
A NEW ORDER RECURSIVE MULTIPLE ORDER MULTICHANNEL FAST QRD-RLS
ALGORITHM

António L. L. Ramos †, José A. Apolinário Jr. †, and Marcio G. Siqueira‡

†IME–DE/3
Praça General Tibúrcio, 80

22290-270, Rio de Janeiro, RJ, Brazil
antonioluis@ime.eb.br and apolin@ieee.org

‡Cisco Systems
170 West Tasman Drive

San Jose, CA 95134–1706 USA
mgs@cisco.com

ABSTRACT

In many adaptive filtering applications, such as in the case of the
Volterra filters, the use of channels of unequal orders are common.
This paper introduces a new Multichannel Fast QRD-RLS algo-
rithm based on the updating of a posteriori backward errors that
attains both cases of channels of equal or unequal orders. This new
algorithm exhibits good numerical behavior and is order recursive,
which allows a systolic array implementation with lower compu-
tational complexity compared to earlier proposed algorithms.

1. INTRODUCTION

Digital processing of multichannel signals using adaptive filters
has recently found a variety of new applications including color
image processing, multi-spectral remote sensing imagery,
biomedicine, channel equalization, stereophonic echo cancellation,
multidimensional signal processing, Volterra–type nonlinear sys-
tem identification, and speech enhancement [1]. This increased
number of applications has spawned a renewed interest in efficient
multichannel algorithms. One class of algorithms, known as mul-
tichannel Fast QRD-RLS adaptive algorithms based on backward
errors updating, a priori [2] or a posteriori [3], has become an at-
tractive option because of their fast convergence and reduced com-
putational complexity.

Unified formulations of Fast QRD-RLS algorithms are avail-
able in [4], for the single channel case, and in [5], for the mul-
tichannel case. In this paper, a new order recursive multiple or-
der Multichannel Fast QRD-RLS algorithm is developed based
upon fixed and multiple order multichannel algorithms recently
proposed in [6] and [7], using an approach similar to [3] and [6].
This new order recursive multichannel Fast QRD algorithm, using
the a posteriori backward prediction errors updating, can be used
in problems with channels of equal or unequal orders while com-
prising only scalar operations. The new algorithm is particularly
suitable for systolic array implementation.

The QRD-RLS family of Multichannel algorithms uses the
weighted least-squares (LS) objective function defined as

ξLS(k) =
k∑

i=0

λk−ie2(i) = eT (k)e(k) (1)

The authors thank CNPq, CAPES, and FAPERJ for partial funding of
this paper.

where vector e(k) =
[
e(k) λ1/2e(k − 1) · · · λk/2e(0)

]T

can be represented as follows.

e(k) =

⎡
⎢⎢⎢⎣

d(k)

λ1/2d(k − 1)
...

λk/2d(0)

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

xT
N (k)

λ1/2xT
N (k − 1)

...
λk/2xT

N (0)

⎤
⎥⎥⎥⎦ wN (k)

= d(k) − XN (k)wN (k) (2)

where

xT
N (k) =

[
xT

k xT
k−1 · · · xT

k−N+1

]
(3)

and xT
k = [x1(k) x2(k) · · · xM (k)] is the input signal vec-

tor at instant k. Note that N is initially defined as the number of
filter coefficients per channel (fixed order), M is the number of in-
put channels, and wN (k) is the MN ×1 coefficient vector at time
instant k.

If UN (k) stands for the Cholesky factor of XT
N (k)XN (k),

obtained through the Givens rotation matrix QN (k), then

eq(k) = QN (k)e(k) =

[
eq1(k)
eq2(k)

]

=

[
dq1(k)
dq2(k)

]
−

[
0

UN (k)

]
wN (k) (4)

and the optimal coefficient vector, wN (k), is obtained by making
eq2(k) a null vector. In order to cope with the multiple order case,
the input signal vector needs to be redefined.

This paper is organized as follows. In Section 2, a new or-
der recursive multiple-order Multichannel Fast QRD based on the
updating of the a posteriori error vector is introduced. Simula-
tion results and conclusions are Summarized in Sections 3 and 4,
respectively.

