =F
aux; = sin f};,.N oy (K)ap (k) + cos 9.}_-\-“ P (kyeux;_q;

'
) ey lkA1)
\x ay(k + 1) corresponds to m” *\

an ik + 1) =auxyg;

Its first version is based upon the fact that the last element of a(k + 1) is known
prior to its calculation. This version was introduced in [9]. Table 4 presents the

different steps required for its implementation.

The second version of the FQR_PRI_B algorithm is based on the computation
of a(k + 1) according to the matrix equation and requires the calculation of

et (k41
NATTGIN
tation of this matrix equation is presented in Table 5.

This version was first presented in [6]. The corresponding implemen-
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Table 6. FQR POS_B: Version |

4. Obtaining f(k + 1):
ausg = xtk+ 1/ || Pk + 1) |

Sk + 1) = auxy:
fori=1:nN
. Fnvea i (ki—sin fi_:,-r,__[ e+ Danx;
U =ikt 1) = cosli G+ ;
aux; = — siilﬁl};__J (k1) fys1-i (k)
+ cos ()’;,.r_[ (k- Dawex;_p;

3.2. The FOR _POS_B: Versions | and 2

For the FQR with a posteriori backward prediction (FQR_POS_B), il was seen
that in its fourth step, the last element of f(k -+ 1) is known before its updating
process. This fact also leads to two different versions of the algorithm.
The first version of the FQR_POS_B algorithm is based upon the fact that the
last element of f(k+1)is known in advance or prior to its calculation (farag (k+
s l—e%“{—w} This version has been previously reported only in [2] and [3].
| LM
Table 6 farescnts its implementation (step 4 corresponds to the only distinct part
between the two versions). A detailed and complete algorithmic description of
this new version in presented in the Appendix.
The second version of the FQR _POS_B algorithm is based upon the compu-
tation of f(k -+ 1) according to the matrix equation and requires the calculation

- epk+l) ; ; . : - e
of TI"E?%:I_JJI'I' This version was introduced in [8], and Table 7 presents its imple-

. ; : ke

mentation. Note that, for this version, the term ”;—j(all—dj can be calculated as
g {f\'-]-']}
e, oy

yk)sindr(k + 1), where sindpk + 1) =
rotation matrix Qrlk+1).

i1 the sine of the angle of

4. Computational complexity

The computational complexity for each of the discussed algorithms is shown in
this section. Table 8 compares the four versions of the fast QR algorithms in terms
of number of operations (additions, multiplications, divisions, and squared roots).

It is important to note that fast QR algorithms with backward prediction error
recursion are of minimal complexity and are known to be backward stable under
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Table 7. FQR_POS_B: Version 2

4. Obtaining f(k + 1}

]’(k:‘f-’rq|(lf\"f"l}_

fori=1:N+1

{ ficalk+1)= cosH}.N e 1) fi (k)

auxy =

— 511 U}- Ak Dyawux; q;
SNFI=]
anx; = sin 9}-\[__] k4 1 fi (k)
+ cos H.‘I‘N-‘-l—ﬁ (k=4 Vyeaux;__y;
!
\* fytk + 1) corresponds to % *\

IN | l(k + 1) = AUXp 1]

Table 8. Comparison of computational complexity

Algorithm Add Mult. Div. Sgr. root

FQRPRIB(V.)[9] 8p—1 19p+2 5p+1 2p+1
FORPRIB (V.2)[6] S8p+1 20p+6 dp+2 2p+1
FQR_POS.B (V. 1) Sp+1 19p+4 dp+1  2p+1
FOR POS.B(V.2)[8] 8p+1 20p+5 3p+1 2p+]|

persistent excitation [8], [7]. Moreover, they present lower computational com-
plexity (note from Table & that all algorithms analyzed in this text, including the
proposed one, have similar complexity) if compared to fast QR algorithms with
forward prediction error recursion [4], [1].

5. Performance in finite precision

This section presents some simulation results to compare the discussed algorithms
in finite precision. The setup is a system identification problem of order N = 10.
The input signal to the unknown system was colored noise with eigenvalue spread
equal to 187 and SNR=40 dB. The mean-squared error (MSE) was measured by
using floating-point arithmetic with quantization applied to the mantissa in all
operations. The mantissa was rounded excluding the sign bit and assuming that
the exponent wordlength was sufficient to represent all dynamic ranges. In the
first experiment, the mantissa wordlength was varied (8 to 16 bits excluding the
sign bit) while keeping fixed the value of the forgetting factor (& = 0.98). Next,
the A was varied (0.90 to 1.0) for a fixed mantissa wordlength (10 bits). For the
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-— —_— B e -

| | ) FOR POS B version 1 {proposedj] |
+ FOR POS B version2 (8]
| % FQR PRIB version 1 (9] |
L X FORPRIB version2(5]

Mumber of bits

Figure 1. Performance of the al gorithms in finite precision environment when varying B, the uumber
of bits in the mantissa (i = (L.98, no passive orthogonal rotation constraints)

computation of the MSE (in dB) in both experiments, the last 4000 iterations of
simulations with 5000 samples were averaged after an average of 10 independent
runs. The results can be observed in Figure | and Figure 2. The figures indi-
cate that for typical values of forgetting factors (%) ranging from 0.9 to 1, the
FQR_POS B versions perform slightly better than the FQR_PRI_B versions. In
Figures 1 and 2 the orthogonal rotations were performed without passive rotation
constraints in finite precision.