2. THE NEW MULTIPLE ORDER MULTICHANNEL
FAST QRD-RLS ALGORITHM

The starting point for the derivation of multiple order multichannel
fast QRD-RLS algorithms [3], [6], and [7] is the construction of
the input vector such that the general case of equal or unequal order
is attained. It is also taken into account the fact that M steps are
executed for each iteration of the algorithm. This means that the

9650-7803-8622-1/04/$20.00 ©2004 IEEE

M channels are processed separately; yet they are interdependent:
the quantities collected after the i-th channel is processed are used
as initial values for the processing of the (i+1)-th channel and so
on. Finally, the quantities collected during the processing of the
last channel, in a given instant k, are used as initial values for the
processing of the first channel in k + 1. This will become clear
during the derivation of the algorithm.

The following notation is adopted:
M is the number of input channels;
N1, N2, · · · , NM are the number of taps for each

input channel;
N =

∑M
r=1 Nr Overall number of taps.

Without loss of generality, it is assumed here that N1 ≥ N2 ≥
· · · ≥ NM .

2.1. Redefining the input vector

From the fact that the M channels are processed separately, the
updating of the input vector is performed likewise: in a given time
instant k, we have vector xN (k)1 from which we successively ob-
tain xN+1(k+1) by appending the most recent sample of channel
one at time instant k + 1, xN+2(k + 1) by appending the most re-
cent sample of channel two, and so on. At the end of this process,
we have the updated vector xN+M (k + 1).

Actually, this is not that simple because the position to be oc-
cupied by the newer samples from each channel in the updated
vector xN+M (k + 1) must be carefully determined. The vec-
tor xN (k), used as the starting point to obtain xN+M (k + 1)
is construct as follows: we first choose N1 − N2 samples from
the first channel to be the leading elements of xN (k), followed
by N2 − N3 pairs of samples from the first and second channels,
followed by N3 −N4 triples of samples of the first three channels
and so far till the NM −NM+1 M -ples of samples of all channels.
It is assumed that NM+1 = 0. The position pi of the most re-
cent sample of the i-th channel can be expressed compactly as [3]
pi =

∑i−1
r=1 r(Nr − Nr+1) + i, for i = 1, 2, · · · , M . Moreover,

the M successive input vectors for a given instant k, obtained from
xN (k), can be defined as follows.

xT
N+1(k + 1)=

[
x1(k + 1) xT

N (k)
]

(5)

xT
N+i(k + 1)=

[
xi(k + 1) xT

N+1−i(k + 1)
]
P i (6)

where P i is a permutation matrix which takes the most recent sam-
ple xi(k+1) of the i-th channel to the position pi, after left shifting
the first pi − 1 elements of xT

N−i+1(k + 1). After concluding this
process for the M channels, it can be observed that xT

N+M (k +

1) = [xT
N (k+1) x1(k−N1+1) · · · xM (k−NM +1)] which

clearly means that the first N elements of xT
N+M (k + 1) provide

the input vector of the next iteration. We can now define the input
data matrices as follows.

XN+i(k) =

⎡
⎢⎢⎢⎣

xT
N+i(k)

λ1/2xT
N+i(k − 1)

...
λk/2xT

N+i(0)

⎤
⎥⎥⎥⎦ i = 1, 2, · · · , M (7)

Let UN+i(k) be the Cholesky factor of XT
N+i(k)XN+i(k);

we can define the a posteriori backward error vector,

1The subscript N denotes the N -th order vector.

fN+i(k + 1), as

fN+i(k + 1) = U−T
N+i(k + 1)xN+i(k + 1)

for i = 1, 2, · · · , M. (8)

From (8) and the definition of the input vector, we can write

fN+M (k + 1) =

[
fN (k + 1)

f (N)(k + 1)

]
(9)

where f (N)(k + 1) are the last M elements of f N+M (k + 1).
The updating of fN+i(k + 1) is accomplished in M forward

steps at each instant k:
fN (k) → fN+1(k + 1) → fN+2(k + 1) → · · ·
· · · → fN+M (k + 1)

2.2. Triangularization of the information matrix

Equation (7) suggests that the updating of the information matrix
is performed in M forward steps for each iteration.

2.2.1. First step (i = 1):

XN+1(k) can be defined as

XN+1(k) =

[
d

(1)
f (k)

XN (k − 1)
0T

]
(10)

where d
(1)
f1 (k) = [x1(k) λ1/2x1(k − 1) · · · λk/2x1(0)].

If UN (k−1) and Q
(1)
N (k) stand, respectively, for the Cholesky

factor of XT
N (k − 1)XN (k − 1) and the orthogonal matrix asso-

ciated to this process, we can write, from (10), that[
Q

(1)
N (k) 0
0 I1×1

] [
d

(1)
f (k)

XN (k − 1)
0T

]
=⎡

⎢⎣ e
(1)
fq1(k) 0

d
(1)
fq2(k) UN (k − 1)

λk/2x1(0) 0T

⎤
⎥⎦ (11)

To complete the triangularization process of XN+1(k) lead-
ing to UN+1(k), we premultiply (11) by two other Given rotation
matrices as follows.[

0
UN+1(k)

]
= Q′

f
(1)

(k)Qf
(1)(k)XN+1(k) (12)

where Qf
(1)(k) is the orthogonal matrix responsible for zeroing

the first, k−N rows, generating e
(1)
fN (k) as in (13), and Q′

f
(1)

(k)

completes the triangularization process by zeroing d
(1)
fq2(k) from

(12) in a top down procedure against e
(1)
fN (k). After removing the

resulting null section in the upper part of (12), the result is:

UN+1(k) = Q′
θf

(1)
(k)

[
d

(1)
fq2(k) UN (k − 1)

e
(1)
fN (k) 0T

]
(13)

From (13), we obtain the following relation that will be useful
to obtain an expression for the updating of f N (k).

[UN+1(k + 1)]−1 =⎡
⎣ 0T 1

e
(1)
fN

(k+1)

U−1
N (k) − 1

e
(1)
fN

(k+1)
U−1

N (k)d
(1)
fq2(k + 1)

⎤
⎦

·
[
Q′

θf
(1)

(k + 1)
]T

(14)

966

From (13), we know that Q′
θf

(1)
(k) is the Givens rotation ma-

trix responsible for zeroing d
(1)
fq2(k) against e

(1)
fN (k). Thus, it is

straightforward to write

[
0

e
(1)
f0 (k + 1)

]
= Q′

θf
(1)

(k + 1)

[
d

(1)
fq2(k + 1)

e
(1)
fN (k + 1)

]
(15)

Now, recalling (8), we can use (14) and (5) to obtain a recur-
sive expression to update f N+1(k + 1).

fN+1(k + 1) = Q′
θf

(1)
(k + 1)

[
fN (k)

p(1)(k + 1)

]
(16)

where

p(1)(k + 1) =
eN

(1)(k + 1)

e
(1)
fN (k + 1)

(17)

with eN
(1)(k + 1) being the a posteriori error of the forward pre-

diction for the first channel and |e(1)
fN

(k + 1)| is given by the fol-
lowing expression.

|e(1)
fN

(k+1)| =

√(
λ1/2|e(1)

fN
(k)|

)2

+ |(e(i)
fq1N

(k + 1)|2 (18)

The updating of d
(1)
fq2(k) is performed according to[

ẽ
(1)
fq1(k + 1)

d
(1)
fq2(k + 1)

]
= Q

(0)
θN

(k)

[
x1(k + 1)

λ1/2d
(1)
fq2(k)

]
(19)

and matrix Q
(1)
θN+1

(k +1), necessary in the next steps, is obtained
from

Q
(1)
θN+1

(k + 1)

[
1
0

]
=

[
γ

(i)
N+1(k + 1)

fN+1(k + 1)

]
(20)

2.2.2. Following steps (i > 1):

The input information matrix XN+i(k) is related to
XN+i−1(k) according to

XN+i(k) =

⎡
⎢⎢⎢⎣

xi(k)

λ1/2xi(k − 1)
...