Additional simulations with passive orthogonal rotation constraints were run.
The results obtained from these simulations are shown in Figures 3 and 4. It can
be seen from these figures that, among the compared algorithms, those based on
a posteriori errors outperform the ones based on a priori errors. It can also be
seen that the FQR POS B version | algorithm, which was proposed in this paper,
outperforms all the other discussed algorithms in finite precision when passive
orthogonal rotation constraint is u sed.

6. Conclusions

In this paper, we have considered the two fast QR algorithms based on back-
ward prediction errors (a posteriori and a priori). Two different versions for each
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---15!—'— T T T | -

-+ FOR POS B version2 [8]
-3¢ FOR PRI B versicn 1[9]
=207 ¥ FOR PRIB version 28]

X

a0} “‘H..\I‘
i I||'.I‘.Q'.'.=_'\i\$'n.- 6
G”'"”Q

! QlIIIIHQ!'"”'O““I“
MIELE :
s

| =B == 1 I I 1 =,
0.9 a.o1 092 0.93 0.94 095 0.8 097 0.98 0.99 1

Figure 2, MSE in dB for different values of & (B, the number of bits was set o 1), no passive
orthogonal rotation constraints)

=10 — 1 1 T T T T
[0 FaR POS B version 1 (proposed) |
| 4 FOR POS B version2 [8]
¥ | 4 FQR PRI B version 1 [9]
" ® | % FQRPRIB version 2 [5]
5 %
=20
+. i, oy,

_a5 £ iy

=g i iz ] i l I
8 9 10 11 12 13 14
Mumber of bits

Figure 3. Performance of the algorithms in finite precision when varying B, the number ol bits in the
mantissa (& = 0.98, with passive orthogonal rotation constraints)
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0|’ T = 1 =i P T g
| O FQR POS B version 1 (propm |
i 4 FQR POS B versign? [8] | ;
3 FOR PRI B version 1 9] =
| X_FQR PRI 8 version 2 [5]
=10 _:": ?
gk Rl
20 - . X I
& X ¥ l
:uv_ x e s +_
30 e = * o+ O ‘
O T I - |
0 s R o3
o o
-40 . O {
------- i ””O,...---O .
_4(1‘) ------ o © ‘
—R0 - | |S— il e | P L k| == )
0.9 0.91 0.92 0.93 .94 (.95 0.98 097 .98 0.98 1
r

Figure 4. MSE in dB for different values of 4 (B, the number of bits was sel to 10, with passive
orthogonal rotation constraints)

algorithm were derived and, for the a priori case, it became clear that these two
versions were actually the algorithms previously introduced in [6] and [9]. For the
a posteriori case, a new version was derived as the alternative implementation of
the same matrix equations used in |8].

Comparisons were carried out in terms of computational complexity and per-
formance in finite precision. From simulation results, 1t was observed that the per-
formances of the discussed algorithms were similar in finite precision for different
values of A and number of bits in the mantissa when orthogonal rotations were
performed without passive constraints. It was also observed that the algorithms
based on a posteriori error recursion outperformed algorithms based on a priori
error recursion when passive rotations are used, possibly because of the reduced
number of division operations used by the algorithms based on a posteriori error
recursion.

Appendix

This appendix provides a detailed algorithmic description of the FQR_POS_B
version | in Table 9.
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Table 9. The new algorithm

FQR_POS_B - Version 1

Initialization: | e s (k) [|=¢ = small positive value;
d_lf'qz(k) == dqgfk} = yeros(N + 1, 1)
cos@ k) = ones(N + 1, 1)
sin@ik) = fik) = zeros(N + 1, 1};
fork = 1, Z;:u

(o) Gt D) =xtk+1);
fori=1:N+1

{ «‘;'j” k4 1) = cosd;_ (mej;;l”(k 1) = sin_ (BA2d pga, 0
-1

dfgay o (k1) = sinby_y(kyeg, W (k -+ 1) + cos iy R 2 gy 0,
}

epq tk+1)= SNHD

S
Neptt1) 1= ey, (k4 D+ a ]l ep () I
II 8{?""’“(;‘; + 1 =] ef-(,{— 413 |l

fori=1: N+ 1

(k+ 1)

—
3

INAT—i ] 2 ;
{1 NP = 1 el D Il (et 1

cosfly  (k+1) =l Y A e (SR I

¢ind’ ok 15 = drs -+ D7 1T @+ 13 |;
R § L = “rql : ) 7

]
Y [(8)]
auxg =x{tk+ 1/ || ey e+

Stk + 1) = anxg;
fori =1:N

f,\,r.;g_,'{k}—sin{?j._ . (4 Laux; )
JEE 7 s [ St A
{ fvpi-ik+ D= {:0:;0;--_ lfkf—n i

aux; = —sin t‘)j.-]__ I(k + D g1 itk + 1) +cos f}jr‘__l (k + Dawg 13
)
y Q4+ =1;
fori=1:N+1
{ singi_1(k+ 1) = fiyya-ilk+ Dy Yk + 1)
cost;_qlk+1) = V’l —sin® 6 0k + 10
PO 4 1) = cos (k4 Dy D&+ 1)
1
yk+ 1) =y 4 1y
ek 4 1) =dlk+1);
fori=1:N+41
[ oDk 4+ 1y = cosBi_y(h+ el D+ 1) — sindy_ (k + D124 (k);
eg (k4 1) = cos Bk o Yeg, (k4 1) —sinb (kA Y 2 iR

gy yay (k1) =sinb;_y (k+ Vel 7D+ 1) + costy_ e+ DA 2dga o (K
]
eq b+ 1) = TV e 1);

elk-+ 1) = 6.’(“”\' + Ly k4 1)
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