λk/2xi(0)

XN+i−1(k)

⎤
⎥⎥⎥⎦ P i (21)

As in the first step, XN+i(k) must be triangularized generat-
ing UN+i(k) that corresponds to the Cholesky factor of
XT

N+i(k)XN+i(k). This process is detailed as follows. If
QθN+1−i

(k) stands for orthogonal matrix obtained from the QR
decomposition of XN+i−1(k), we can write from (21)[

QθN+1−i
(k) 0

0T 1

] [
XN+1−i(k)

0T

]

=

⎡
⎢⎣ e

(i)
fq1N+1−i

(k) 0

d
(i)
fq2(k) UN+i−1(k)

0 0T

⎤
⎥⎦ P i (22)

Equation (22) results from the annihilation of e
(i)
fq1N+1−i

(k)

against the first element of the last row of the matrix, using an

Q (k)
iP

 (i)’
 f

I II III

Fig. 1. Obtaining the lower triangular factor U N+i−1(k).

appropriate orthogonal factor, and removing the resulting null sec-
tion.

The existence of the permutation matrix P i in (22) prevents a
direct annihilating of d

(i)
fq2(k) against e

(i)
fN+i−1

(k) to complete the
triangularization of matrix XN+1−i(k). Fig. 1 illustrates the ap-
plication of the Givens rotations under these circumstances. This
process can be summarized as follows. The permutation factor,
P i, right shifts d

(i)
fq2(k) to the i-th position as shown in the first

part of the figure. Afterwards, a set of N + i − pi Given rotation
matrices, Q′

θf
(i), are used to nullify the first N + i − pi elements

of d
(i)
fq2(k) against e

(i)
fN+i−1

(k) in a top down procedure. In order
to obtain the desired triangular structure, we need another permu-
tation factor that moves the last row of the matrix to the N −pi +1
position, after downshifting the previous N − pi rows. This per-
mutation factor coincides with P i.

The positive definiteness of the lower triangular matrix
UN+i−1(k), obtained as described above, is guaranteed if its di-
agonal elements, along with e

(i)
fN+i−1

(k), are positive. Recalling

that e
(i)
fN+i−1

(k) is, actually, the absolute value of the forward er-
ror, the latter is valid and, U N+i−1(k) being properly initialized,
its positive definiteness is guaranteed. The procedure above can be
written compactly as

UN+i(k) = P iQ
′
θf

(i)
(k)

·
[

d
(i)
fq2(k) UN+i−1(k)

e
(i)
fN+i−1

(k) 0T

]
P i (23)

From (23), the following relation can be derived.

[UN+i(k + 1)]−1 = P T
i

·

⎡
⎢⎢⎣

0T 1

e
(i)
fN+i−1

(k+1)

U−1
N+i−1(k + 1) −U−1

N+i−1(k+1)d(i)
fq2(k+1)

e
(i)
fN+i−1

(k+1)

⎤
⎥⎥⎦

·Q′T
θf

(i)
(k + 1)P T

i (24)

From (24), (6), and (8), it is possible to obtain the following
recursive expression to compute f N+i(k + 1).

fN+i(k + 1) = P iQ
′
θf

(i)
(k + 1)

[
fN+i−1(k + 1)

p
(i)
N+i−1(k + 1)

]
(25)

where

p
(i)
N+i−1(k + 1) =

e
(i)
N+i−1(k + 1)

e
(i)
fN+i−1

(k + 1)
(26)

967

50 100 150 200 250 300 350 400 450 500 550 600
−70

−60

−50

−40

−30

−20

−10

0

10

20

Sample

M
SE

 (d
B)

The NLMS Algorithm

The Proposed MC Fast QRD−RLS
Algorithm

Fig. 2. Learning curves.

The scalar quantity e
(i)
N+i−1(k + 1) is the a posteriori forward

prediction error for the i-th channel and |e(i)
fN+i−1

(k + 1)| is given
by the expression below.

|e(i)
fN+i−1

(k + 1)| =√(
λ1/2|e(i)

fN+i−1
(k)|

)2

+ |e(i)
fq1N+i−1

(k + 1)|2 (27)

Now, looking carefully at (25) and recalling the definitions of
P i and Q′

θf
(i)

(k + 1), we conclude that the last pi − 1 elements
of fN+i(k + 1) and fN+i−1(k + 1) are identical. This is an im-
portant observation that allows a significant reduction in the com-
putational complexity of the algorithm.

The updating of d
(i)
fq2(k) is performed according to[

ẽ
(i)
fq1(k + 1)

d
(i)
fq2(k + 1)

]
= Q

(i−1)
θN+i−1

(k+1)

[
xi(k + 1)

λ1/2d
(i)
fq2(k)

]
(28)

and the Givens rotations matrices QθN+i
(k + 1), needed in the

next forward step, are obtained as follows.

Q
(i)
θN+i

(k + 1)

[
1
0

]
=

[
γ

(i)
N+i(k + 1)

fN+i(k + 1)

]
(29)

After the main loop (i = 1 : M), i.e., after the M-th channel is
processed, the join process estimation is performed according to[

eq1(k + 1)
dq2(k + 1)

]
= Q

(0)
θ (k + 1)

[
eq1(k)
dq2(k)

]
(30)

In order to achieve an order recursive structure to the algo-
rithm, p

(i)
j (k + 1) and |e(i)

fj
(k + 1)| must be expressed as in the

two following equations.

|e(i)
fj

(k + 1)| =

√(
λ1/2|e(i)

fj
(k)|

)2

+
(
e
(i)
fq1j

(k + 1)
)2

i = 1, 2, · · · , M j = pi, · · · , L (31)

and

p
(i)
j (k + 1) =

γ
(i−1)
j (k)e

(i)
fq1j

(k + 1)

|e(i)
fj

(k + 1)|
j = pi, · · · , L i = 1, 2, · · · , M (32)

Table 1. Computational complexity (complex environment.)�

Algorithm Mults. Divs. Sqrts
[7] 14NM + 13M 3NM + 4M 2NM + 3M
† −9

∑M
i=1 pi + 5N −3

∑M
i=1 pi −2

∑M
i=1 pi

[3] 15NM + 14M 4NM + 5M 2NM + 3M
† −10

∑M
i=1 pi + 5N −4

∑M
i=1 pi −2

∑M
i=1 pi

Table 2 14NM + 13M 4NM + 5M 2NM + 3M
‡ −9

∑M
i=1 pi + 5N −4

∑M
i=1 pi −2

∑M
i=1 pi

[3] 15NM + 14M 5NM + 6M 2NM + 3M
‡ −10

∑M
i=1 pi + 5N −5

∑M
i=1 pi −2

∑M
i=1 pi

� Note that pi =
∑i−1

r=1 r(Nr − Nr+1) + i, i = 1, 2, · · · , M .
† Direct Form, ‡ Recursive Form.

The computational complexity of the proposed algorithm is
shown in Table 1 and the complete order recursive algorithm, for
a the general case of a complex implementation, is summarized in
Table 2.

3. SIMULATION RESULTS

The performance of the proposed algorithm is evaluated in a non-
linear system identification. The plant is a truncated second order
Volterra system [8] which can be described as

d(k) =

L−1∑
n1=0

wn1(k)x(k − n1)

+

L−1∑
n1=0

L−1∑
n2=0

wn1,n2(k)x(k − n1)x(k − n2) + ρ(k) (33)

Equation (33) can be easily reformulated as a multichannel
problem with M = L+1 channels, where the most recent sample
of the i-th channel is

xi(k) =

{
x(k), i = 1
x(k)x(k − i + 2), i = 2, · · · , L + 1

and the i-th channel order is

Ni =

{
L, i = 1, 2
L − i + 2, i = 3, · · · , L + 1.

In our experiment, we used L = 4, λ = 0.98, and an SNR of
60dB. The learning curve for the proposed algorithm is compared
with the Normalized LMS (NLMS) [9] and the Inverse QRD-RLS
[10] algorithms in Fig. 2. Its convergence speed is shown to be
the same of the multiple order algorithms proposed in [3] (direct
and order recursive versions) and in [7] (direct version). When
compared to the NLMS and the IQRD-RLS algorithms, these al-
gorithms have shown a better convergence speed performance. In
terms of computational complexity, we have the following sce-
nario. The algorithm proposed in this work, as can be seen from
Table 1, has a lower computational complexity (multiplications
and divisions) if compared to those (direct and recursive forms)
based on backward prediction errors updating in [3]. But, also
from Table 1, it can be seen that its order recursiveness has a cost
in terms of the computational complexity when compared to its
direct form counterpart of [7]. This new algorithm has proven to
be stable and robust as expected in algorithms that use numerically
stable Givens rotations to perform QR decomposition.

968

4. CONCLUSIONS

Block multichannel RLS-based algorithms are well known for their
high computational complexity. Among these algorithms, the
FQRD-RLS algorithms based on backward errors [2, 3, 7] are at-
tractive due to their reduced computational complexity. The Mul-
tichannel FRQD-RLS algorithm based on a priori errors using the
alternative input vector formulation described in Section II was
shown to be an attractive option for the case of multiple order
multichannel applications. This paper introduced the order re-
cursive multichannel FQRD-RLS algorithm based on a posteriori
error updating. This new algorithm exhibits the lowest complex-
ity among known recursive order multichannel FQRD-RLS algo-
rithms, while keeping all desirable numerical properties of its fam-
ily.

5. REFERENCES

[1] N. Kalouptsidis and S. Theodoridis, Adaptive Systems Iden-
tification and Signal Processing Algorithms, Englewood
Cliffs, NJ: Prentice Hall, 1993.

[2] Maurice G. Bellanger, “The FLS-QR algorithm for adaptive
filtering: The case of multichannel signals,” Signal Process-
ing, vol. 22, pp. 115–126, 1991.

[3] A. A. Rontogiannis and S. Theodoridis, “Multichannel fast
QRD-LS adaptive filtering: New technique and algorithms,”
IEEE Transactions on Signal Processing, vol. 46, pp. 2862–
2876, November 1998.

[4] J. A. Apolinário, M. G. Siqueira, and P. S. R. Diniz, “Fast
QR Algorithms Based on Backward Prediction Errors: A
New Implementation and Its Finite Precision Performance,”
Birkhäuser, Systems, and Signal Processing, vol. 22, no. 4,
pp. 335–349, July/August 2003.

[5] C. A. Medina S., J. A. Apolinário Jr., and M. G. Siqueira, “A
unified framework for multichannel fast QRD-LS adaptive
filters based on backward prediction errors,” MWSCAS’O2,
Tulsa–USA, vol. 3, August 2002.

[6] A. L. L. Ramos and J. A. Apolinário Jr., “A lattice ver-
sion of the multichannel FQRD algorithm based on a pos-
teriori backward errors,” 11th Internacional Conference
on Telecommunications, Fortaleza, Brazil, ICT’2004, LNCS,
vol. 3124, pp. 488–497, August 2004.

[7] A. L. L. Ramos and J. A. Apolinário Jr., “A new multiple
order multichannel fast QRD algorithm and its application to
non-linear system identification,” XXI Simpósio Brasileiro
de Telecomunicações, SBT 2004, Belém, Brazil, September
2004.

[8] V. John Mathews and Giovanni L. Sicuranza, Polynomial
Signal Processing, Wiley–Intercience: John Wiley and Sons,
2000.

[9] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical
Implementations, 2nd Edition, Kluwer Academic Publishers,
Boston, 2002.

[10] S. T. Alexander and A. L. Ghirnikar, “A method for recursive
least squares filtering based upon an inverse QR decomposi-
tion,” IEEE Transactions on Signal Processing, vol. 41, pp.
20–30, January 1993.

Table 2. The New Order Recursive Multiple Order Multichannel
Fast QRD-RLS Algorithm (complex version)

Initializations:

d
(i)
fq2 = zeros(N, 1); f(M)(0) = 0; dq2 = 0;

γ
(0)
N (0) = 1; e

(i)
fN

(0) = µ; i = 1, 2, · · · , M.

All cosines = 1; all sines = 0;

for k = 1, 2, · · ·
{ γ

(1)
0 = 1; e

(0)
q1 (k + 1) = d∗(k + 1);

|e(1)
0 (k + 1)| =

√(
λ1/2|e(1)

0 (k)|
)2

+ |x1(k + 1)|2;

f
(1)
N+1(k + 1) = [x1(k + 1)]∗ /|e(1)

0 (k + 1)|;
for i = 1 : M,

{ e
(i)
fq10

(k + 1) = xi(k + 1)

for j = 1 : N,

{ e
(i)
fq1j

(k + 1) = cos
[
θ
(i−1)
j (k)

]
e
(i)
fq1j−1

(k + 1)

+λ1/2 sin
[
θ
(i−1)
j (k)

]
d

(i)
fq2N−j+1

(k);

d
(i)
fq2N−j+1

(k) = λ1/2 cos
[
θ
(i−1)
j (k)

]
d

(i)
fq2N−j+1

(k)

− sin
[
θ
(i−1)
j (k)

]∗
e
(i)
fq1j−1

(k + 1);

if j ≥ pi − 1,

|e(i)
fj

(k + 1)| =√(
λ1/2|e(i)

fj
(k)|

)2
+ |e(i)

fq1N
(k + 1)|2;

p
(i)
j (k + 1) =

γ
(i−1)
j (k)

[
e
(i)
fq1j

(k+1)

]∗

|e(i)
fj

(k+1)|
;

if j = pi − 1,

f
(i)
N+1−j+1(k + 1) = p

(i)
j (k + 1);

if j > pi − 1,

cos θ′f
(i)

j
(k + 1) = |e(i)

fj
(k + 1)|/|e(i)

fj−1
(k + 1)|;

sin θ′f
(i)

j
(k + 1) =

[
cos θ′f

(i)

j
(k + 1)·

d
(i)
fq2N−j+1

(k + 1)/e
(i)
fj

(k + 1)
]∗

;

f
(i)
N−j+1(k + 1) = cos θ′f

(i)

j
(k + 1)f

(i−1)
N−j+2(k + 1)

− sin
[
θ′f

(i)

j
(k + 1)

]∗
p
(i)
j (k + 1);

sin θ
(i)
j (k) = −

[
f

(i)
N−j+2(k + 1)

]∗
/γ

(i)
j−1;

cos θ
(i)
j (k) =

√
1 − | sin θ

(i)
j (k)|2;

γ
(i)
j (k) = cos θ

(i)
j (k)γ

(i)
j−1(k + 1);

} for j
} for i
for j = 1 : N % Join process estimation:

{ e
(j)
q1 (k + 1) = cos θ

(0)
j (k + 1)e

(j−1)
q1 (k + 1)

+λ1/2 sin θ
(0)
j (k + 1)d

(N−j+1)
q2 (k);

d
(N−j+1)
q2 (k + 1) = λ1/2 cos θ

(0)
j (k + 1)d

(N−j+1)
q2 (k)

− sin
[
θ
(0)
j (k + 1)

]∗
e
(j−1)
q1 (k + 1);

}
e(k + 1) =

[
e
(N)
q1 (k + 1)

]∗
/γ

(0)
N (k + 1); % the a priori error

} for k

Obs.: The asterisc (∗) denotes complex conjugation.

θ
(M)
j (k) = θ

(0)
j (k + 1) and f

(M)
N−j+2(k) = f

(0)
N−j+2(k + 1).

969

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

